Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Sci Total Environ ; 949: 175158, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094641

RESUMEN

The ubiquitous use of mosquito repellents in homes across Asia, Africa, and South America is related with human exposure to indoor volatile organic compounds (VOCs). There are three primary types of mosquito repellents: those in the form of coils, mats, and liquids. The repellent mechanisms of these products are distinct, resulting in the generation of varying types of VOCs during the repellent process. In this study, the emission characteristics of commercial coil-, mat-, and liquid-type mosquito repellents were observed in a laboratory chamber using real-time measurement. A previously developed personal passive sampler, ePTFE PS, was used to quantify personal exposure to indoor VOCs while 86 volunteers habitually used those three representative types for 3 h in their residence. Notable increase of indoor benzene was observed for coil- and mat-type mosquito repellents, while α-pinene concentration increased significantly following the use of liquid-type mosquito repellent. The average incremental cancer risks for benzene were 10-6 to 10-4 for adults following the use of coil- and mat-type mosquito repellents. The average non-cancer risks for all chemicals were <1 after the use of three types of mosquito repellents. Considering the potential human health risks associated with byproducts (e.g., particulate matter or carbon monoxide from incomplete combustion) emitted after mosquito coil use, further research on this topic is warranted.


Asunto(s)
Contaminación del Aire Interior , Repelentes de Insectos , Compuestos Orgánicos Volátiles , Repelentes de Insectos/análisis , Compuestos Orgánicos Volátiles/análisis , Humanos , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Vivienda , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Medición de Riesgo , Adulto , Benceno/análisis , Culicidae/efectos de los fármacos
2.
Food Chem ; 459: 140431, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39018618

RESUMEN

Insight investigation on both edible pulps and inedible parts involving inflorescence axis and shreds of Artocarpus heterophyllus Lam were carried out, a total of 98 VOCs and 201 masses were identified by the combination of HS-SPME-GC-MS and PTR-TOF-MS. Among them, according to the consistency of OAV and results of VIP > 1, p < 0.05, compounds methyl isovalerate (A2), 3-methylbutyl acetate (A5) and octanoic acid, ethyl ester (A21) were recognized as aroma markers to distinguish the pulps, shreds and inflorescence axis. Meanwhile, the inflorescence axis (IC50: 1.82 mg/mL) and shreds (IC50: 16.74 mg/mL) exhibited more excellent antioxidant potency than pulps (IC50: 17.43 mg/mL) in vitro. These findings validated the feasibility of coupling HS-SPME-GC-MS and PTR-TOF-MS for rapid detection of characteristic VOCs of this plant, and offered new prospect of fragrance utilization and waste management of the edible and inedible parts of A. heterophyllus fruit.

3.
J Breath Res ; 18(4)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39059409

RESUMEN

Tetrachloroethylene (PCE) is a widely utilized volatile chemical in industrial applications, including dry cleaning and metal degreasing. Exposure to PCE potentially presents a significant health risk to workers as well as communities near contamination sites. Adverse health effects arise not only from PCE, but also from PCE degradation products, such as trichloroethylene (TCE) and vinyl chloride (VC). PCE, TCE, and VC can contaminate water, soil, and air, leading to exposure through multiple pathways, including inhalation, ingestion, and dermal contact. This study focused on a community setting in Martinsville, Indiana, a working-class Midwestern community in the United States, where extensive PCE contamination has occurred due to multiple contamination sites (referring to 'plumes'), including a Superfund site. Utilizing proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), PCE, TCE, and VC concentrations were measured in the exhaled breath of 73 residents from both within and outside the plume areas. PCE was detected in 66 samples, TCE in 26 samples, and VC in 68 samples. Our results revealed a significant positive correlation between the concentrations of these compounds in exhaled breath and indoor air (Pearson correlation coefficients: PCE = 0.75, TCE = 0.71, and VC = 0.89). This study confirms the presence of PCE and its degradation products in exhaled breath in a community exposure investigation, demonstrating the potential of using exhaled breath analysis in monitoring exposure to environmental contaminants. This study showed the feasibility of utilizing PTR-TOF-MS in community investigations to assess exposure to PCE and its degradation products by measuring these compounds in exhaled breath and indoor air.


Asunto(s)
Contaminación del Aire Interior , Pruebas Respiratorias , Tetracloroetileno , Humanos , Pruebas Respiratorias/métodos , Contaminación del Aire Interior/análisis , Tetracloroetileno/análisis , Masculino , Femenino , Adulto , Espiración , Persona de Mediana Edad , Exposición a Riesgos Ambientales/análisis , Indiana , Monitoreo del Ambiente/métodos
4.
Food Chem ; 455: 139942, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38917655

RESUMEN

The characteristic flavor of Coffea arabica from Yunnan is largely attributed to the primary processing treatments through affecting the VOCs accumulation. Therefore, a rapid and comprehensive detection technique is needed to accurately recognize VOCs in green coffee beans with different pretreatment methods. Hence, we conducted volatile profiles and identified nine markers of three different primary processed green coffee beans from the major production areas in Yunnan with the combined of HS-SPME-GC-MS and PTR-TOF-MS. The relationships between the chemical composition and the content of VOCs in green coffee beans were elucidated. Among the markers, palmitic acid (F3), linoleic acid (F6), α-ethylidene phenylacetaldehyde (T4), and phytane (T8) contributed to the antioxidant activity of sun-exposed green coffee beans. In conclusion, the analytical technology presented here provided a general tool for an overall and rapid understanding of a detailed volatile profiles of green coffee beans in Yunnan.


Asunto(s)
Coffea , Semillas , Compuestos Orgánicos Volátiles , Coffea/química , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , China , Semillas/química , Cromatografía de Gases y Espectrometría de Masas , Manipulación de Alimentos , Biomarcadores/análisis , Microextracción en Fase Sólida/métodos , Espectrometría de Masas , Café/química
5.
Tree Physiol ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795340

RESUMEN

Plants emit diverse volatile organic compounds (VOCs) from their leaves and roots for protection against biotic and abiotic stress. An important signaling cascade activated by aboveground herbivory is the jasmonic acid (JA) pathway that stimulates the production of VOCs. So far it remains unclear if the activation of this pathway also leads to enhanced VOC emissions from conifer roots, and how the interplay of above- and belowground defenses in plants are affected by multiple stressors. Therefore, we simultaneously analyzed needle and root VOC emissions of Picea abies saplings, as well as CO2 and H2O fluxes in response to aboveground JA treatment, heat stress and their interaction in a controlled climate chamber experiment. Continuous online VOC measurements by PTR-TOF-MS showed an inverse pattern of total needle and root VOC emissions, when plants were treated with JA and heat. While needle sesquiterpene emissions increased nine-fold one day after JA application, total root VOC emissions decreased. This was mainly due to reduced emissions of acetone and monoterpenes by roots. In response to aboveground JA treatment, root total carbon emitted as VOCs decreased from 31% to only 4%. While VOC emissions aboveground increased, net CO2 assimilation strongly declined due to JA treatment, resulting in net respiration during the day. Interestingly, root respiration was not affected by aboveground JA application. Under heat the effect of JA on VOC emissions of needles and roots was less pronounced. The buffering effect of heat on VOC emissions following JA treatment points towards an impaired defense reaction of the plants under multiple stress. Our results indicate efficient resource allocation within the plant to protect threatened tissues by a rather local VOC release. Roots may only be affected indirectly by reduced belowground carbon allocation, but are not involved directly in the JA-induced stress response.

6.
Plants (Basel) ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674539

RESUMEN

Chili is a globally significant spice used fresh or dried for culinary, condiment, and medicinal purposes. Growing concerns about food safety have increased the demand for high-quality products and non-invasive tools for quality control like origin tracing and safety assurance. Volatile analysis offers a rapid, comprehensive, and safe method for characterizing various food products. Thus, this study aims to assess the impact of the drying process on the aromatic composition of various Capsicum species and to identify key compounds driving the aromatic complexity of each genetic makeup. To accomplish these objectives, the aroma was examined in fruits collected from 19 different pepper accessions (Capsicum sp.) belonging to four species: one ancestral (C. chacoense) and three domesticated pepper species (C. annuum, C. baccatum and C. chinense). Fresh and dried samples were analyzed using a headspace PTR-TOF-MS platform. Our findings reveal significant changes in the composition and concentration of volatile organic compounds (VOCs) from fresh to dried Capsicum. Notably, chili peppers of the species C. chinense consistently exhibited higher emission intensity and a more complex aroma compared to other species (both fresh and dried). Overall, the data clearly demonstrate that the drying process generally leads to a reduction in the intensity and complexity of the aromatic compounds emitted. Specifically, fresh peppers showed higher volatile organic compounds content compared to dried ones, except for the two sweet peppers studied, which exhibited the opposite behavior. Our analysis underscores the variability in the effect of drying on volatile compound composition among different pepper species and even among different cultivars, highlighting key compounds that could facilitate species classification in dried powder. This research serves as a preliminary guide for promoting the utilization of various pepper species and cultivars as powder, enhancing product valorization.

7.
J Agric Food Chem ; 72(12): 6723-6734, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478988

RESUMEN

This study investigated the effects of chewing rate and food composition on in vivo aroma release and perception of composite foods. Bread or sponge cake paired with varying sugar content and viscosity strawberry jams, spiked with citral and limonene, were examined. In-nose release was characterized using Proton-Transfer-Reaction-Time-of-Flight-Mass-Spectrometry (PTR-ToF-MS). Simultaneously, Time-Intensity (TI) profiling assessed citrus aroma perception (n = 8, triplicate) while fast and slow chewing protocols were applied (fast: 1.33 chews/s; slow 0.66 chews/s; each for 25 s). Chewing rate did not significantly impact the area under the curve and maximum intensity of in vivo citral and limonene release and citrus aroma perception. Faster chewing rates significantly decreased the time to reach maximum intensity of aroma release (p < 0.05) and citrus aroma perception (p < 0.001). Faster chewing rates probably accelerated structural breakdown, inducing an earlier aroma release and perception without affecting aroma intensity. Adding carriers to jams significantly (p < 0.05) increased aroma release, while perceived citrus aroma intensity significantly (p < 0.05) decreased regardless of chewing rate. In conclusion, chewing rate affects the temporality of in vivo aroma release and perception without affecting its intensity, and carrier addition increases in vivo aroma release while diminishing aroma perception.


Asunto(s)
Monoterpenos Acíclicos , Masticación , Odorantes , Odorantes/análisis , Limoneno , Percepción
8.
Food Res Int ; 176: 113802, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163682

RESUMEN

Over the past decade, advanced analytical techniques have been utilized to examine volatile organic compounds (VOCs) in eggs. These VOCs offer valuable insights into factors such as freshness, fertility, the presence of cracks, embryo sex, and breed. In our study, we assessed three mass spectrometry-based systems (headspace sorptive extraction gas chromatography-mass spectrometry; HSSE-GC-MS, proton transfer reaction time-of-flight-mass spectrometry; PTR-TOF-MS; and selected ion flow tube mass spectrometry; SIFT-MS) to analyze and identify VOCs present in intact hatching eggs from three distinct breeds (Dekalb white layer, Shaver brown layer, and Ross 308 broiler). The eggs were sampled on incubation days 2 and 8, to identify VOCs that distinguish breeds irrespective of incubation day. VOC measurements were conducted on 15 eggs per breed by placing them together with PDMS-coated stir bars inside inert Teflon® air sampling bags. After an accumulation period of 2 h, the headspace was analyzed using PTR-TOF-MS and SIFT-MS, while the VOCs adsorbed onto the stir bars were analyzed using GC-MS for additional compound identification. Partial least squares discriminant analysis (PLS-DA) models were constructed for breed differentiation, and variable selection was performed. As a result, 111 VOCs were identified using HSSE-GC-MS, with alcohols and esters being the most abundant. The PLS-DA models demonstrated the efficacy of breed discrimination, with the HSSE-GC-MS and the PTR-TOF-MS exhibiting the highest balanced accuracy of 95.5 % using a reduced set of 11 VOCs and 5 product ions, respectively. The SIFT-MS model had a balanced accuracy of 92.8 % with a reduced set of 11 product ions. Furthermore, complementarity was observed between HSSE-GC-MS, which primarily selected higher molecular weight VOCs, and PTR-TOF-MS and SIFT-MS. A higher correlation was found for compound abundances between the HSSE-GC-MS and the PTR-TOF-MS relative to the SIFT-MS, indicating that the PTR-TOF-MS was better suited to quantify specific compounds identified by the HSSE-GC-MS. Finally, the findings support the presence of VOCs originating from both synthetic and natural sources, highlighting the ability of the VOC analysis systems to non-destructively perform quality control and reveal differences in management practices or biological information encoded in eggs.


Asunto(s)
Compuestos Orgánicos Volátiles , Animales , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Pollos , Espectrometría de Masas/métodos , Protones
9.
J Plant Physiol ; 292: 154164, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141481

RESUMEN

Exposure to herbivore-induced plant volatiles (HIPVs) is known to enhance the defense responses in plants. This so-called priming effect has only been marginally studied in intercropping systems. We tested whether HIPVs from cowpea, which often serves as an intercrop alongside maize, can prime herbivore-induced volatile emissions in maize. Conventional volatile collection assays and real-time mass spectrometry revealed that maize plants that were exposed to HIPVs from cowpea infested with Spodoptera exigua caterpillars emitted more than control plants when they themselves were subsequently damaged by the same pest. The enhanced emission was only evident on the first day after infestation. Maize plants that were exposed to HIPVs from cowpea infested by S. frugiperda larvae showed no priming effect and released considerably less upon S. frugiperda infestation than upon S. exigua infestation. The latter may be explained by the fact that S. frugiperda is particularly well adapted to feed on maize and is known to suppress maize HIPV emissions. Our results imply that HIPVs from cowpea, depending on the inducing insect herbivore, may strongly prime maize plants. This deserves further investigation, also in other intercropping systems, as it can have important consequences for tritrophic interactions and crop protection.


Asunto(s)
Beta vulgaris , Vigna , Compuestos Orgánicos Volátiles , Animales , Spodoptera/fisiología , Zea mays , Larva , Herbivoria
10.
J Breath Res ; 18(1)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37917990

RESUMEN

Volatilomics is the branch of metabolomics dedicated to the analysis of volatile organic compounds in exhaled breath for medical diagnostic or therapeutic monitoring purposes. Real-time mass spectrometry (MS) technologies such as proton transfer reaction (PTR) MS are commonly used, and data normalisation is an important step to discard unwanted variation from non-biological sources, as batch effects and loss of sensitivity over time may be observed. As normalisation methods for real-time breath analysis have been poorly investigated, we aimed to benchmark known metabolomic data normalisation methods and apply them to PTR-MS data analysis. We compared seven normalisation methods, five statistically based and two using multiple standard metabolites, on two datasets from clinical trials for COVID-19 diagnosis in patients from the emergency department or intensive care unit. We evaluated different means of feature selection to select the standard metabolites, as well as the use of multiple repeat measurements of ambient air to train the normalisation methods. We show that the normalisation tools can correct for time-dependent drift. The methods that provided the best corrections for both cohorts were probabilistic quotient normalisation and normalisation using optimal selection of multiple internal standards. Normalisation also improved the diagnostic performance of the machine learning models, significantly increasing sensitivity, specificity and area under the receiver operating characteristic (ROC) curve for the diagnosis of COVID-19. Our results highlight the importance of adding an appropriate normalisation step during the processing of PTR-MS data, which allows significant improvements in the predictive performance of statistical models.Clinical trials: VOC-COVID-Diag (EudraCT 2020-A02682-37); RECORDS trial (EudraCT 2020-000296-21).


Asunto(s)
COVID-19 , Compuestos Orgánicos Volátiles , Humanos , Protones , Benchmarking , Prueba de COVID-19 , Pruebas Respiratorias/métodos , Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis
11.
Environ Sci Technol ; 57(48): 19999-20009, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37971371

RESUMEN

Cyclic volatile methyl siloxanes (cVMS) are ubiquitous in hair care products (HCPs). cVMS emissions from HCPs are of concern, given the potential adverse impact of siloxanes on the environment and human health. To characterize cVMS emissions and exposures during the use of HCPs, realistic hair care experiments were conducted in a residential building. Siloxane-based HCPs were tested using common hair styling techniques, including straightening, curling, waving, and oiling. VOC concentrations were measured via proton-transfer-reaction time-of-flight mass spectrometry. HCP use drove rapid changes in the chemical composition of the indoor atmosphere. cVMS dominated VOC emissions from HCP use, and decamethylcyclopentasiloxane (D5) contributed the most to cVMS emissions. cVMS emission factors (EFs) during hair care routines ranged from 110-1500 mg/person and were influenced by HCP type, styling tools, operation temperatures, and hair length. The high temperature of styling tools and the high surface area of hair enhanced VOC emissions. Increasing the hair straightener temperature from room temperature to 210 °C increased cVMS EFs by 50-310%. Elevated indoor cVMS concentrations can result in substantial indoor-to-outdoor transport of cVMS via ventilation (0.4-6 tons D5/year in the U.S.); thus, hair care routines may augment the abundance of cVMS in the outdoor atmosphere.


Asunto(s)
Preparaciones para el Cabello , Compuestos Orgánicos Volátiles , Humanos , Siloxanos/análisis , Espectrometría de Masas , Atmósfera , Preparaciones para el Cabello/análisis , Monitoreo del Ambiente
12.
Environ Pollut ; 338: 122703, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804903

RESUMEN

Fire represents a major threat to Mediterranean terrestrial ecosystems because of the high temperatures reached during summer. While massive loads of organic, inorganic compounds and particulate matter are known to be emitted into the atmosphere from forest wildfires, less is known about the emission from vegetation surrounding fires where air temperatures higher than 100 °C can be reached. Little information exists on the emission from dead vegetation accumulated as litter over forest soils, from which fires often starts. In this study, the response of litter to heatwaves generated by nearby fires was investigated under controlled conditions. Litter samples collected in a Mediterranean maquis and a Holm oak stand during summer were placed in an enclosure flushed with a continuous flow of air, the temperature of the enclosure was progressively risen to 125 °C, until some smog developed but no flaming occurred. The gas from the enclosure was analysed for the content of CO2, H2O, and volatile organic compounds (VOC) to assess the dependence of emission from the air temperature. VOC emission was continuously determined by Proton-Transfer-Reaction mass spectrometry with time of flight (PTR-TOF-MS). Data obtained were complemented with those obtained by collecting VOC on traps that were later analysed by Gas chromatography-mass spectrometry (GC-MS). Results provided useful information to understand the emission mechanism of VOC and other gases from dead vegetation present in the litter of two Mediterranean ecosystems, both dominated by evergreen vegetation species. The study demonstrated that low molecular weight VOC and aromatic hydrocarbons (arenes) produced mostly by thermal oxidation of the wood biopolymers are emitted in addition to isoprenoids typically associated to storage organs and photosynthetic pathway. Moreover, our results support parameterization of litter VOC emission processes in air quality models.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Temperatura , Ecosistema , Biomasa , Cromatografía de Gases y Espectrometría de Masas/métodos , Contaminantes Atmosféricos/análisis
13.
Tree Physiol ; 43(11): 1917-1932, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37552065

RESUMEN

In the near future, climate change will cause enhanced frequency and/or severity of droughts in terrestrial ecosystems, including tropical forests. Drought responses by tropical trees may affect their carbon use, including production of volatile organic compounds (VOCs), with implications for carbon cycling and atmospheric chemistry that are challenging to predict. It remains unclear how metabolic adjustments by mature tropical trees in response to drought will affect their carbon fluxes associated with daytime CO2 production and VOC emission. To address this gap, we used position-specific 13C-pyruvate labeling to investigate leaf CO2 and VOC fluxes from four tropical species before and during a controlled drought in the enclosed rainforest of Biosphere 2 (B2). Overall, plants that were more drought-sensitive had greater reductions in daytime CO2 production. Although daytime CO2 production was always dominated by non-mitochondrial processes, the relative contribution of CO2 from the tricarboxylic acid cycle tended to increase under drought. A notable exception was the legume tree Clitoria fairchildiana R.A. Howard, which had less anabolic CO2 production than the other species even under pre-drought conditions, perhaps due to more efficient refixation of CO2 and anaplerotic use for amino acid synthesis. The C. fairchildiana was also the only species to allocate detectable amounts of 13C label to VOCs and was a major source of VOCs in B2. In C. fairchildiana leaves, our data indicate that intermediates from the mevalonic acid (MVA) pathway are used to produce the volatile monoterpene trans-ß-ocimene, but not isoprene. This apparent crosstalk between the MVA and methylerythritol phosphate pathways for monoterpene synthesis declined with drought. Finally, although trans-ß-ocimene emissions increased under drought, it was increasingly sourced from stored intermediates and not de novo synthesis. Unique metabolic responses of legumes may play a disproportionate role in the overall changes in daytime CO2 and VOC fluxes in tropical forests experiencing drought.


Asunto(s)
Ecosistema , Compuestos Orgánicos Volátiles , Terpenos/metabolismo , Sequías , Dióxido de Carbono/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Árboles/metabolismo , Carbono/metabolismo , Monoterpenos/metabolismo , Hojas de la Planta/fisiología
14.
Environ Sci Technol ; 57(35): 13193-13204, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37611137

RESUMEN

Volatile organic compounds (VOCs) emitted from biomass burning impact air quality and climate. Laboratory studies have shown that the variability in VOC speciation is largely driven by changes in combustion conditions and is only modestly impacted by fuel type. Here, we report that emissions of VOCs measured in ambient smoke emitted from western US wildfires can be parameterized by high- and low-temperature pyrolysis VOC profiles and are consistent with previous observations from laboratory simulated fires. This is demonstrated using positive matrix factorization (PMF) constrained by high- and low-temperature factors using VOC measurements obtained with a proton-transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) on board the NASA DC-8 during the FIREX-AQ (Fire Influence on Regional and Global Environments and Air Quality) project in 2019. A linear combination of high- and low-temperature factors described more than 70% of the variability of VOC emissions of long-lived VOCs in all sampled wildfire plumes. An additional factor attributable to atmospheric aging was required to parameterize short-lived and secondarily produced VOCs. The relative contribution of the PMF-derived high-temperature factor for a given fire plume was strongly correlated with the fire radiative power (FRP) at the estimated time of emission detected by satellite measurements. By combining the FRP with the fraction of the high-temperature PMF factor, the emission ratios (ERs) of VOCs to carbon monoxide (CO) in fresh wildfires were estimated and agree well with measured ERs (r2 = 0.80-0.93).


Asunto(s)
Incendios , Compuestos Orgánicos Volátiles , Incendios Forestales , Biomasa
15.
Environ Pollut ; 335: 122287, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37562529

RESUMEN

Volatile organic compounds (VOCs), which are ubiquitous pollutants in the urban and regional atmosphere, promote the formation of ozone (O3) and secondary organic aerosols, thereby significantly affecting the air quality and human health. The ambient VOCs at a coastal suburban site in Hong Kong were continuously measured using proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) from November 2020 to December 2020. 83 VOC species, including 23 CxHy, 53 CxHyO1-3, and 7 nitrogen-containing species, were measured during the campaign, with a mean concentration of 36.75 ppb. Oxygenated VOCs (OVOCs) accounted for most (77.4%) of the measured species, including CxHyO1 (50.7%) and CxHyO2 (25.1%). The measured VOC species exhibited distinct temporal and diurnal variations. High concentrations of isoprene and OVOCs were measured in autumn with more active photochemistry, whereas large evening peaks of aromatics from local and regional primary emissions were prominent in winter. The OH reactivity and O3 formation potential (OFP) of key precursors were quantified. OVOCs contributed about half of the total OH reactivity and OFP, followed by alkenes and aromatics, and the contribution of aromatics increased significantly in winter. The potential source contribution function was used to investigate the potential source regions associated with high VOC concentrations. Through positive matrix factorization analysis, six major sources were identified based on fingerprint molecules. The contributions of biogenic sources and secondary formation to the observed species were notable in late autumn, whereas vehicle emissions and solid fuel combustion had higher contributions in winter. The findings highlight the important role of OVOCs in photochemical pollution and provide valuable insights for the development of effective pollution control strategies.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Humanos , Hong Kong , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Emisiones de Vehículos/análisis , Ozono/análisis , China
16.
ACS Sens ; 8(7): 2618-2626, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37377394

RESUMEN

Liver diseases (e.g., cirrhosis, cancer) cause more than two million deaths per year worldwide. This is partly attributed to late diagnosis and insufficient screening techniques. A promising biomarker for noninvasive and inexpensive liver disease screening is breath limonene that can indicate a deficiency of the cytochrome P450 liver enzymes. Here, we introduce a compact and low-cost detector for dynamic and selective breath limonene sensing. It comprises a chemoresistive sensor based on Si/WO3 nanoparticles pre-screened by a packed bed Tenax separation column at room temperature. We demonstrate selective limonene detection down to 20 parts per billion over up to three orders of magnitude higher concentrated acetone, ethanol, hydrogen, methanol, and 2-propanol in gas mixtures, as well as robustness to 10-90% relative humidity. Most importantly, this detector recognizes the individual breath limonene dynamics of four healthy volunteers following the ingestion (swallowing or chewing) of a limonene capsule. Limonene release and subsequent metabolization are monitored from breath measurements in real time and in excellent agreement (R2 = 0.98) with high-resolution proton transfer reaction mass spectrometry. This study demonstrates the potential of the detector as a simple-to-use and noninvasive device for the routine monitoring of limonene levels in exhaled breath to facilitate early diagnosis of liver dysfunction.


Asunto(s)
Acetona , Cirrosis Hepática , Humanos , Limoneno , Espectrometría de Masas/métodos , Acetona/análisis , Protones
17.
Antioxidants (Basel) ; 12(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37237887

RESUMEN

SPME-GC-MS and PTR-ToF-MS techniques were applied to describe the content of volatile flavor compounds in a craft beer before and after adding spirulina. The obtained results showed that the volatile profile of the two beer samples differed. Furthermore, to chemically characterize biomass spirulina, a derivatization reaction followed by GC-MS analysis was performed, highlighting a high content of molecules belonging to different chemical classes, such as sugars, fatty acids and carboxylic acids. A spectrophotometric analysis of total polyphenols and tannins, investigation into the scavenging activity towards DPPH and ABTS radicals and confocal microscopy of brewer's yeast cells were carried out. Moreover, the cytoprotective and antioxidant properties towards the oxidative damage induced by tert-butyl hydroperoxide (tBOOH) in human H69 cholangiocytes were investigated. Finally, the modulation of Nrf2 signaling under oxidative stress conditions was also evaluated. Both samples of beer were shown to contain similar levels of total polyphenols and tannins, with slightly increased levels in that containing spirulina 0.25% w/v. Moreover, the beers were found to be endowed with radical scavenging properties towards both DPPH and ABTS radicals, albeit with a weak contribution of spirulina; however, a higher riboflavin content was detected in spirulina-treated yeast cells. Conversely, the addition of spirulina (0.25% w/v) appeared to improve the cytoprotective properties of beer towards tBOOH-induced oxidative damage in H69 cells and reduce intracellular oxidative stress. Accordingly, the cytosolic Nrf2 expression was found to be increased.

18.
Front Mol Biosci ; 10: 1155564, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122562

RESUMEN

The application of direct-injection mass spectrometric (DI-MS) techniques, like Proton Transfer Reaction Time of Flight Mass Spectrometry (PTR-ToF-MS) has been suggested as a reliable phenotyping tool for fruit volatilome assessment in both genetic and quality-related studies. In this study the complexity of raspberry aroma was investigated by a comprehensive untargeted VOC analysis, done by combining SPME-GC-MS and PTR-ToF-MS assessments with multi-block discriminant analysis using the DIABLO mixOmics framework. The aim was to acquire an exhaustive characterization of the raspberry volatilome according to different fruit ripening stages (pink, ripe, and overripe) and genetic variances (50 accessions), as well as to investigate the potential of PTR-ToF-MS as a rapid and high throughput VOC phenotyping tool to address issues related to raspberry fruit quality. Results of this study demonstrated the complementarity between SPME-GC-MS and PTR-ToF-MS techniques to evaluate the raspberry aroma composition. PTR-ToF-MS generates reliable raspberry VOC fingerprints mainly due to a reduced compound fragmentation and precise content estimation. In addition, the high collinearity between isomers of monoterpenes and norisoprenoids, discovered by GC analysis, reduces the main analytic limitation of PTR-ToF-MS of not being able to separate isomeric molecules. The high similarity between the VOC matrices obtained by applying PTR-ToF-MS and SPME-GC-MS confirmed the possibility of using PTR-ToF-MS as a reliable high throughput phenotyping tool for raspberry volatiolome assessment. In addition, results provided by the germplasm collection investigation enabled to distinguish the best performing accessions, based on VOCs composition, to be used as superior parental lines for future breeding programs.

19.
Food Res Int ; 167: 112726, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087281

RESUMEN

In vivo aroma release and perception of complex food matrices have been underexplored. The aims of this study were to investigate the effects of (i) fat and sugar content of chocolate-hazelnut spreads on in vivo aroma release and perception and (ii) carrier addition (bread, wafer) on in vivo aroma release and perception of chocolate-hazelnut spread using dynamic nose space analysis (PTR-ToF-MS) and dynamic sensory analysis (TCATA). Carriers were combined with spreads varying in fat and sugar content and were spiked with five volatile organic compounds (benzaldehyde, filbertone, 2-methylpyrazine, delta-dodecalactone, isovaleraldehyde). TCATA profiles from a consumer panel without in vivo nose space analysis (n = 72) and a trained panel performing in vivo nose space analysis (n = 8, triplicate) were compared. TCATA profiles of the spread-carrier combinations obtained by both panels showed similarly that attributes related to the carriers were perceived at the beginning of consumption, whereas attributes related to the spreads were perceived after swallowing. Significant (p < 0.05) and small differences were observed for the attributes cocoa, creamy, milky, sticky and toffee between both panels. In the evaluated reformulation range, fat and sugar content of chocolate-hazelnut spreads had only a limited effect on in vivo aroma release and perception. In contrast, addition of carriers strongly affected in vivo aroma release and perception for all target molecules. The addition of carriers to spreads generally increased aroma release (duration and intensity of aroma release) and decreased aroma perception. The addition of carriers generally reduced the time to reach maximum intensity compared to when spreads were eaten alone for the five volatile organic compounds while perception decreased. We conclude that the strong effect of carrier addition on in vivo aroma release and perception of chocolate-hazelnut spreads highlights the importance of investigating toppings/spreads accompanied with carriers rather than in isolation.


Asunto(s)
Cacao , Chocolate , Compuestos Orgánicos Volátiles , Odorantes , Azúcares , Percepción
20.
J Environ Manage ; 338: 117815, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37015144

RESUMEN

High ammonia (NH3) and odor emission can occur after land application of liquid animal manure. This study was aimed at evaluating NH3 loss and odor nuisance after field application of cattle manure and how it is affected by two anaerobic digestion strategies: i) digestion of cattle manure alone and ii) digestion with catch crops and dilution by water. A system of dynamic chambers with online measurements of NH3 and odorous compounds (summarized as odor activity value, OAV) was used. Two experiments were conducted under different temperature conditions. The results demonstrated that anaerobic digestion did not affect NH3 loss but did decrease OAV. Addition of catch crops and water to the digestion process reduced both NH3 loss and OAV. Cool temperature in one of the experiments had a large effect on both NH3 and odor emissions, and at high temperature the differences between treatments increased.


Asunto(s)
Amoníaco , Estiércol , Bovinos , Animales , Amoníaco/análisis , Odorantes , Anaerobiosis , Productos Agrícolas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA