Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Environ Pollut ; 361: 124739, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39168437

RESUMEN

Membrane distillation (MD) is gaining increasing recognition within membrane-based processes for palm oil mill effluent (POME) treatment. This study aims to alter the physicochemical characteristics of polyvinylidene fluoride (PVDF) membranes through the incorporation of bentonite (B) at varying weight concentrations (ranging from 0.25 wt% to 1.0 wt%). Characterization was conducted to evaluate changes in morphology, thermal stability, surface characteristics and wetting properties of the resulting membranes. The resulting membranes were also tested using direct contact membrane distillation (DCMD) with POME as the feed solution, aiming to generate high-purity water. Results indicated that the PVDF-0.3B and PVDF-0.5B membranes achieved the highest water vapor flux. The finger-like structure and macrovoids present in these membranes aid in minimizing mass resistance during vapor transport and enhancing permeate flux. All membranes demonstrated exceptional performance in removing contaminants, eliminating total dissolved solids (TDS) and achieving over 99% rejection of chemical oxygen demand (COD), nitrate nitrogen (NN), color, and turbidity from the feed solution. The permeate water analysis showed that the PVDF-0.3B membrane had superior removal efficiency and met the standards set by the local Department of Environment (DOE). The PVDF-0.3B membrane was chosen as the preferred option because of its consistent flux and high removal efficiency. This study demonstrated that incorporating bentonite into PVDF membranes significantly enhanced their properties and performance for POME treatment.

2.
Chemosphere ; 363: 142899, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029711

RESUMEN

Anaerobically-treated palm oil mill effluent (POME) still has unacceptable properties for water recycling and reuse, with an unpleasant appearance due to the brownish color caused by tannins and phenolic compounds. This study proposes an approach for treating anaerobically-treated POME for water recycling by combining organic precipitation, electrocoagulation (EC), and ion-exchange resin, followed by reverse osmosis (RO) membrane filtration in series. The results indicated that the organic precipitation enhanced the efficiency of EC treatment in reducing the concentrations of tannins, color, and chemical oxygen demand (COD) of the anaerobically-treated POME effluent, with reductions of 95.73%, 96.31%, and 93.96% for tannin, color, and COD, respectively. Moreover, organic precipitation affected the effectiveness of Ca2+ and Mg2+ ion removal using ion exchange resin and RO membrane filtration. Without prior organic precipitation, the ion-exchange resin process required a longer contact time, and the RO membrane filtration treatment was hardly effective in removing total dissolved solids (TDS). The combined process gave a water quality that meets the criteria set by the Thailand Ministry of Industry for industrial boiler use (COD 88 mg/L, TDS <0.001 mg/L, water hardness <5 mg-CaCO3/L, and pH 6.9).


Asunto(s)
Filtración , Resinas de Intercambio Iónico , Ósmosis , Aceite de Palma , Eliminación de Residuos Líquidos , Aceite de Palma/química , Filtración/métodos , Resinas de Intercambio Iónico/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Membranas Artificiales , Purificación del Agua/métodos , Electrocoagulación/métodos , Anaerobiosis , Residuos Industriales/análisis , Análisis de la Demanda Biológica de Oxígeno , Taninos/química , Taninos/análisis , Precipitación Química , Aguas Residuales/química
3.
Bioelectrochemistry ; 160: 108770, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38943780

RESUMEN

This study assessed the viability of an anion-exchange microbial fuel cell (MFC) for extracting electricity from palm oil mill effluent (POME), a major pollutant in palm-oil producing regions due to increasing demand. The MFC incorporated a tubular membrane electrode assembly (MEA) with an air core, featuring a carbon-painted carbon-cloth cathode, an anion exchange membrane (AEM), and a nonwoven graphite fabric (NWGF) anode. An additional carbon brush (CB) anode was placed adjacent to the tubular MEA. The MFC operated under semi-batch conditions with POME replacement every 7 days. Results showed superior performance of the AEM, with the highest power density (Pmax) observed in POME-treated MFCs. Current and power density increased with CB addition; the best chemical oxygen demand (COD) removal efficiency reached 73 %, decreasing from 1249 to 332 mg/L with three CBs. The Pmax was 0.18 W/m-2(-|-) with 1000 mg/L COD and three CBs, dropping to 0.0031 W/m-2(-|-) without CB and at 410 mg/L COD. Anode resistance, calculated using organic matter supplementation, COD, and anode surface area, decreased with increased COD or surface area, improving electricity production. AEM and CB compatibility synergistically enhanced MFC performance, offering potential for POME wastewater treatment and energy recovery.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electricidad , Electrodos , Aceite de Palma , Aceites de Plantas , Fuentes de Energía Bioeléctrica/microbiología , Aceite de Palma/química , Aceites de Plantas/metabolismo , Aceites de Plantas/química , Análisis de la Demanda Biológica de Oxígeno , Aguas Residuales/química , Residuos Industriales , Eliminación de Residuos Líquidos/métodos
4.
Prep Biochem Biotechnol ; : 1-12, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909283

RESUMEN

This research performed cellulase production by Aspergillus fumigatus A4112 and evaluated its potential use in palm oil mill effluent (POME) hydrolysis to recover oil simultaneously with the generation of fermentable sugar useful for biofuel production under non-sterilized conditions. Empty fruit bunch (EFB) without pretreatment was used as carbon source. The combination of nitrogen sources facilitated CMCase production. The maximum activity (3.27 U/mL) was obtained by 1.0 g/L peptone and 1.5 g/L (NH4)2SO4 and 20 g/L EFB at 40 °C for 7 days. High level of FPase activity (39.51 U/mL) was also obtained. Interestingly, the enzyme retained its cellulase activities more than 60% at ambient temperature over 15 days. In enzymatic hydrolysis, Triton X-100 was an effective surfactant to increase total oil recovery in the floating form. High yield of reducing sugar (50.13 g/L) and 21% (v/v) of floating oil was recoverable at 65 °C for 48 h. Methane content of the raw POME increased from 41.49 to 64.94% by using de-oiled POME hydrolysate which was higher than using the POME hydrolysate (59.82%). The results demonstrate the feasibility of the constructed process for oil recovery coupled with a subsequent step for methane yield enhancement in biogas production process that benefits the palm oil industry.

5.
3 Biotech ; 14(3): 91, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38419684

RESUMEN

Oil palm processing generates substantial waste materials rich in organic content, posing various environmental challenges. Anaerobic digestion (AD), particularly for palm oil mill effluent (POME), offers a sustainable solution, by converting waste into valuable biomethane for thermal energy or electricity generation. The synergistic activities of the AD microbiota directly affect the biomethane production, and the microbial community involved in biomethane production in POME anaerobic digestion has been reported. The composition of bacterial and archaeal communities varies under different substrate and physicochemical conditions. This review discusses the characteristics of POME, explores the microbial members engaged in each stage of AD, and elucidates the impacts of substrate and physicochemical conditions on the microbial community dynamics, with a specific focus on POME. Finally, the review outlines current research needs and provides future perspectives on optimizing the microbial communities for enhanced biomethane production from oil palm wastes.

6.
Environ Res ; 248: 118282, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295974

RESUMEN

The escalating consumer demand for crabs results in a growing amount of waste, including shells, claws, and other non-edible parts. The resulting crab shell waste (CSW) is disposed of via incineration or landfills which causes environmental pollution. CSW represents a potential biological resource that can be transformed into valuable resources via pyrolysis technique. In this study, microwave pyrolysis of CSW using self-purging, vacuum, and steam activation techniques was examined to determine the biochar production yield and its performance in treating palm oil mill effluent (POME). The biochar produced through microwave pyrolysis exhibits yields ranging from 50 to 61 wt%, showing a hard texture, low volatile matter content (≤34.1 wt%), and high fixed carbon content (≥58.3 wt%). The KOH-activated biochar demonstrated a surface area of up to 177 m2/g that is predominantly composed of mesopores, providing a good amount of adsorption sites for use as adsorbent. The biochar activated with steam removed 8.3 mg/g of BOD and 42 mg/g of COD from POME. The results demonstrate that microwave pyrolysis of CSW is a promising technology to produce high-quality biochar as an adsorbent for POME treatment.


Asunto(s)
Braquiuros , Carbón Orgánico , Animales , Aceite de Palma , Microondas , Pirólisis , Vapor , Residuos Industriales/análisis
7.
Chemosphere ; 346: 140512, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37879373

RESUMEN

The augmentation of biogas production can be achieved by incorporating metallic nanoparticles as additives within anaerobic digestion. The objective of this current study is to examine the synthesis of Fe-Ni-Zn and Fe-Co-Zn trimetallic nanoparticles using the co-precipitation technique and assess its impact on anaerobic digestion using palm oil mill effluent (POME) as carbon source. The structural morphology and size of the synthesised trimetallic nanoparticles were analysed using a range of characterization techniques, such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX) . The average size of Fe-Ni-Zn and Fe-Co-Zn were 19-25.5 nm and 19.1-30.5 nm respectively. Further, investigation focused on examining the diverse concentrations of trimetallic nanoparticles, ranging from 0 to 50 mgL-1. The biogas production increased by 55.55% and 60.11% with Fe-Ni-Zn and Fe-Co-Zn trimetallic nanoparticles at 40 mgL-1 and 20 mgL-1, respectively. Moreover, the lowest biogas of 11.11% and 38.11% were found with 10 mgL-1 of Fe-Ni-Zn and Fe-Co-Zn trimetallic nanoparticles. The findings of this study indicated that the trimetallic nanoparticles exhibited interactions with anaerobes, thereby enhancing the degradation process of palm oil mill effluent (POME) and biogas production. The study underscores the potential efficacy of trimetallic nanoparticles as a viable supplement for the promotion of sustainable biogas generation.


Asunto(s)
Nanopartículas del Metal , Aceites de Plantas , Aceite de Palma , Anaerobiosis , Biocombustibles/análisis , Residuos Industriales/análisis
8.
J Environ Manage ; 346: 119031, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37741194

RESUMEN

This study aimed at investigating the biohydrogen and biomethane potential of co-digestion from palm oil mill effluent (POME) and concentrated latex wastewater (CLW) in a two-stage anaerobic digestion (AD) process under thermophilic (55 ± 3 °C) and at an ambient temperature (30 ± 3 °C) conditions, respectively. The batch experiments of POME:CLW mixing ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 was investigated with the initial loadings at 10 g-VS/L. The highest hydrogen yield of 115.57 mLH2/g-VS was obtained from the POME: CLW mixing ratio of 100:0 with 29.0 of C/N ratio. While, the highest subsequent methane production yield of 558.01 mLCH4/g-VS was achieved from hydrogen effluent from POME:CLW mixing ratio of 70:30 0 with 21.8 of C/N ratio. This mixing ratio revealed the highest synergisms of about 9.21% and received maximum total energy of 19.70 kJ/g-VS. Additionally, continuous hydrogen and methane production were subsequently performed in a series of continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge blanket reactor (UASB) to treat the co-substate. The results indicated that the highest hydrogen yield of POME:CLW mixing ratio at 70:30 of 95.45 mL-H2/g-VS was generated at 7-day HRT, while methane production was obtained from HRT 15 days with a yield of 204.52 mL-CH4/g-VS. Thus, the study indicated that biogas production yield of CLW could be enhanced by co-digesting with POME. In addition, the two-stage AD model under anaerobic digestion model no. 1 (ADM-1) framework was established, 9.10% and 2.43% of error fitting of hydrogen and methane gas between model simulation data and experimental data were found. Hence, this research work presents a novel approach for optimization and feasibility for co-digestion of POME with CLW to generate mixed gaseous biofuel potentially.


Asunto(s)
Aceites de Plantas , Aguas Residuales , Aceite de Palma , Látex , Hidrógeno , Anaerobiosis , Reactores Biológicos , Metano , Biocombustibles
9.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37757470

RESUMEN

AIMS: This study aimed to investigate the effect of palm oil mill effluent (POME) final discharge on the active bacterial composition, gene expression, and metabolite profiles in the receiving rivers to establish a foundation for identifying potential biomarkers for monitoring POME pollution in rivers. METHODS AND RESULTS: The POME final discharge, upstream (unpolluted by POME), and downstream (effluent receiving point) parts of the rivers from two sites were physicochemically characterized. The taxonomic and gene profiles were then evaluated using de novo metatranscriptomics, while the metabolites were detected using qualitative metabolomics. A similar bacterial community structure in the POME final discharge samples from both sites was recorded, but their composition varied. Redundancy analysis showed that several families, particularly Comamonadaceae and Burkholderiaceae [Pr(>F) = 0.028], were positively correlated with biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). The results also showed significant enrichment of genes regulating various metabolisms in the POME-receiving rivers, with methane, carbon fixation pathway, and amino acids among the predominant metabolisms identified (FDR < 0.05, PostFC > 4, and PPDE > 0.95). This was further validated through qualitative metabolomics, whereby amino acids were detected as the predominant metabolites. CONCLUSIONS: The results suggest that genes regulating amino acid metabolism have significant potential for developing effective biomonitoring and bioremediation strategies in river water influenced by POME final discharge, fostering a sustainable palm oil industry.


Asunto(s)
Residuos Industriales , Aceites de Plantas , Aminoácidos/metabolismo , Residuos Industriales/análisis , Metaboloma , Aceite de Palma , Aceites de Plantas/química , Eliminación de Residuos Líquidos/métodos , Agua/análisis
10.
Environ Sci Pollut Res Int ; 30(42): 96272-96289, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37566326

RESUMEN

Attributable to the prosperous production growth of palm oil in Malaysia, the generated palm oil mill effluent (POME) poses a high threat owing to its highly polluted characteristic. Urged by the escalating concern of environmental conservation, POME pollution abatement and potential energy recovery from the effluent are flagged up as a research topic of interest. In this study, a cutting-edge photocatalytic fuel cell (PFC) system with employment of ZnO/Zn nanorod array (NRA) photoanode, CuO/Cu cathode, and persulfate (PS) oxidant was successfully designed to improve the treatment of POME and simultaneous energy production. The photoelectrodes were fabricated and characterized by field emission scanning electron microscopy with energy (FESEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Brunauer, Emmett, and Teller analysis (BET). Owing to the properties of strong oxidant of PS, the proposed PFC/PS system has exhibited exceptional performance, attaining chemical oxygen demand (COD) removal efficiency of 96.2%, open circuit voltage (Voc) of 740.0 mV, short circuit current density (Jsc) of 146.7 µA cm-2, and power density (Pmax) of 35.6 µW cm-2. The pre-eminent PFC/PS system performance was yielded under optimal conditions of 2.5 mM of persulfate oxidant, POME dilution factor of 1:20, and natural solution pH of 8.51. Subsequently, the postulated photoelectrocatalytic POME treatment mechanism was elucidated by the radical scavenging study and Mott-Schottky (M-S) analysis. The following recycling test affirmed the stability and durability of the photoanode after four continuous repetition usages while the assessed electrical energy efficiency revealed the economic viability of PFC system serving as a post-treatment for abatement of POME. These findings contributed toward enhancing the sustainability criteria and economic viability of palm oil by adopting sustainable and efficient POME post-treatment technology.


Asunto(s)
Electricidad , Residuos Industriales , Aceite de Palma/análisis , Residuos Industriales/análisis , Malasia , Análisis de la Demanda Biológica de Oxígeno , Aceites de Plantas/química , Eliminación de Residuos Líquidos
11.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37259308

RESUMEN

Beta carotene is a natural anti-oxidant agent, and it inhibits the matrix metalloprotease (MMP) activity. Diabetic neuropathic pain (DNP) is produced by cellular oxidative stress. The role of the beta carotene effect in diabetic neuropathic pain is not explored yet. The present study is designed for the evaluation of the palm oil mill effluent-derived beta carotene (PBC) effect in DNP in zebrafish. The DNP was induced by the intraperitoneal administration of streptozotocin (STZ). Blood glucose levels of above 15 mM were considered to be diabetic conditions. The zebrafish were exposed to test compound PBC (25, 50, and 100 µM), pregabalin (PG: 10 µM), and an MMP-13 inhibitor (CL-82198; 10 µM) for 10 consecutive days from day 11. The neuralgic behavioral parameters, i.e., temperature test, acetic acid test, and fin clip test were assessed on day 0 and the 7th, 14th, and 21st days. On the 22nd day, the blood glucose and MMP-13 levels and brain thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), and MMP-13 activity levels were estimated. The treatment of PBC ameliorated the DNP-associated behavioral and biochemical changes. The results are similar to those of PG and CL-82198 treatments. Hence, the PBC possesses a potentially ameliorative effect against DNP due to its potential anti-oxidant, anti-lipid peroxidation, and MMP-13 inhibitory actions.

12.
Bioprocess Biosyst Eng ; 46(7): 995-1009, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37160769

RESUMEN

Anaerobic co-digestion (co-AD) of agro-industrial waste, namely, palm oil mill effluent (POME) and sugarcane vinasse (Vn), with water hyacinth (WH) as co-substrate was carried out in two separate Anaerobic Suspended Growth Closed Bioreactors (ASGCBs) under thermophilic (55 °C) conditions. The highest chemical oxygen demand (COD) and soluble COD reduction in co-AD of POME-WH (78.61%, 78.86%) is slightly higher than co-AD of Vn-WH (75.75%, 78.24%). However, VFA reduction in co-AD of POME-WH (96.41%) is higher compared to co-AD of Vn-WH (85.94%). Subsequently, biogas production peaked at 13438 mL/day values and 16122 mL/day for co-AD of POME-WH and Vn-WH, respectively. However, the methane content was higher in the co-AD of POME-WH (72.04%) than in the co-AD of Vn-WH (69.86%). Growth yield (YG), maximum specific substrate utilization rate (rx,max) and maximum specific biomass growth rate (µmax) are higher in co-AD of POME-WH, as supported by the higher mixed liquor volatile suspended solids (MLVSS) and COD reduction efficiency compared to co-AD of Vn-WH. However, methane yield ([Formula: see text]) reported in the co-AD of POME-WH and Vn-WH are 0.2748 and 0.3112 L CH4/g CODreduction, respectively, which suggests that WH is a more suitable co-substrate for Vn compared to POME.


Asunto(s)
Eichhornia , Residuos Industriales , Aceites de Plantas/química , Anaerobiosis , Aceite de Palma , Reactores Biológicos , Metano/metabolismo , Digestión , Eliminación de Residuos Líquidos
13.
World J Microbiol Biotechnol ; 39(3): 68, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36607449

RESUMEN

The production of poly(3-hydroxybutyrate) [P(3HB)] from untreated raw palm oil mill effluent (urPOME), the first wastewater discharge from crude palm oil extraction, is discussed. The mutant strain Azotobacter vinelandii ΔAvin_16040, which lacks the S-layer protein but has a better P(3HB) synthesis capability than the wild type strain ATCC 12,837, was chosen for this study. UrPOME substrate, with high biological oxygen demand (BOD), chemical oxygen demand (COD) and suspended solids, was used without pre-treatment. DSMZ-Azotobacter medium which was devoid of laboratory sugar(s) was used as the basal medium (BaM). Initially, Azotobacter vinelandii ΔAvin_16040 generated 325.5, 1496.3, and 1465.7 mg L-1 of P(3HB) from BaM with 20% urPOME, 2BaM with 20% urPOME and 20 g L-1 sucrose, and 2BaM with 20% urPOME and 2 mL L-1 glycerol, respectively. P(3HB) generation was enhanced by nearly tenfold using statistical optimization, resulting in 13.9 g L-1. Moreover, the optimization reduced the compositions of mineral salts and sugar in the medium by 48 and 97%, respectively. The urPOME-based P(3HB) product developed a yellow coloration most possibly attributed to the aromatic phenolics content in urPOME. Despite the fact that both were synthesised by ΔAvin_16040, thin films of urPOME-based P(3HB) had superior crystallinity and tensile strength than P(3HB) produced only on sucrose. When treated with 10 and 50 kGy of electron beam irradiation, these P(3HB) scissioned to half and one-tenth of their original molecular weights, respectively, and these cleavaged products could serve as useful base units for specific polymer structure construction.


Asunto(s)
Azotobacter vinelandii , Aceite de Palma , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Poliésteres/metabolismo , Ácido 3-Hidroxibutírico , Azúcares
14.
Crit Rev Biotechnol ; 43(8): 1236-1256, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36130802

RESUMEN

This critical review for anaerobic degradation of complex organic compounds like butyrate using reactors has been enormously applied for biogas production. Biogas production rate has a great impact on: reactor granulation methanogenesis, nutrient content, shear velocity, organic loading and loss of nutrients taking place in the reactor continuously. Various technologies have been applied to closed anaerobic reactors to improve biogas production and treatment efficiency. Recent reviews showed that the application of closed anaerobic reactors can accelerate the degradation of organics like volatile fatty acid-butyrate and affect microbial biofilm formation by increasing the number of methanogens and increase methane production 16.5 L-1 CH4 L-1 POME-1. The closed anaerobic reactors with stable microbial biofilm and established organic load were responsible for the improvement of the reactor and methane production. The technology mentioned in this review can be used to monitor biogas concentration, which directly correlates to organic concentrations. This review attempts to evaluate interactions among the: degradation of organics, closed anaerobic reactors system, and microbial granules. This article provides a useful picture for the improvement of the degradation of organic butyrate for COD removal, biogas and methane production in an anaerobic closed reactor.


Recent reviews showed that the application of closed anaerobic reactors can accelerate the degradation of organic compounds, such as volatile fatty acid-butyrate, and affect microbial biofilm formation by increasing the number of methanogens, thus enhancing biogas production. The closed anaerobic reactors with stable microbial biofilm established the organic load and improved the performance of the reactor for methane production. The technology used involves monitoring biogas concentrations which correlates with organic concentrations. This review attempts to evaluate interactions among: the degradation of organics, closed anaerobic reactors system, and microbial granules. This review, therefore, provides a useful picture for the improvement of butyrate degradation for COD removal and methane production with the help of various anaerobic closed reactors. The performance of UASBR depends on granulation. The granulation process in UASB reactors can be divided into four steps: (1) Transport of cells to the surface of other cells; (2) Initial reversible adsorption by physicochemical forces; (3) Irreversible adhesion of the cells by microbial appendages and/or polymers; and (4) Multiplication of the cells and development of the granules. Any factor which can complement any one of the four steps will be able to accelerate the granulation process and shorten the startup time of UASB reactors.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Reactores Biológicos , Butiratos , Biocombustibles , Metano/metabolismo , Digestión
15.
AIMS Microbiol ; 8(3): 357-371, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36317005

RESUMEN

Biomass fuel is one of the renewable energy sources that can be produced by valorization of palm oil mill effluent (POME) and empty fruit bunch (EFB). POME and EFB are available abundantly in Malaysia and only small portion is utilized to produce other value-added products. The objective of this study is to: (1) utilize the wastes from agro-industrial sector especially palm oil wastes and bio-valorize into value-added product of biomass fuel with high CEV, and simultaneously (2) reduce the waste accumulated in the palm oil factory. In this study, co-fermentation of bacteria (Lysinibacillus sp.) and fungus (Aspergillus flavus) at 37 °C, 180 rpm for 5 days, followed by overnight oven-dry at 85 °C was conducted utilizing a mixture of POME and EFB with the ratio of 7:3 at laboratory scale. Three fermentation medium conditions were performed, namely: (1) Group 1: autoclaved POME and EFB without addition of any microorganisms, (2) Group 2: autoclaved POME and EFB with the addition of Lysinibacillus sp. LC 556247 and Aspergillus flavus, and (3) Group 3: POME and EFB as it is (non-sterile). Among all condition, Group 2 with co-fermentation evinced the highest calorific energy value (CEV) of 26.71 MJ/kg, highest biochemical oxygen demand (BOD) removal efficiency of 61.11%, chemical oxygen demand (COD) removal efficiency at 48.47%, and total suspended solid (TSS) reduction of 37.12%. Overall, this study successfully utilized abundant POME and EFB waste and turn into value added product of renewable biomass fuel with high CEV percentage and simultaneously able to reduce abundant liquid waste.

16.
J Environ Manage ; 320: 115750, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35933874

RESUMEN

Palm oil is the most utilized vegetable globally which is mostly produced in countries such as Malaysia, Indonesia and Thailand. The great amount of POME generation from palm oil mills is now a threat to the environment and require a suitable treatment of POME to reduce the organic strength in accordance with the standard discharge limit before releasing to the environment. Currently, the technology to combine the anaerobic process and biofilm system in bioreactors have produced a fresh idea in treatments of high strength wastewater like POME. Anaerobic biofilm reactor is a convincing method for POME treatment due to its significant advantages over the conventional biological treatments consisting of anaerobic, aerobic and facultative pond systems. Overall, integrated anaerobic-aerobic bioreactor (IAAB) can remove more than 99% of chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) with the combination of anaerobic and aerobic digestion for POME treatment. It has better performance as compared to up-flow anaerobic sludge blanket (UASB) and up-flow anaerobic filter (UAF) with 80% and 88-94% COD removal efficiency respectively. Anaerobic pond was found to perform well also by removing 97.8% of COD in POME but require long retention time and larger land. Hence, this study aims to provide intensive review of the performance of the anaerobic biofilm reactor in treating POME and the recent advancements in this technology. The limitations and future perspectives in utilization of anaerobic biofilm reactor during its operation in treating POME are discussed.


Asunto(s)
Reactores Biológicos , Aceites de Plantas , Anaerobiosis , Biopelículas , Residuos Industriales , Aceite de Palma , Eliminación de Residuos Líquidos/métodos
17.
Environ Sci Pollut Res Int ; 29(47): 70706-70745, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36044146

RESUMEN

The rapid population growth and industrial expansion worldwide have created serious water contamination concerns. To curb the pollution issue, it has become imperative to use a versatile material for the treatment. Titanium dioxide (TiO2) has been recognized as the most-studied nanoparticle in various fields of science and engineering due to its availability, low cost, efficiency, and other fascinating properties with a wide range of applications in modern technology. Recent studies revealed the photocatalytic activity of the material for the treatment of industrial effluents to promote environmental sustainability. With the wide band gap energy of 3.2 eV, TiO2 can be activated under UV light; thus, many strategies have been proposed to extend its photoabsorption to the visible light region. In what follows, this has generated increasing attention to study its characteristics and structural modifications in different forms for photocatalytic applications. The present review provides an insight into the understanding of the synthesis methods of TiO2, the current progress in the treatment techniques for the degradation of wide environmental pollutants employing modified TiO2 nanoparticles, and the factors affecting its photocatalytic activities. Further, recent developments in using titania for practical applications, the approach for designing novel nanomaterials, and the prospects and opportunities in this exciting area have been discussed.


Asunto(s)
Contaminantes Ambientales , Nanopartículas , Purificación del Agua , Catálisis , Luz , Titanio/química , Agua
18.
J Environ Manage ; 321: 115892, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35988402

RESUMEN

Biological hydrogen production using palm oil mill effluent (POME) as a carbon source through dark fermentation process has been suggested to be a promising bioenergy potential and enacts as alternative renewable energy source. Results have indicated that among various 1.5% (w/v) chemical pre-treatments (sodium hydroxide, NaOH; hydrochloric acid, HCl; sulphuric acid, H2SO4; phosphoric acid, H3PO4 and nitric acid, HNO3) on POME, using H3PO4 would generate maximum biohydrogen production of 0.193 mmol/L/h, which corresponded to a yield of 1.51 mol H2/mol TCconsumed with an initial total soluble carbohydrate concentration of 23.52 g/L. Among H3PO4 concentrations (1%-10%), the soluble carbohydrate content and the biohydrogen produced was highest and increased by 1.70-fold and 2.35-fold respectively at 2.5% (w/v), as compared to untreated POME. The batch fermentation maximum hydrogen production rate and yield of 0.208 mmol/L/h and 1.69 mol H2/mol TCconsumed were achieved at optimum pre-treatment conditions of pH 5.5 and thermophilic temperature (60 °C). This study suggests that chemical pre-treatment approaches manage to produce and improve the carbohydrate utilisation process further. Continuous fermentation in CSTR at the optimum conditions produce heightened 1.5-fold biohydrogen yield for 2.5% H3PO4 at 6 h HRT as compared to batch scale. Bacterial community via next-generation sequencing analysis at optimum HRT (6 h) revealed that Thermoanaerobacterium thermosaccharolyticum registered the highest relative frequency of 20.24%. At the class level, Clostridia, Bacilli, Bacteroidia, Thermoanaerobacteria, and Gammaproteobacteria were identified as the biohydrogen-producing bacteria in the continuous system. Insightful findings from this study suggest the substantial practical utility of dilute chemical pre-treatment in improving biohydrogen production.


Asunto(s)
Bacterias , Hidrógeno , Anaerobiosis , Carbohidratos , Fermentación , Aceite de Palma
19.
Bioresour Technol ; 360: 127617, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35840022

RESUMEN

Residual oil in palm oil mill effluent (POME) poses difficulties in its treatment chain. Non-ionic surfactants containing different hydrophobic tail structures and their optimal concentrations were evaluated for effectiveness in biohydrogen production. By adding the surfactants at their critical micelle concentration in synthetic oily wastewater, the maximal H2 yield was increased by 2.2 and 3.5 times for Triton X-100 and Tergitol 15-S-9, respectively, compared to the control. Using real POME, the supplemental Tergitol 15-S-9 resulted in a 56.4 % improvement in H2 production. For continuous digestion studies, pure POME and Tergitol 15-S-9 supplemented POME (sPOME) were fed to thermophilic anaerobic sequencing batch reactors (ASBRs) under hydraulic retention time (HRT) of 32-12.5 days. Optimally at HRT 19 days, H2 content in the biogas from sPOME-fed ASBR was noticeably higher, which gave a superior yield of 203.4 mLH2/gCODremoved (+15 %).


Asunto(s)
Reactores Biológicos , Aguas Residuales , Anaerobiosis , Fermentación , Aceite de Palma , Poloxaleno , Tensoactivos
20.
Membranes (Basel) ; 12(8)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35893444

RESUMEN

This paper presents an improved artificial neural network (ANN) training using response surface methodology (RSM) optimization for membrane flux prediction. The improved ANN utilizes the design of experiment (DoE) technique to determine the neural network parameters. The technique has the advantage of training performance, with a reduced training time and number of repetitions in achieving good model prediction for the permeate flux of palm oil mill effluent. The conventional training process is performed by the trial-and-error method, which is time consuming. In this work, Levenberg-Marquardt (lm) and gradient descent with momentum (gdm) training functions are used, the feed-forward neural network (FFNN) structure is applied to predict the permeate flux, and airflow and transmembrane pressure are the input variables. The network parameters include the number of neurons, the learning rate, the momentum, the epoch, and the training functions. To realize the effectiveness of the DoE strategy, central composite design is incorporated into neural network methodology to achieve both good model accuracy and improved training performance. The simulation results show an improvement of more than 50% of training performance, with less repetition of the training process for the RSM-based FFNN (FFNN-RSM) compared with the conventional-based FFNN (FFNN-lm and FFNN-gdm). In addition, a good accuracy of the models is achieved, with a smaller generalization error.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA