Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 459, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730342

RESUMEN

BACKGROUND: Genome-wide comparisons of populations are widely used to explore the patterns of nucleotide diversity and sequence divergence to provide knowledge on how natural selection and genetic drift affect the genome. In this study we have compared whole-genome sequencing data from Atlantic and Pacific herring, two sister species that diverged about 2 million years ago, to explore the pattern of genetic differentiation between the two species. RESULTS: The genome comparison of the two species revealed high genome-wide differentiation but with islands of remarkably low genetic differentiation, as measured by an FST analysis. However, the low FST observed in these islands is not caused by low interspecies sequence divergence (dxy) but rather by exceptionally high estimated intraspecies nucleotide diversity (π). These regions of low differentiation and elevated nucleotide diversity, termed high-diversity regions in this study, are not enriched for repeats but are highly enriched for immune-related genes. This enrichment includes genes from both the adaptive immune system, such as immunoglobulin, T-cell receptor and major histocompatibility complex genes, as well as a substantial number of genes with a role in the innate immune system, e.g. novel immune-type receptor, tripartite motif and tumor necrosis factor receptor genes. Analysis of long-read based assemblies from two Atlantic herring individuals revealed extensive copy number variation in these genomic regions, indicating that the elevated intraspecies nucleotide diversities were partially due to the cross-mapping of short reads. CONCLUSIONS: This study demonstrates that copy number variation is a characteristic feature of immune trait loci in herring. Another important implication is that these loci are blind spots in classical genome-wide screens for genetic differentiation using short-read data, not only in herring, likely also in other species harboring qualitatively similar variation at immune trait loci. These loci stood out in this study because of the relatively high genome-wide baseline for FST values between Atlantic and Pacific herring.


Asunto(s)
Variaciones en el Número de Copia de ADN , Peces , Animales , Peces/genética , Peces/inmunología , Variación Genética , Océano Atlántico , Sitios de Carácter Cuantitativo , Secuenciación Completa del Genoma
2.
J Hered ; 115(3): 302-310, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38451162

RESUMEN

The Pacific whiteleg shrimp Penaeus (Litopenaeus) vannamei is a highly relevant species for the world's aquaculture development, for which an incomplete genome is available in public databases. In this work, PacBio long-reads from 14 publicly available genomic libraries (131.2 Gb) were mined to improve the reference genome assembly. The libraries were assembled, polished using Illumina short-reads, and scaffolded with P. vannamei, Feneropenaeus chinensis, and Penaeus monodon genomes. The reference-guided assembly, organized into 44 pseudo-chromosomes and 15,682 scaffolds, showed an improvement from previous reference genomes with a genome size of 2.055 Gb, N50 of 40.14 Mb, L50 of 21, and the longest scaffold of 65.79 Mb. Most orthologous genes (92.6%) of the Arthropoda_odb10 database were detected as "complete," and BRAKER predicted 21,816 gene models; from these, we detected 1,814 single-copy orthologues conserved across the genomic references for Marsupenaeus japonicus, F. chinensis, and P. monodon. Transcriptomic-assembly data aligned in more than 99% to the new reference-guided assembly. The collinearity analysis of the assembled pseudo-chromosomes against the P. vannamei and P. monodon reference genomes showed high conservation in different sets of pseudo-chromosomes. In addition, more than 21,000 publicly available genetic marker sequences were mapped to single-site positions. This new assembly represents a step forward to previously reported P. vannamei assemblies. It will be helpful as a reference genome for future studies on the evolutionary history of the species, the genetic architecture of physiological and sex-determination traits, and the analysis of the changes in genetic diversity and composition of cultivated stocks.


Asunto(s)
Genoma , Penaeidae , Penaeidae/genética , Animales , Bases de Datos Genéticas , Genómica/métodos , Anotación de Secuencia Molecular
3.
J Adv Res ; 54: 1-13, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36781019

RESUMEN

INTRODUCTION: Modern sugarcane cultivars (Saccharum spp. hybrids) derived from crosses between S. officinarum and S. spontaneum, with high-sugar traits and excellent stress tolerance inherited respectively. However, the contribution of the S. spontaneum subgenome to sucrose accumulation is still unclear. OBJECTIVE: To compensate for the absence of a high-quality reference genome, a transcriptome analysis method is needed to analyze the molecular basis of differential sucrose accumulation in sugarcane hybrids and to find clues to the contribution of the S. spontaneum subgenome to sucrose accumulation. METHODS: PacBio full-length sequencing was used to complement genome annotation, followed by the identification of differential genes between the high and low sugar groups using differential alternative splicing analysis and differential expression analysis. At the subgenomic level, the factors responsible for differential sucrose accumulation were investigated from the perspective of transcriptional and post-transcriptional regulation. RESULTS: A full-length transcriptome annotated at the subgenomic level was provided, complemented by 263,378 allele-defined transcript isoforms and 139,405 alternative splicing (AS) events. Differential alternative splicing (DA) analysis and differential expression (DE) analysis identified differential genes between high and low sugar groups and explained differential sucrose accumulation factors by the KEGG pathways. In some gene models, different or even opposite expression patterns of alleles from the same gene were observed, reflecting the potential evolution of these alleles toward novel functions in polyploid sugarcane. Among DA and DE genes in the sucrose source-sink complex pathway, we found some alleles encoding sucrose accumulation-related enzymes derived from the S. spontaneum subgenome were differentially expressed or had DA events between the two contrasting sugarcane hybrids. CONCLUSION: Full-length transcriptomes annotated at the subgenomic level could better characterize sugarcane hybrids, and the S. spontaneum subgenome was found to contribute to sucrose accumulation.


Asunto(s)
Saccharum , Transcriptoma , Saccharum/genética , Saccharum/metabolismo , Azúcares/metabolismo , Perfilación de la Expresión Génica , Sacarosa/metabolismo
4.
Front Microbiol ; 12: 724451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603250

RESUMEN

Ganoderma tsugae is an endemic medicinal mushroom in Northeast China, providing important source of pharmaceutical product. Comparing with other Ganoderma species, wild G. tsugae can utilize coniferous wood. However, functional genes related to medicinal component synthesis and the genetic mechanism of conifer substrate utilization is still obscure. Here, we assembled a high-quality G. tsugae genome with 18 contigs and 98.5% BUSCO genes and performed the comparative genomics with other Ganoderma species. G. tsugae diverged from their common ancestor of G. lingzhi and G. sinense about 21 million years ago. Genes in G. tsugae-specific and G. tsugae-expanded gene families, such as salh, phea, cyp53a1, and cyp102a, and positively selected genes, such as glpk and amie, were functionally enriched in plant-pathogen interaction, benzoate degradation, and fanconi anemia pathway. Those functional genes might contribute to conifer substrate utilization of G. tsugae. Meanwhile, gene families in the terpene synthesis were identified and genome-wide SNP variants were detected in population. Finally, the study provided valuable genomic resources and offered useful hints for the functional gene mapping and investigation of key gene contributing to conifer cultivation substrate utilization and medicinal component biosynthesis.

5.
Gigascience ; 9(1)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31972020

RESUMEN

BACKGROUND: Adapted to different ecological niches, moth species belonging to the Hyles genus exhibit a spectacular diversity of larval color patterns. These species diverged ∼7.5 million years ago, making this rather young genus an interesting system to study a wide range of questions including the process of speciation, ecological adaptation, and adaptive radiation. RESULTS: Here we present a high-quality genome assembly of the bat hawkmoth Hyles vespertilio, the first reference genome of a member of the Hyles genus. We generated 51× Pacific Biosciences long reads with an average read length of 8.9 kb. Pacific Biosciences reads longer than 4 kb were assembled into contigs, resulting in a 651.4-Mb assembly consisting of 530 contigs with an N50 value of 7.5 Mb. The circular mitochondrial contig has a length of 15,303 bp. The H. vespertilio genome is very repeat-rich and exhibits a higher repeat content (50.3%) than other Bombycoidea species such as Bombyx mori (45.7%) and Manduca sexta (27.5%). We developed a comprehensive gene annotation workflow to obtain consensus gene models from different evidence including gene projections, protein homology, transcriptome data, and ab initio predictions. The resulting gene annotation is highly complete with 94.5% of BUSCO genes being completely present, which is higher than the BUSCO completeness of the B. mori (92.2%) and M. sexta (90%) annotations. CONCLUSIONS: Our gene annotation strategy has general applicability to other genomes, and the H. vespertilio genome provides a valuable molecular resource to study a range of questions in this genus, including phylogeny, incomplete lineage sorting, speciation, and hybridization. A genome browser displaying the genome, alignments, and annotations is available at https://genome-public.pks.mpg.de/cgi-bin/hgTracks?db=HLhylVes1.


Asunto(s)
Genoma , Genómica , Mariposas Nocturnas/genética , Animales , Quirópteros/parasitología , Biología Computacional/métodos , Genómica/métodos , Anotación de Secuencia Molecular
6.
Mem. Inst. Oswaldo Cruz ; 114: e180438, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1040619

RESUMEN

Leishmania braziliensis is the etiological agent of American mucosal leishmaniasis, one of the most severe clinical forms of leishmaniasis. Here, we report the assembly of the L. braziliensis (M2904) genome into 35 continuous chromosomes. Also, the annotation of 8395 genes is provided. The public availability of this information will contribute to a better knowledge of this pathogen and help in the search for vaccines and novel drug targets aimed to control the disease caused by this Leishmania species.


Asunto(s)
Leishmania braziliensis/genética , ADN Protozoario/genética , Análisis de Secuencia de ADN
7.
BMC Bioinformatics ; 18(1): 204, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28381259

RESUMEN

BACKGROUND: The third generation PacBio SMRT long reads can effectively address the read length issue of the second generation sequencing technology, but contain approximately 15% sequencing errors. Several error correction algorithms have been designed to efficiently reduce the error rate to 1%, but they discard large amounts of uncorrected bases and thus lead to low throughput. This loss of bases could limit the completeness of downstream assemblies and the accuracy of analysis. RESULTS: Here, we introduce HALC, a high throughput algorithm for long read error correction. HALC aligns the long reads to short read contigs from the same species with a relatively low identity requirement so that a long read region can be aligned to at least one contig region, including its true genome region's repeats in the contigs sufficiently similar to it (similar repeat based alignment approach). It then constructs a contig graph and, for each long read, references the other long reads' alignments to find the most accurate alignment and correct it with the aligned contig regions (long read support based validation approach). Even though some long read regions without the true genome regions in the contigs are corrected with their repeats, this approach makes it possible to further refine these long read regions with the initial insufficient short reads and correct the uncorrected regions in between. In our performance tests on E. coli, A. thaliana and Maylandia zebra data sets, HALC was able to obtain 6.7-41.1% higher throughput than the existing algorithms while maintaining comparable accuracy. The HALC corrected long reads can thus result in 11.4-60.7% longer assembled contigs than the existing algorithms. CONCLUSIONS: The HALC software can be downloaded for free from this site: https://github.com/lanl001/halc .


Asunto(s)
Algoritmos , Animales , Arabidopsis/genética , Cíclidos/genética , Mapeo Contig , Escherichia coli/genética , Genoma Bacteriano , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Internet , Análisis de Secuencia de ADN , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA