Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plasmid ; 127: 102694, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37301314

RESUMEN

Plasmid families harbor different maintenances functions, depending on their size and copy number. Low copy number plasmids rely on active partition systems, organizing a partition complex at specific centromere sites that is actively positioned using NTPase proteins. Some low copy number plasmids lack an active partition system, but carry atypical intracellular positioning systems using a single protein that binds to the centromere site but without an associated NTPase. These systems have been studied in the case of the Escherichia coli R388 and of the Staphylococcus aureus pSK1 plasmids. Here we review these two systems, which appear to be unrelated but share common features, such as their distribution on plasmids of medium size and copy number, certain activities of their centromere-binding proteins, StbA and Par, respectively, as well as their mode of action, which may involve dynamic interactions with the nucleoid-packed chromosome of their hosts.


Asunto(s)
Variaciones en el Número de Copia de ADN , Nucleósido-Trifosfatasa , Humanos , Plásmidos/genética , Nucleósido-Trifosfatasa/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Segregación Cromosómica
2.
J Mol Biol ; 434(19): 167770, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35907571

RESUMEN

The segregation of prokaryotic plasmids typically requires a centromere-like site and two proteins, a centromere-binding protein (CBP) and an NTPase. By contrast, a single 245 residue Par protein mediates partition of the prototypical staphylococcal multiresistance plasmid pSK1 in the absence of an identifiable NTPase component. To gain insight into centromere binding by pSK1 Par and its segregation function we performed structural, biochemical and in vivo studies. Here we show that pSK1 Par binds a centromere consisting of seven repeat elements. We demonstrate this Par-centromere interaction also mediates Par autoregulation. To elucidate the Par centromere binding mechanism, we obtained a structure of the Par N-terminal DNA-binding domain bound to centromere DNA to 2.25 Å. The pSK1 Par structure, which harbors a winged-helix-turn-helix (wHTH), is distinct from other plasmid CBP structures but shows homology to the B. subtilis chromosome segregation protein, RacA. Biochemical studies suggest the region C-terminal to the Par wHTH forms coiled coils and mediates oligomerization. Fluorescence microscopy analyses show that pSK1 Par enhances the separation of plasmids from clusters, driving effective segregation upon cell division. Combined the data provide insight into the molecular properties of a single protein partition system.


Asunto(s)
Proteínas Bacterianas , Centrómero , Segregación Cromosómica , Nucleósido-Trifosfatasa , Plásmidos , Staphylococcus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Centrómero/genética , Centrómero/metabolismo , ADN/química , Nucleósido-Trifosfatasa/metabolismo , Plásmidos/genética , Staphylococcus/genética
3.
Yeast ; 37(3): 261-268, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31899805

RESUMEN

Energy-metabolism oscillations (EMO) are ultradian biological rhythms observed in in aerobic chemostat cultures of Saccharomyces cerevisiae. EMO regulates energy metabolism such as glucose, carbohydrate storage, O2 uptake, and CO2 production. PSK1 is a nutrient responsive protein kinase involved in regulation of glucose metabolism, sensory response to light, oxygen, and redox state. The aim of this investigation was to assess the function of PSK1 in regulation of EMO. The mRNA levels of PSK1 fluctuated in concert with EMO, and deletion of PSK1 resulted in unstable EMO with disappearance of the fluctuations and reduced amplitude, compared with the wild type. Furthermore, the mutant PSK1Δ showed downregulation of the synthesis and breakdown of glycogen with resultant decrease in glucose concentrations. The redox state represented by NADH also decreased in PSK1Δ compared with the wild type. These data suggest that PSK1 plays an important role in the regulation of energy metabolism and stabilizes ultradian biological rhythms. These results enhance our understanding of the mechanisms of biorhythms in the budding yeast.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Metabolismo Energético/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Metabolismo Energético/genética , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Oxígeno/metabolismo , Proteínas Quinasas/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcriptoma , Ritmo Ultradiano/fisiología
4.
J Biol Chem ; 294(48): 18244-18255, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31641022

RESUMEN

The evolutionarily conserved TOR complex 1 (TORC1) activates cell growth and proliferation in response to nutritional signals. In the fission yeast Schizosaccharomyces pombe, TORC1 is essential for vegetative growth, and its activity is regulated in response to nitrogen quantity and quality. Yet, how TORC1 senses nitrogen is poorly understood. Rapamycin, a specific TOR inhibitor, inhibits growth in S. pombe only under conditions in which the activity of TORC1 is compromised. In a genetic screen for rapamycin-sensitive mutations, we isolated caa1-1, a loss-of-function mutation of the cytosolic form of aspartate aminotransferase (Caa1). We demonstrate that loss of caa1+ partially mimics loss of TORC1 activity and that Caa1 is required for full TORC1 activity. Disruption of caa1+ resulted in aspartate auxotrophy, a finding that prompted us to assess the role of aspartate in TORC1 activation. We found that the amino acids glutamine, asparagine, arginine, aspartate, and serine activate TORC1 most efficiently following nitrogen starvation. The glutamine synthetase inhibitor l-methionine sulfoximine abolished the ability of asparagine, arginine, aspartate, or serine, but not that of glutamine, to induce TORC1 activity, consistent with a central role for glutamine in activating TORC1. Neither addition of aspartate nor addition of glutamine restored TORC1 activity in caa1-deleted cells or in cells carrying a Caa1 variant with a catalytic site substitution, suggesting that the catalytic activity of Caa1 is required for TORC1 activation. Taken together, our results reveal the contribution of the key metabolic enzyme Caa1 to TORC1 activity in S. pombe.


Asunto(s)
Aspartato Aminotransferasas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mutación , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Arginina/farmacología , Asparagina/farmacología , Aspartato Aminotransferasas/metabolismo , Ácido Aspártico/farmacología , Citosol/enzimología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metionina Sulfoximina/farmacología , Nitrógeno/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sirolimus/farmacología
5.
Plant Cell Rep ; 36(1): 151-162, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27787596

RESUMEN

KEY MESSAGE: Our study is the first to demonstrate that PSK1 , a SKP1 -like gene homologue, is involved in salinity tolerance. Our functional characterization of PSK1 provides new insights into tree peony development. A homologous gene of S-phase kinase-associated protein1 (SKP1) was cloned from tree peony (Paeonia suffruticosa) and denoted as PSK1. The 462-bp open reading frame of PSK1 was predicted to encode a protein comprising 153 amino acids, with a molecular mass of 17 kDa. The full-length gene was 1,634 bp long and included a large 904-bp intron. PSK1 transcription was detected in all tissues, with the highest level observed in sepals, followed by leaves. Under salinity stress, overexpression of PSK1 in Arabidopsis resulted in increased germination percentages, cotyledon greening, and fresh weights relative to wild-type plants. Furthermore, transgenic Arabidopsis lines containing 35S::PSK1 displayed increased expression of genes that would be essential for reproduction and growth under salinity stress: ASK1, LEAFY, FT, and CO involved in flower development and flowering time as well as P5CS, RAB18, DREB, and SOD1-3 contributing to salinity tolerance. Our functional characterization of PSK1 adds to global knowledge of the multiple functions of previously explored SKP1-like genes in plants and sheds light on the molecular mechanism underlying its role in salinity tolerance. Our findings also provide information on the function and molecular mechanism of PSK1 in tree peony flower development, thereby revealing a theoretical basis for regulation of flowering and conferral of salinity tolerance in tree peony.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Genes de Plantas , Paeonia/genética , Proteínas de Plantas/metabolismo , Salinidad , Tolerancia a la Sal/genética , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Carbohidratos/análisis , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Prolina/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína
6.
FEMS Microbiol Lett ; 350(2): 154-60, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24236444

RESUMEN

The Per-ARNT-Sim (PAS) domain serine/threonine kinase PAS kinase is involved in energy flux and protein synthesis. In yeast, PSK1 and PSK2 are two partially redundant PASK homologs. We recently generated PSK2 deletion mutant and showed that Psk2 acts as a nutrient-sensing protein kinase to modulate Ultradian clock-coupled respiratory oscillation in yeast. Here, we show that deletion of PSK1 increased the sensitivity of yeast cells to oxidative stress (H2 O2 treatment) and partially inhibited cell growth; however, the growth of the PSK2-deleted mutant was similar to that of the wild type. Superoxide dismutase-1 (SOD1) mRNA and protein levels were lower in PSK1-deletion mutant than the wild type. The mRNA levels of stress response genes CTT1, HSP104, ATH1, NTH1 and SOD2 were similar in both the PSK1-deleted mutant and wild-type yeast. Furthermore, intracellular accumulation of reactive oxygen species (ROS) was noted in PSK1-deleted mutant. These results suggest that PSK1 induces SOD1 expression to protect against oxidative stress in yeast.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Estrés Oxidativo/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Superóxido Dismutasa/genética , Mutación/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA