Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
1.
Nat Prod Res ; : 1-7, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324240

RESUMEN

Pancreatic lipase (PL) is the main enzyme in the digestive system that breaks down triglyceride and promotes its absorption. In this paper, we found that lignans 2, 3 and 21, curcuminoids 24-26 exhibited significant inhibitory potential against PL. The structure-activity relationship (SAR) indicated that benzo-1, 3-dioxole group in the construction of lignans is essential to inhibitory effects against PL, while double bonds at C-7/C-2 position and 4-hydroxyphenyl moiety in the structure of curcuminoids are beneficial for PL inhibition. The kinetic studies and molecular docking were also conducted, the results showed that the three curcuminoids with the strongest inhibition effect above were all mixed inhibitors of PL. Furthermore, curcuminoids 24-26 displayed a preferential selectivity towards, in contrast to other serine hydrolases. The above results indicate that lignans and curcuminoids are natural functional components for PL inhibition, providing new ideas for finding and developing novel lead compounds for the treatment of obesity.

2.
Cureus ; 16(8): e67870, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39328713

RESUMEN

Introduction Obesity is a complex multifaceted disease, characterized by excessive body fat accumulation. It is a major public health concern globally, affecting individuals of all ages, genders, and socioeconomic backgrounds. Lipase, a key enzyme involved in lipid metabolism, plays a crucial role in the hydrolysis of dietary fats. Pancreatic lipase performs hydrolysis of nearly 50%-70% of total dietary fats. Thus, inhibition of pancreatic lipase is recognized as one of the strategies for managing obesity. Aim To predict the effect of phytocompounds from pepper as pancreatic lipase inhibitors using computational approaches. Methodology The drug-likeness and pharmacokinetic properties of compounds were evaluated using Lipinski rule of five and absorption, distribution, metabolism, and excretion (ADME) analysis, respectively. The drug score value was computed using Molinspiration, while the lipase inhibitor potential of ligands was evaluated using prediction of activity spectra for substances. Molecular docking was carried out to evaluate the stability and ligand binding affinity. Results Computational approaches identified both piperine and capsaicin as potential candidates, exhibiting favorable affinities with binding energy values of -9.9 and -7.7 kcal/mol, respectively. Both piperine and capsaicin interacted with Ser-152 and His-263, demonstrating their binding at the substrate binding site. Conclusions Findings provide insights into the underlying anti-obesity potential of these bioactive compounds from pepper and support further experimental investigations for obesity treatment.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125171, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39332173

RESUMEN

Severe Acute Pancreatitis, a serious condition caused by factors such as gallstones and chronic excessive alcohol consumption, with a very high mortality rate. Human pancreatic lipase (hPL) is a key digestive enzyme and abnormal activity levels of this enzyme are important indicators for diagnosing and monitoring pancreatic diseases. A fluorescent probe, LPP, has been developed to monitor the activity of hPL, especially in cases of SAP. The probe is based on cyanine isoindole derivatives, in vitro experiments confirmed the high specificity and sensitivity of the probe, with a detection limit of 0.012 U/mL, reactions completed within 10 min, and effective monitoring of pancreatic lipase activity in various biological samples. The stability and low cytotoxicity of LPP make it suitable for clinical applications, providing new tools and perspectives for the research and treatment of pancreatic diseases and related metabolic abnormalities. In addition, the change in fluorescence lifetime after the reaction of the probe with lipase allows for fluorescence lifetime imaging (FLIM), effectively monitoring the dynamic changes of hPL and enabling early diagnosis and monitoring of pancreatitis. This research not only enhances the understanding of pancreatic lipase activity detection but also has the potential to improve the diagnostics and treatment of pancreatitis.

4.
Mar Drugs ; 22(9)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39330274

RESUMEN

Two new C23-steroids derivatives, cyclocitrinoic acid A (1) and cyclocitrinoic acid B (2), and a new isocoumarin metabolite, (3R,4S)-6,8-dihydroxy-3,4,5-trimethyl-7-carboxamidelisocoumarin (10), together with 12 known compounds (3-9, 11-15) were isolated from the mangrove-sediment fungus Penicillium sp. SCSIO 41429. The structures of the new compounds were comprehensively characterized by 1D and 2D NMR, HRESIMS and ECD calculation. All isolates were evaluated for pancreatic lipase (PL) inhibitory and antioxidant activities. The biological evaluation results revealed that compounds 2, 14 and 15 displayed weak or moderate inhibition against PL, with IC50 values of 32.77, 5.15 and 2.42 µM, respectively. In addition, compounds 7, 12 and 13 showed radical scavenging activities against DPPH, with IC50 values of 64.70, 48.13, and 75.54 µM, respectively. In addition, molecular docking results indicated that these compounds had potential for PL inhibitory and antioxidant activities, which provided screening candidates for antioxidants and a reduction in obesity.


Asunto(s)
Antioxidantes , Sedimentos Geológicos , Isocumarinas , Lipasa , Simulación del Acoplamiento Molecular , Penicillium , Penicillium/metabolismo , Penicillium/química , Isocumarinas/farmacología , Isocumarinas/química , Isocumarinas/aislamiento & purificación , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Sedimentos Geológicos/microbiología , Concentración 50 Inhibidora , Rhizophoraceae/microbiología , Estructura Molecular
5.
Biomed Pharmacother ; 179: 117357, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232382

RESUMEN

INTRODUCTION: Obesity is a chronic noncommunicable disease characterized by excessive body fat that can have negative health consequences. Obesity is a complex disease caused by a combination of genetic, environmental, and lifestyle factors. It is characterized by a discrepancy between caloric intake and expenditure. Obesity increases the risk of acquiring major chronic diseases, including heart disease, stroke, cancer, and Type 2 diabetes mellitus (T2DM). Currently, the inhibition of pancreatic lipases (PL) is a promising pharmacological therapy for obesity and weight management. In this study, the inhibition of pancreatic lipase by Cannabis sativa (C. sativa) plant extract and cannabinoids was investigated. METHODS: The inhibitory effect was assessed using p-nitrophenyl butyrate (pNPB), and the results were obtained by calculating the percentage relative activity and assessed using one-way analysis of variance (ANOVA). Kinetic studies and spectroscopy techniques were used to evaluate the mode of inhibition. Diet-induced; and diabetic rat models were studied to evaluate the direct effects of C. sativa extract on PL activity. RESULTS: Kinetic analyses showed that the plant extracts inhibited pancreatic lipase, with tetrahydrocannabinol (THC) and cannabinol (CBN) being the potential cause of the inhibition noted for the C. sativa plant extract. CBN and THC inhibited the pancreatic lipase activity in a competitive manner, with the lowest residual enzyme activity of 52 % observed at a 10 µg/mL concentration of CBN and 39 % inhibition at a 25 µg/mL concentration of THC. Circular dichroism (CD) spectroscopy revealed that the inhibitors caused a change in the enzyme's secondary structure. At low concentrations, THC showed potential for synergistic inhibition with orlistat. C.sativa treatment in an in vivo rat model confirmed its inhibitory effects on pancreatic lipase activity. CONCLUSION: The findings in this study provided insight into the use of cannabinoids as pancreatic lipase inhibitors and the possibility of using these compounds to develop new pharmacological treatments for obesity.


Asunto(s)
Cannabinoides , Cannabis , Lipasa , Obesidad , Páncreas , Extractos Vegetales , Ratas Wistar , Animales , Cannabis/química , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/enzimología , Cannabinoides/farmacología , Páncreas/efectos de los fármacos , Páncreas/enzimología , Masculino , Ratas , Extractos Vegetales/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/enzimología , Dronabinol/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Dieta Alta en Grasa/efectos adversos
6.
J Enzyme Inhib Med Chem ; 39(1): 2398561, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39223707

RESUMEN

Obesity is acknowledged as a significant risk factor for various metabolic diseases, and the inhibition of human pancreatic lipase (hPL) can impede lipid digestion and absorption, thereby offering potential benefits for obesity treatment. Anthraquinones is a kind of natural and synthetic compounds with wide application. In this study, the inhibitory effects of 31 anthraquinones on hPL were evaluated. The data shows that AQ7, AQ26, and AQ27 demonstrated significant inhibitory activity against hPL, and exhibited selectivity towards other known serine hydrolases. Then the structure-activity relationship between anthraquinones and hPL was further analysed. AQ7 was found to be a mixed inhibition of hPL through inhibition kinetics, while AQ26 and AQ27 were effective non-competitive inhibition of hPL. Molecular docking data revealed that AQ7, AQ26, and AQ27 all could associate with the site of hPL. Developing hPL inhibitors for obesity prevention and treatment could be simplified with this novel and promising lead compound.


Asunto(s)
Antraquinonas , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Inhibidores Enzimáticos , Lipasa , Páncreas , Relación Estructura-Actividad , Antraquinonas/farmacología , Antraquinonas/química , Antraquinonas/síntesis química , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Estructura Molecular , Páncreas/enzimología , Simulación del Acoplamiento Molecular , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/síntesis química
7.
Food Chem ; 460(Pt 2): 140708, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39096803

RESUMEN

The detailed characterization of the structural features of peptides targeting cholesterol esterase (CEase) or pancreatic lipase (PPL) will benefit the management of hyperlipidemia and obesity. This study employed the Glide SP (standard precision)-peptide method to predict the binding modes of 202 dipeptides and 203 tripeptides to these targets, correlating residue composition and position with binding energy. Strong preferences for Trp, Phe, and Tyr were observed at all positions of potential inhibitory peptides, whereas negatively charged residues Glu and Asp were disfavored. Notably, Arg and aromatic rings significantly influenced the peptide conformation at the active site. Tripeptide IWR demonstrated the high efficacy, with IC50 values of 0.214 mg/mL for CEase and 0.230 mg/mL for PPL. Five novel IWR scaffold-tetrapeptides exhibited promising inhibitory activity. Non-covalent interactions and energy contributions dominated the formation of stable complexes. Our results provide insights for the development of new sequences or peptide-like molecules with enhanced inhibitory activity.


Asunto(s)
Inhibidores Enzimáticos , Lipasa , Péptidos , Esterol Esterasa , Esterol Esterasa/química , Esterol Esterasa/antagonistas & inhibidores , Esterol Esterasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Lipasa/química , Lipasa/antagonistas & inhibidores , Péptidos/química , Péptidos/farmacología , Humanos , Páncreas/enzimología , Páncreas/química , Animales , Simulación del Acoplamiento Molecular
8.
Talanta ; 280: 126750, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39213890

RESUMEN

The discovery of pancreatic lipase (PL) inhibitors is an essential route to develop new anti-obesity drugs. In this experiment, chitosan was used to add amino groups to cellulose filter paper (CFP) and then glutaraldehyde was used to covalently combine PL with amino-modified CFP through the Schiff base reaction. Under optimal immobilization conditions, CFP immobilized PL has a wide range of pH and temperature tolerance, as well as excellent reproducibility, reusability and storage stability. Subsequently, 26 natural products (NPs) were screened by immobilized PL with black tea extract having the highest inhibition rate. Three compounds with binding effects on PL (epigallocatechin gallate, theaflavin-3-gallate and theaflavin-3,3'-digallate) were captured. Molecular docking proved that these three compounds have a strong binding affinity for PL. Fluorescence spectra further revealed that theaflavin-3,3'-digallate could statically quench the intrinsic fluorescence of pancreatic lipase. The molecular docking and thermodynamic parameters indicated that electrostatic interaction was considered as the main interaction force between PL and theaflavin-3,3'-digallate. Finally, the potential anti-obesity targets and pathways of the three compounds were discussed through network pharmacology. This study not only proposes a simple and efficient method for screening PL inhibitors, but also sheds light on the anti-obesity mechanism of active compounds in black tea.


Asunto(s)
Fármacos Antiobesidad , Celulosa , Inhibidores Enzimáticos , Enzimas Inmovilizadas , Lipasa , Simulación del Acoplamiento Molecular , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Lipasa/química , Celulosa/química , Celulosa/análogos & derivados , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/antagonistas & inhibidores , Enzimas Inmovilizadas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/química , Farmacología en Red , Páncreas/enzimología , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Catequina/metabolismo , Papel , Té/química , Evaluación Preclínica de Medicamentos
9.
Foods ; 13(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39123636

RESUMEN

BACKGROUND: Coffee leaves are a major source of bioactive components and are used as ethnomedicine. However, despite their traditional medicinal use, information about their effects on antihyperlipidemia remains limited. METHODS: The aims of this study were to evaluate the main components of leaf extracts from Arabica and Robusta coffees and to examine the potential of these coffee leaves in reducing lipid digestion and absorption in vitro. RESULTS: Coffee leaf extracts from Arabica coffee contain a high amount of caffeine, whereas extracts from Robusta coffee contain high amounts of chlorogenic acid (CGA) and caffeine. Additionally, leaf extracts from Arabica and Robusta coffee demonstrated the inhibition of pancreatic lipase, decreased micellar cholesterol solubility, and reduced bile acid binding. Furthermore, these extracts resulted in a reduction in cholesterol uptake in Caco-2 cells. Molecular docking experiments supported this discovery, showing CGA and caffeine binding to Niemann-Pick C1-like 1 (NPC1L1), a key protein in cholesterol absorption. The results indicated that CGA and caffeine can competitively bind to NPC1L1 at the cholesterol binding pocket, reducing its cholesterol binding rate. These findings suggest that coffee leaves might help suppress lipid absorption and digestion, highlighting their potential use in preventing and treating hyperlipidemia.

10.
Food Res Int ; 192: 114833, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147522

RESUMEN

This study examined the suppressive effects of 16 selected plant-based foods on α-glucosidase and pancreatic lipase and their antioxidant properties. Among these, the bark of Cinnamomum cassia (Cinnamon, WLN-FM 15) showed the highest inhibitory activity against α-glucosidase and the highest antioxidant activity. Additionally, WLN-FM 15 showed promising results in the other tests. To further identify the bioactive constituents of WLN-FM 15, a multi-bioactivity-labeled molecular networking approach was used through a combination of GNPS-based molecular networking, DPPH-HPLC, and affinity-based ultrafiltration-HPLC. A total of nine procyanidins were identified as antioxidants and inhibitors of α-glucosidase and pancreatic lipase in WLN-FM 15. Subsequently, procyanidins A1, A2, B1, and C1 were isolated, and their efficacy was confirmed through functional assays. In summary, WLN-FM 15 has the potential to serve as a functional food ingredient with the procyanidins as its bioactive constituents. These results also suggest that the multi-bioactivity-labeled molecular networking approach is reliable for identifying bioactive constituents in plant-based foods.


Asunto(s)
Antioxidantes , Biflavonoides , Catequina , Cinnamomum aromaticum , Inhibidores de Glicósido Hidrolasas , Lipasa , Corteza de la Planta , Proantocianidinas , Proantocianidinas/farmacología , Proantocianidinas/química , Proantocianidinas/análisis , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/análisis , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Corteza de la Planta/química , Cinnamomum aromaticum/química , Biflavonoides/farmacología , Biflavonoides/análisis , Biflavonoides/química , Catequina/análisis , Catequina/química , Catequina/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Cromatografía Líquida de Alta Presión , Páncreas/enzimología , alfa-Glucosidasas/metabolismo , Farmacología en Red , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
11.
Nutrients ; 16(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125445

RESUMEN

Researchers are increasingly interested in discovering new pancreatic lipase inhibitors as anti-obesity ingredients. Medicine-and-food homology plants contain a diverse set of natural bioactive compounds with promising development potential. This study screened and identified potent pancreatic lipase inhibitors from 20 commonly consumed medicine-and-food homology plants using affinity ultrafiltration combined with spectroscopy and docking simulations. The results showed that turmeric exhibited the highest pancreatic lipase-inhibitory activity, and curcumin, demethoxycurcumin, and bisdemethoxycurcumin were discovered to be potent pancreatic lipase inhibitors within the turmeric extract, with IC50 values of 0.52 ± 0.04, 1.12 ± 0.05, and 3.30 ± 0.08 mg/mL, respectively. In addition, the enzymatic kinetics analyses demonstrated that the inhibition type of the three curcuminoids was the reversible competitive model, and curcumin exhibited a higher binding affinity and greater impact on the secondary structure of pancreatic lipase than found with demethoxycurcumin or bisdemethoxycurcumin, as observed through fluorescence spectroscopy and circular dichroism. Furthermore, docking simulations supported the above experimental findings, and revealed that the three curcuminoids might interact with amino acid residues in the binding pocket of pancreatic lipase through non-covalent actions, such as hydrogen bonding and π-π stacking, thereby inhibiting the pancreatic lipase. Collectively, these findings suggest that the bioactive compounds of turmeric, in particular curcumin, can be promising dietary pancreatic lipase inhibitors for the prevention and management of obesity.


Asunto(s)
Curcuma , Curcumina , Diarilheptanoides , Inhibidores Enzimáticos , Lipasa , Simulación del Acoplamiento Molecular , Páncreas , Lipasa/antagonistas & inhibidores , Curcumina/farmacología , Curcumina/análogos & derivados , Curcumina/química , Curcuma/química , Diarilheptanoides/farmacología , Páncreas/enzimología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Plantas Medicinales/química
12.
Phytochem Anal ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009466

RESUMEN

INTRODUCTION: Screening of novel pancreatic lipase inhibitors from complex natural products is a meaningful task. OBJECTIVES: Through accurately screening and separating pancreatic lipase inhibitors from Clematis tangutica (C. tangutica), to discover new leading compounds for slimming and accelerate the development and utilization of Tibetan medicine resources. METHODS: An integrated strategy that combines affinity ultrafiltration and high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (AU-HPLC-QTOFMS), targeted separation, in vitro validation, and molecular docking was developed to screen pancreatic lipase inhibitors from C. tangutica. The AU-HPLC-QTOFMS technique was performed to fish for the potential active substances. Macroporous resin, preparative liquid chromatography, and high-speed countercurrent chromatography were implemented for the accurate and targeted separation of active compounds. The inhibitory activities of target compounds to pancreatic lipase were detected by the inhibition experiments in vitro. The binding affinities and binding sites were analyzed using molecular docking. RESULTS: A total of eleven kinds of pancreatic lipase inhibitory substances were screened from C. tangutica. Seven triterpenoid saponins were screened for the first time as lipase inhibitors and successfully prepared with purities higher than 97%. Tanguticoside B, clematangoticoside J, hederoside H1, and rutin showed stronger inhibitory effects with IC50 values of 1.539 ± 0.048, 1.661 ± 0.092, 1.793 ± 0.069, and 1.792 ± 0.094 mmol/l. Moreover, they have the lowest ΔG values of -10.84, -9.97, -10.87, and -9.39 kcal/mol to pancreatic lipase. CONCLUSION: The integrated strategy using AU-HPLC-QTOFMS, targeted separation, in vitro validation, and molecular docking was feasible for rapidly screening and directionally isolating pancreatic lipase inhibitors from C. tangutica.

13.
Eur J Pharmacol ; 977: 176705, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38830457

RESUMEN

Obesity is a major health issue that contributes significantly to increased mortality and morbidity worldwide. Obesity is caused by uncontrolled adipogenesis and lipogenesis, leading to several metabolism-associated problems. Pancreatic lipase, an enzyme that breaks down dietary lipids, is a prominent target for obesity. Orlistat, a known inhibitor of pancreatic lipase, is commonly employed for the management of obesity. However, its side effects, such as diarrhoea, nausea and bladder pain, urge to look out for safer alternatives. Morin is a pentahydroxyflavone, exerts a broad spectrum of pharmacological effects including antioxidant, anti-inflammatory, lipid lowering, anti-diabetic, anti-fibrotic, anti-cancer, etc. This study investigated the effect of morin on pancreatic lipase activity, in vitro and in vivo adipogenesis. Molecular docking and simulation studies showed morin to have a higher binding affinity towards pancreatic lipase compared with orlistat, which also inhibited its activity in vitro. Morin also reduced lipid droplet accretion and downregulated the expression of adipogenic and lipogenic genes. The acute oral toxicity of morin was determined in C57BL/6 mice, where morin did not show toxicity up to 2000 mg/kg body weight dose. Oral administration of morin to high fat diet fed mice reduced body weight, glucose and insulin levels. Also, the histopathological examination revealed reduction in adipocyte size and decreased mRNA expression of adipogenesis markers in white adipose tissue of morin administered group compared to high fat diet group. Overall, the results suggested morin inhibited pancreatic lipase activity, adipogenesis and further studies are warranted to explore its therapeutic potential for obesity.


Asunto(s)
Adipogénesis , Flavonoides , Lipasa , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Animales , Adipogénesis/efectos de los fármacos , Flavonoides/farmacología , Ratones , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Masculino , Células 3T3-L1 , Dieta Alta en Grasa/efectos adversos , Páncreas/efectos de los fármacos , Páncreas/patología , Fármacos Antiobesidad/farmacología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Humanos , Orlistat/farmacología , Flavonas
14.
Int J Biol Macromol ; 275(Pt 1): 133523, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945336

RESUMEN

Human pancreatic lipase (hPL) is a vital digestive enzyme responsible for breaking down dietary fats in humans, inhibiting hPL is a feasible strategy for preventing and treating obesity. This study aims to investigate the structure-activity relationships (SARs) of flavonoids as hPL inhibitors, and to find potent hPL inhibitors from natural and synthetic flavonoids. In this work, the anti-hPL effects of forty-nine structurally diverse naturally occurring flavonoids were assessed and the SARs were summarized. The results demonstrated that the pyrogallol group on the A ring was a key moiety for hPL inhibition. Subsequently, a series of baicalein derivatives were synthesized, while 4'-amino baicalein (ABA) and 4'-pyrrolidine baicalein (PBA) were identified as novel potent hPL inhibitors (IC50 < 1 µM). Further investigations showed that scutellarein, ABA and PBA potently inhibited hPL in a non-competitive manner (Ki < 1 µM). Among all tested flavonoids, PBA showed the most potent anti-hPL effect in vitro, while this agent also exhibited favorable safety profiles, unique tissue distribution (high exposure level to intestinal system but low exposure levels to deep organs) and impressive in vivo effects for lowering blood triglyceride levels in mice. Collectively, this work uncovers the SARs of flavonoids against hPL, while a newly synthetic flavonoid (PBA) emerges as a potent hPL inhibitor with favorable safety profiles and impressive anti-hPL effects in vivo.


Asunto(s)
Inhibidores Enzimáticos , Flavanonas , Lipasa , Flavanonas/farmacología , Flavanonas/química , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Relación Estructura-Actividad , Humanos , Animales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Ratones , Simulación del Acoplamiento Molecular , Páncreas/enzimología , Páncreas/efectos de los fármacos , Masculino , Flavonoides/farmacología , Flavonoides/química , Descubrimiento de Drogas
15.
Int J Biol Macromol ; 275(Pt 2): 132985, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871103

RESUMEN

Triacylglycerols (TAGs) are a primary energy source for marine mammals during lipid digestion. Walruses (Odobenus rosmarus divergens) consume prey with a high content of long-chain polyunsaturated fatty acids; however, their digestive physiology and lipid digestion remain poorly studied. The present study aims to model and characterize the gastric (PWGL) and pancreatic (PWPL) lipases of Pacific walruses using an in-silico approach. The confident 3D models of PWGL and PWPL were obtained via homology modeling and protein threading and displayed the structural features of lipases. Molecular docking analysis demonstrated substrate selectivity for long-chain TAG (Trieicosapentaenoin; TC20:5n-3) in PWGL and short-chain TAG (Trioctanoin; TC8:0) in PWPL. Molecular dynamics simulations demonstrate that PWGL bound to tridocosahexaenoin (TC22:6n-3), the protein is considerably stable at all three salinity conditions, but fluctuations are observed in the regions associated with catalytic sites and the lid, indicating the potential hydrolysis of the substrate. This is the first study to report on the digestion of TAGs in walruses, including modeling and lipases characterization and proposing a digestive tract for pinnipeds.


Asunto(s)
Lipasa , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Páncreas , Animales , Lipasa/metabolismo , Lipasa/química , Páncreas/enzimología , Morsas/metabolismo , Metabolismo de los Lípidos , Especificidad por Sustrato , Triglicéridos/metabolismo , Digestión , Estómago/enzimología , Secuencia de Aminoácidos
16.
J Vet Sci ; 25(3): e48, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38834516

RESUMEN

IMPORTANCE: Early diagnosis of canine pancreatitis is challenging due to non-specific clinical signs. Currently, abdominal ultrasonography and measurement of canine pancreatic lipase (cPL) have been employed for the diagnosis of pancreatitis. OBJECTIVE: Many qualitative and quantitative commercial cPL tests have been developed and used in veterinary clinics. This study aimed to compare three different methodologies SNAP cPL, Spec cPL, and Vcheck cPL tests to assess the concordance of these assays. METHODS: Fifty serum samples were collected from 36 dogs with or without pancreatitis and subjected to SNAP cPL, Spec cPL, and Vcheck cPL tests. Agreement and correlation coefficients were calculated between the test results, and correlations were determined during the management of the patients. RESULTS: The results of the three cPL assays were strongly correlated in 47/50 serum samples (94%). Cohen's kappa analysis between the Spec cPL and Vcheck cPL showed near perfect agreement (κ = 0.960, p < 0.001), SNAP cPL and Vcheck cPL (κ = 0.920, p < 0.001), and Spec cPL and SNAP cPL (κ = 0.880, p < 0.001). The correlation coefficients (r) between data from Spec cPL and Vcheck cPL tests was calculated by Spearman's correlation test (r = 0.958, p < 0.001). Furthermore, the patterns of change in serum cPL concentrations determined using Spec cPL and Vcheck cPL were significantly consistent during the monitoring period in 11 patients. CONCLUSIONS AND RELEVANCE: Our data illustrated that Spec cPL and Vcheck cPL tests are compatible for clinical use in the diagnosis and monitoring of canine pancreatitis.


Asunto(s)
Enfermedades de los Perros , Lipasa , Pancreatitis , Animales , Perros , Lipasa/sangre , Pancreatitis/veterinaria , Pancreatitis/diagnóstico , Pancreatitis/sangre , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/sangre , Masculino , Femenino , Páncreas/enzimología
17.
Luminescence ; 39(5): e4765, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769927

RESUMEN

Isovitexin is a main natural flavonoid component in various plants. Currently, the inhibitory effect of isovitexin on pancreatic lipase (PL) and its mechanism have not been elucidated yet. In the present study, we investigated the inhibitory effect of isovitexin on PL, as well as its interaction mechanism, using enzyme inhibition methods, spectroscopic analysis, and molecular simulations. Results showed that isovitexin possessed significant PL inhibitory activity, with IC50 values of 0.26 ± 0.02 mM. The interaction between isovitexin and PL was dominated by static quenching, and mainly through hydrogen bonding and hydrophobic interaction forces. Analysis of fluorescence spectroscopy confirmed that isovitexin binding altered the conformation of the PL. Circular dichroism (CD) spectrum indicated that isovitexin altered the secondary structure of PL by decreasing the α-helix content and increasing the ß-fold content. Molecular simulations further characterize the conformational changes produced by the interaction between isovitexin with PL. The performed study may provide a new insight into the inhibitory mechanism of isovitexin as a novel PL inhibitor.


Asunto(s)
Apigenina , Inhibidores Enzimáticos , Lipasa , Páncreas , Espectrometría de Fluorescencia , Animales , Apigenina/química , Apigenina/farmacología , Dicroismo Circular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Lipasa/química , Páncreas/enzimología
18.
Am J Vet Res ; 85(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729202

RESUMEN

OBJECTIVE: Assess markers for pancreatic function and gastrointestinal malabsorption in African painted dogs (Lycaon pictus), including canine trypsin-like immunoreactivity (cTLI), canine pancreatic lipase immunoreactivity (cPLI), cobalamin, and folate at one North American facility. ANIMALS: 15 healthy African painted dogs held at one institution were sampled during routine health examinations. METHODS: Blood was collected at routine health examinations, and serum was separated and stored until testing. Serum was analyzed for cTLI, cPLI, cobalamin, and folate. The results were evaluated for correlation to sex, age, and storage time of samples. RESULTS: All individuals had cTLI and folate levels below normal reference ranges for domestic dogs (< 5.0 µg/L and < 7.7 µg/L, respectively). Cobalamin values were within or above reported domestic dog ranges, and cPLI values were within range as well. No analytes were significantly influenced by sex or time in storage, while cTLI was positively correlated with age. CLINICAL RELEVANCE: cTLI and folate did not fall within normal domestic canid reference ranges in this population of healthy African painted dogs. Clinical interpretation of these values based on domestic canid recommendations would indicate clinical disease, which was not apparent in this population. Analytes for pancreatic function and malabsorption or gastrointestinal indicators, including cTLI, cPLI, and folate, in African painted dogs should be interpreted with caution when using domestic dog references ranges.


Asunto(s)
Animales de Zoológico , Ácido Fólico , Lipasa , Vitamina B 12 , Animales , Masculino , Lipasa/sangre , Lipasa/metabolismo , Femenino , Vitamina B 12/sangre , Ácido Fólico/sangre , Canidae , Valores de Referencia , Tripsina/metabolismo , Tripsina/sangre , Páncreas/enzimología
19.
J Ethnopharmacol ; 331: 118351, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759763

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Momordica dioica Roxb. ex Willd. (M. dioica Roxb.) a nutritious and therapeutic property rich crop of Cucurbitaceae plant family. In various folklore medicine including Ayurveda fruits are used to treat several metabolic related disorders i.e., hyperglycemia, hyperlipidemia, diabetes, obesity etc. Furthermore, traditionally it is used to treat fever, inflammation, ulcer, skin diseases, haemorrhoids, hypertension and also employed as cardioprotective, hepatoprotective, analgesic, diuretic. AIM OF THE STUDY: This study focuses to explore the therapeutic potential of Momordica dioica Roxb. ex Willd. through in-vitro and in-silico approach for managing hyperlipidemia, hyperglycemia and related metabolic disorders along with its phytochemical profiling for quality evaluation and validation of traditional claim. MATERIALS AND METHODS: The present study was carried out on hydroalcohol extract of dried leaf and fruit of Momordica dioica. In-vitro antioxidant potential using DPPH and Nitric oxide scavenging assay along with in-vitro enzyme inhibitory potential against α-amylase, α-glucosidase, and pancreatic lipase enzymes was studied. The bioactive metabolites were identified from the most potent bioactive extract by analysis with LC-QTOF-MS and also studied their role to lessen the metabolic related disorder through in-silico approaches. RESULTS: The results confirmed that the fruit extract is more active to possess antioxidant and prominent enzyme inhibition potential compared to the leaf. Sixteen identified metabolites in M. dioica Roxb. fruits may be responsible for the therapeutic potential related to metabolic related disorder. The in-silico study of the identified phytomolecules against α-amylase, α-glucosidase and pancreatic lipase showed significant docking scores ranging from -9.8 to -5.5, -8.3 to -4.8 and -8.3 to -6 respectively. CONCLUSION: The current study illustrated that M. dioica Roxb., a traditionally important plant is potential against metabolic related disorders. Phytocomponents present in the fruit extract may be responsible for antioxidant as well as the enzymes' inhibitory potential. Thus, fruits of M. dioica Roxb. will be useful as alternative therapeutics for treatment of hyperlipidemia, hyperglycemia and related metabolic disorders.


Asunto(s)
Antioxidantes , Frutas , Simulación del Acoplamiento Molecular , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/química , Frutas/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/uso terapéutico , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Hojas de la Planta/química , alfa-Glucosidasas/metabolismo , Momordica/química , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología
20.
In Silico Pharmacol ; 12(1): 43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751710

RESUMEN

Diabetes mellitus is a chronic metabolic disorder that affects glucose, lipid, and protein metabolism. Targeting these metabolic derangements can optimize the therapeutic strategies for this disease. Utilizing in vitro and in silico models, this study investigated the ability of aqueous and ethanol extracts of Irvingia gabonensis to inhibit α-amylase, α-glucosidase, pancreatic lipase, and protein glycation. High-performance liquid chromatography (HPLC) was used to identify the compounds found in the stem bark of I. gabonensis. In silico analysis determined the binding mode and mechanism of interactions between the enzymes and phytochemicals. With an IC50 value of 11.47 µg/ml, the aqueous extract demonstrated higher inhibitory efficacy against α-amylase compared to the ethanol extract (IC50 19.88 µg/ml). However, the ethanol extract had stronger inhibitory activities against α-glucosidase, pancreatic lipase, and protein glycation compared to the aqueous extract (IC50 values of 3.05, 32.85, 0.0014 versus 25.72, 332.42, 0.018 µg/ml respectively). Quercetin ranked highest in binding energy with α-amylase (-6.6 kcal/mol), α-glucosidase (-6.6 kcal/mol), and pancreatic lipase (-5.6 kcal/mol). This was followed by rhamnetin (6.5, 6.5, and 6.1 kcal/mol respectively). Hydrogen bonding, hydrophobic interactions, and pi-pi stacking are forces responsible for the binding of quercetin and rhamnetin to these enzymes. Molecular dynamics simulation showed that the lead phytochemicals formed stable and energetically stabilized complexes with the target proteins. This study showed that the extracts of I. gabonensis stem bark had significant in vitro anti-diabetic, anti-pancreatic lipase, and anti-protein glycation activities. The strong binding affinities of some of the identified compounds could be responsible for the inhibitory potential of the extracts. I. gabonensis stem bark could be further explored as a natural remedy for the treatment of diabetes mellitus and its complications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA