Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.026
Filtrar
1.
iScience ; 27(5): 109760, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38726364

RESUMEN

In Plasmodium falciparum, DNA replication, and asynchronous nuclear divisions precede cytokinesis during intraerythrocytic schizogony. Regulation of nuclear division through the import of serum components was largely unknown. At the trophozoite stage, P. falciparum ribosomal protein P2 (PfP2) is exported to the infected erythrocyte (IE) cytosol and the surface as a denaturation-resistant tetramer. The inaccessibility of the IE surface exposed PfP2 to its bona fide ligand led to the arrest of nuclear division. Here, we show that at the onset of schizogony, denaturation-resistant PfP2 tetramer on the IE surface imports fatty acids (FAs). Blockage of import reversibly arrested parasite schizogony. In 11Met-O-Met11 mediated denaturation resistant PfP2 tetramer, the 12/53Cys-Cys12/53 redox switch regulates the binding and release of FAs based on oxidized/reduced state of disulfide linkages. This mechanistic insight of FAs import through PfP2 tetramer reveals a unique regulation of nuclear division at the onset of schizogony.

3.
iScience ; 27(5): 109773, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38711445

RESUMEN

Drug resistance threatens the effective control of infections, including parasitic diseases such as leishmaniases. Neutrophils are essential players in antimicrobial control, but their role in drug-resistant infections is poorly understood. Here, we evaluated human neutrophil response to clinical parasite strains having distinct natural drug susceptibility. We found that Leishmania antimony drug resistance significantly altered the expression of neutrophil genes, some of them transcribed by specific neutrophil subsets. Infection with drug-resistant parasites increased the expression of detoxification pathways and reduced the production of cytokines. Among these, the chemokine CCL3 was predominantly impacted, which resulted in an impaired ability of neutrophils to attract myeloid cells. Moreover, decreased myeloid recruitment when CCL3 levels are reduced was confirmed by blocking CCL3 in a mouse model. Collectively, these findings reveal that the interplay between naturally drug-resistant parasites and neutrophils modulates the infected skin immune microenvironment, revealing a key role of neutrophils in drug resistance.

6.
iScience ; 27(5): 109684, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38680656

RESUMEN

Malaria is a disease caused by infection with parasite Plasmodium spp. We studied the circadian regulation of host responses to the parasite, in a mouse model of cerebral malaria. The course of the disease was markedly affected by time of infection, with decreased parasitemia and increased inflammation upon infection in the middle of the night. At this time, there were fewer reticulocytes, which are target cells of the parasites. We next investigated the effects of desynchronization of host clocks on the infection: after 10 weeks of recurrent jet lags, mice showed decreased parasite growth and lack of parasite load rhythmicity, paralleled by a loss of glucose rhythm. Accordingly, disrupting host metabolic rhythms impacted parasite load rhythmicity. In summary, our findings of a circadian modulation of malaria parasite growth and infection shed light on aspects of the disease relevant to human malaria and could contribute to new therapeutic or prophylactic measures.

7.
Front Cell Infect Microbiol ; 14: 1381537, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633748

RESUMEN

Background: Toxoplasma gondii (T. gondii) is a significant protozoan pathogen among food animals. Despite the threat to public health by T. gondii infections, there's limited understanding of its seroprevalence and trends in food animals across mainland China. This study aimed to estimate the seroprevalence of T. gondii infections among swine, sheep, goats, chickens, and cattle in mainland China from 2010 to 2023. Methods: We searched cross-sectional studies published between 2010 and 2023 that reported the prevalence of T. gondii in food animals from databases including PubMed, Embase, Web of Science, China Biology Medicine Disc (CBM), China National Knowledge Infrastructure (CNKI), Wanfang data, and the China Science and Technology Journal Database (CQVIP). We performed subgroup analyses to explore the impact of different factors on the seroprevalence of T. gondii. Pooled estimates of T. gondii seroprevalence were calculated with a random-effects model. Results: An analysis of 184 studies involving 211985 animals revealed a T. gondii overall seroprevalence of 15.3% (95% CI: 13.1-17.8). Although the seroprevalence of food animals across mainland China was relatively stable from 2010 to 2023, notable variations were observed across different animal types and regions (P < 0.01), along with changes in geographical distribution. Sample type, detection method, animal age, and history of abortion were identified as key risk factors for T. gondii seroprevalence. Conclusion: The study conducted a meta-analysis on the seroprevalence of T. gondii in mainland China's Food Animals from 2010 to 2023, and identified key risk factors. These findings advance our understanding of T. gondii infection dynamics, offering critical insights for developing control strategies and guiding public health policies.


Asunto(s)
Toxoplasma , Toxoplasmosis Animal , Embarazo , Femenino , Animales , Porcinos , Bovinos , Ovinos , Estudios Seroepidemiológicos , Estudios Transversales , Pollos , Factores de Riesgo , China/epidemiología , Cabras , Anticuerpos Antiprotozoarios
8.
iScience ; 27(4): 109602, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38617559

RESUMEN

It is a significant challenge to assess the functions of many uncharacterized genes in human malaria parasites. Here, we present a genetic screening tool to assess the contribution of essential genes from Plasmodium falciparum by the conditional CRISPR-/deadCas9-based interference and activation (i/a) systems. We screened both CRISPRi and CRISPRa sets, consisting of nine parasite lines per set targeting nine genes via their respective gRNAs. By conducting amplicon sequencing of gRNA loci, we identified the contribution of each targeted gene to parasite fitness upon drug (artemisinin, chloroquine) and stress (starvation, heat shock) treatment. The screening was highly reproducible, and the screening libraries were easily generated by transfection of mixed plasmids expressing different gRNAs. We demonstrated that this screening is straightforward, robust, and can provide a fast and efficient tool to study essential genes that have long presented a bottleneck in assessing their functions using existing genetic tools.

9.
Cureus ; 16(3): e56130, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38618430

RESUMEN

This technical report explores the efficacy and methodology of laparoscopic surgery for treating abdominal echinococcosis, a parasitic infection caused by Echinococcus granulosus. We highlight the zoonotic nature of the disease, which predominantly affects the liver and occasionally other organs, noting the challenge of its asymptomatic progression that complicates timely diagnosis and intervention. We detail our surgical technique using a standard laparoscopy kit to address abdominal hydatid cysts, emphasizing the critical importance of preventing cyst rupture and spillage to avoid recurrence and anaphylactic shock. We discuss considerations for opting for laparoscopy over open surgery, such as reduced postoperative morbidity, faster patient recovery, and lower costs, while also acknowledging limitations like restricted instrument movement and the absence of haptic feedback. We advocate hypertonic saline as the preferred scolicidal agent and strategies to minimize spillage and manage the residual cavity. In conclusion, we assert that laparoscopy offers a viable and effective treatment option for abdominal echinococcosis, emphasizing that optimizing outcomes for this benign condition hinges on careful patient selection and a conservative surgical approach.

10.
iScience ; 27(4): 109563, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38623332

RESUMEN

Cryptosporidium hominis and Cryptosporidium parvum are major causes of severe diarrhea. Comparative studies of them are hampered by the lack of effective cultivation and cryopreservation methods, especially for C. hominis. Here, we describe adapted murine enteroids for the cultivation and complete development of host-adapted C. parvum and C. hominis subtypes, producing oocysts infectious to mice. Using the system, we developed a cryopreservation method for Cryptosporidium isolates. In comparative RNA-seq analyses of C. hominis cultures, the enteroid system generated significantly more host and pathogen responses than the conventional HCT-8 cell system. In particular, the infection was shown to upregulate PI3K-Akt, Ras, TNF, NF-κB, IL-17, MAPK, and innate immunity signaling pathways and downregulate host cell metabolism, and had significantly higher expression of parasite genes involved in oocyst formation. Therefore, the enteroid system provides a valuable tool for comparative studies of the biology of divergent Cryptosporidium species and isolates.

11.
J Microbiol Biol Educ ; : e0001924, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38624224

RESUMEN

Molecular case studies (MCSs) are open educational resources that use a storytelling approach to engage students in biomolecular structure-function explorations, at the interface of biology and chemistry. Although MCSs are developed for a particular target audience with specific learning goals, they are suitable for implementation in multiple disciplinary course contexts. Detailed teaching notes included in the case study help instructors plan and prepare for their implementation in diverse contexts. A newly developed MCS was simultaneously implemented in a biochemistry and a molecular parasitology course at two different institutions. Instructors participating in this cross-institutional and multidisciplinary implementation collaboratively identified the need for quick and effective ways to bridge the gap between the MCS authors' vision and the implementing instructor's interpretation of the case-related molecular structure-function discussions. Augmented reality (AR) is an interactive and engaging experience that has been used effectively in teaching molecular sciences. Its accessibility and ease-of-use with smart devices (e.g., phones and tablets) make it an attractive option for expediting and improving both instructor preparation and classroom implementation of MCSs. In this work, we report the incorporation of ready-to-use AR objects as checkpoints in the MCS. Interacting with these AR objects facilitated instructor preparation, reduced students' cognitive load, and provided clear expectations for their learning. Based on our classroom observations, we propose that the incorporation of AR in MCSs can facilitate its successful implementation, improve the classroom experience for educators and students, and make MCSs more broadly accessible in diverse curricular settings.

12.
Arch Dis Child ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627030

RESUMEN

Parasitic infections and the medications used to treat them may be unfamiliar to many paediatricians. Parasitic infections, however, are not uncommonly seen in children in the UK. We summarise infections which are commonly seen, currently recommended treatment and practical guidance on formulations, adverse effects and treatment choice.

13.
Artículo en Chino | MEDLINE | ID: mdl-38604691

RESUMEN

With the deepening reform of ideological and political education, Medical Parasitology teaching needs to update the teaching concept, change the teaching ideas, as well as keep trying to combine ideological and political education with the curriculum content closely. In addition to teaching students' basic knowledge and practical skills, teachers are needed to cultivate their moral literacy and political awareness through course teaching, so as to provide the basis for students' subsequent adaptations to social environments and jobs. Currently, the study of ideological and political education in Medical Parasitology teaching is still in the exploratory stage. Therefore, colleges and universities need to carry out effective construction of ideological and political education in Medical Parasitology teaching, in order to achieve good teaching outcomes and provide insights into ideological and political education in teaching.


Asunto(s)
Educación Médica , Estudiantes , Humanos , Escolaridad , Curriculum , Universidades
14.
PeerJ ; 12: e17161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560466

RESUMEN

The life history of a parasite describes its partitioning of assimilated resources into growth, reproduction, and transmission effort, and its precise timing of developmental events. The life cycle, in contrast, charts the sequence of morphological stages from feeding to the transmission forms. Phenotypic plasticity in life history traits can reveal how parasites confront variable environments within hosts. Within the protist phylum Apicomplexa major clades include the malaria parasites, coccidians, and most diverse, the gregarines (with likely millions of species). Studies on life history variation of gregarines are rare. Therefore, life history traits were examined for the gregarine Monocystis perplexa in its host, the invasive earthworm Amynthas agrestis at three sites in northern Vermont, United States of America. An important value of this system is the short life-span of the hosts, with only seven months from hatching to mass mortality; we were thus able to examine life history variation during the entire life cycle of both host and parasite. Earthworms were collected (N = 968 over 33 sample periods during one host season), then parasites of all life stages were counted, and sexual and transmission stages measured, for each earthworm. All traits varied substantially among individual earthworm hosts and across the sites. Across sites, timing of first appearance of infected earthworms, date when transmission stage (oocysts packed within gametocysts) appeared, date when number of both feeding (trophic) cells and gametocysts were at maximum, and date when 100% of earthworms were infected differed from 2-8 weeks, surprising variation for a short season available for parasite development. The maximal size of mating cells varied among hosts and across sites and this is reflected in the number of oocysts produced by the gametocyst. A negative trade-off was observed for the number of oocysts and their size. Several patterns were striking: (1) Prevalence reached 100% at all sites by mid season, only one to three weeks after parasites first appeared in the earthworms. (2) The number of parasites per host was large, reaching 300 × 103 cells in some hosts, and such high numbers were present even when parasites first appeared in the host. (3) At one site, few infected earthworms produced any oocysts. (4) The transmission rate to reach such high density of parasites in hosts needed to be very high for a microbe, from >0.33% to >34.3% across the three sites. Monocystis was one of the first protist parasites to have its life cycle described (early 19th century), but these results suggest the long-accepted life cycle of Monocystis could be incomplete, such that the parasites may be transmitted vertically (within the earthworm's eggs) as well as horizontally (leading to 100% prevalence) and merogony (asexual replication) could be present, not recognized for Monocystis, leading to high parasitemia even very early in the host's season.


Asunto(s)
Apicomplexa , Rasgos de la Historia de Vida , Oligoquetos , Parásitos , Animales , Oligoquetos/parasitología , Reproducción , Estadios del Ciclo de Vida , Oocistos
15.
BMC Genomics ; 25(1): 341, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575858

RESUMEN

BACKGROUND: Parasitic nematodes, significant pathogens for humans, animals, and plants, depend on diverse organ systems for intra-host survival. Understanding the cellular diversity and molecular variations underlying these functions holds promise for developing novel therapeutics, with specific emphasis on the neuromuscular system's functional diversity. The nematode intestine, crucial for anthelmintic therapies, exhibits diverse cellular phenotypes, and unraveling this diversity at the single-cell level is essential for advancing knowledge in anthelmintic research across various organ systems. RESULTS: Here, using novel single-cell transcriptomics datasets, we delineate cellular diversity within the intestine of adult female Ascaris suum, a parasitic nematode species that infects animals and people. Gene transcripts expressed in individual nuclei of untreated intestinal cells resolved three phenotypic clusters, while lower stringency resolved additional subclusters and more potential diversity. Clusters 1 and 3 phenotypes displayed variable congruence with scRNA phenotypes of C. elegans intestinal cells, whereas the A. suum cluster 2 phenotype was markedly unique. Distinct functional pathway enrichment characterized each A. suum intestinal cell cluster. Cluster 2 was distinctly enriched for Clade III-associated genes, suggesting it evolved within clade III nematodes. Clusters also demonstrated differential transcriptional responsiveness to nematode intestinal toxic treatments, with Cluster 2 displaying the least responses to short-term intra-pseudocoelomic nematode intestinal toxin treatments. CONCLUSIONS: This investigation presents advances in knowledge related to biological differences among major cell populations of adult A. suum intestinal cells. For the first time, diverse nematode intestinal cell populations were characterized, and associated biological markers of these cells were identified to support tracking of constituent cells under experimental conditions. These advances will promote better understanding of this and other parasitic nematodes of global importance, and will help to guide future anthelmintic treatments.


Asunto(s)
Antihelmínticos , Nematodos , Humanos , Animales , Caenorhabditis elegans , Intestinos , Nematodos/genética , Perfilación de la Expresión Génica , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico
16.
Microbiol Spectr ; 12(5): e0407823, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38534121

RESUMEN

Parasiticide fungi are considered an accurate, sustainable, and safe solution for the biocontrol of animal gastrointestinal (GI) parasites. This research provides an initial characterization of the virulence of the native parasiticide fungus Mucor circinelloides (FMV-FR1) and an assessment of its impact on birds' gut microbes. The genome of this fungus was sequenced to identify the genes coding for virulence factors. Also, this fungus was checked for the phenotypic expression of proteinase, lecithinase, DNase, gelatinase, hemolysin, and biofilm production. Finally, an in vivo trial was developed based on feeding M. circinelloides spores to laying hens and peacocks three times a week. Bird feces were collected for 3 months, with total genomic DNA being extracted and subjected to long-read 16S and 25S-28S sequencing. Genes coding for an iron permease (FTR1), iron receptors (FOB1 and FOB2), ADP-ribosylation factors (ARFs) (ARF2 and ARF6), and a GTPase (CDC42) were identified in this M. circinelloides genome. Also, this fungus was positive only for lecithinase activity. The field trial revealed a fecal microbiome dominated by Firmicutes and Proteobacteria in laying hens, and Firmicutes and Bacteroidetes in peacocks, whereas the fecal mycobiome of both bird species was mainly composed of Ascomycetes and Basidiomycetes fungi. Bacterial and fungal alpha-diversities did not differ between sampling time points after M. circinelloides administrations (P = 0.62 and P = 0.15, respectively). Although findings from this research suggest the lack of virulence of this M. circinelloides parasiticide isolate, more complementary in vitro and in vivo research is needed to conclude about the safety of its administration to birds, aiming at controlling their GI parasites.IMPORTANCEA previous study revealed that the native Mucor circinelloides isolate (FMV-FR1) can develop parasiticide activity toward coccidia oocysts, one of the most pathogenic GI parasites in birds. However, ensuring its safety for birds is of utmost importance, namely by studying its virulence profile and potential effect on commensal gut microbes. This initial study revealed that although this M. circinelloides isolate had genes coding for four types of virulence factors-iron permease, iron receptors, ADP-ribosylation factors, and GTPase-and only expressed phenotypically the enzyme lecithinase, the administration of its spores to laying hens and peacocks did not interfere with the abundances and diversities of their gut commensal bacteria and fungi. Although overall results suggest the lack of virulence of this M. circinelloides isolate, more complementary research is needed to conclude about the safety of its administration to birds in the scope of parasite biocontrol programs.


Asunto(s)
Pollos , Microbioma Gastrointestinal , Mucor , Factores de Virulencia , Mucor/genética , Mucor/patogenicidad , Animales , Pollos/microbiología , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Heces/microbiología , Femenino
17.
Ecol Evol ; 14(3): e11103, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38529021

RESUMEN

Pathogen genomic epidemiology has the potential to provide a deep understanding of population dynamics, facilitating strategic planning of interventions, monitoring their impact, and enabling timely responses, and thereby supporting control and elimination efforts of parasitic tropical diseases. Plasmodium vivax, responsible for most malaria cases outside Africa, shows high genetic diversity at the population level, driven by factors like sub-patent infections, a hidden reservoir of hypnozoites, and early transmission to mosquitoes. While Latin America has made significant progress in controlling Plasmodium falciparum, it faces challenges with residual P. vivax. To characterize genetic diversity and population structure and dynamics, we have analyzed the largest collection of P. vivax genomes to date, including 1474 high-quality genomes from 31 countries across Asia, Africa, Oceania, and America. While P. vivax shows high genetic diversity globally, Latin American isolates form a distinctive population, which is further divided into sub-populations and occasional clonal pockets. Genetic diversity within the continent was associated with the intensity of transmission. Population differentiation exists between Central America and the North Coast of South America, vs. the Amazon Basin, with significant gene flow within the Amazon Basin, but limited connectivity between the Northwest Coast and the Amazon Basin. Shared genomic regions in these parasite populations indicate adaptive evolution, particularly in genes related to DNA replication, RNA processing, invasion, and motility - crucial for the parasite's survival in diverse environments. Understanding these population-level adaptations is crucial for effective control efforts, offering insights into potential mechanisms behind drug resistance, immune evasion, and transmission dynamics.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38545440

RESUMEN

Bacterial vector-borne pathogens (BVBPs) negatively impact canine health worldwide, with several also being zoonotic, posing an additional disease risk to humans. To date, BVBPs have been reported in humans and various sylvatic and domestic animal hosts across multiple Mongolian aimags (provinces); however, there has been no published data on these pathogens within Mongolia's canine populations. Collection of such data is important given Mongolia's size, diverse number of climatic regions, and large population of dogs, most of which closely share their environment with humans and livestock. Therefore, a bacteria-targeting next-generation sequencing metabarcoding (mNGS) assay was used to test the feasibility of mNGS as a proof-of-concept study to ascertain the detection of BVBP in 100 Mongolian dogs. The majority of dogs (n = 74) were infected with at least one of six BVBPs identified; including three species of haemoplasmas (also known as haemotropic mycoplasmas, n = 71), Bartonella rochalimae (n = 3), Ehrlichia spp. (n = 2) and Anaplasma platys (n = 1). Univariable analysis found sex, housing, and role of the dog to be associated with BVBP infection. Male dogs had 4.33 (95% CI: 1.61-11.62, P = 0.003) times the odds of infection with BVBPs compared to females. The majority of dogs included in this study were kept outdoors and had regular direct contact with both livestock and humans, indicating that dogs may contribute to the transmission and dissemination of BVBPs in Mongolia and could act as epidemiological sentinels. This study underscores the importance of pathogen surveillance studies in under-researched regions, reinforces the efficacy of mNGS as an explorative diagnostic tool, and emphasises the need for further larger-scale seroprevalence studies of Mongolian dogs.

19.
Animals (Basel) ; 14(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38539975

RESUMEN

Crinoids (Echinodermata) exhibit unique morphological and behavioral characteristics that facilitate a wide range of symbiotic relationships with diverse organisms. Our comprehension of their interactions with microscopic copepod crustaceans is, however, still in a nascent and fragmented state. Here, we review and discuss the 166 literature records to date in which a total of 39 copepod species in 6 families have been reported in association with 33 species of the crinoid order Comatulida. Many of these associations have been reported just once. The respective localities cover 5 of the World Ocean's 12 ecoregions, with a notable concentration of both host and symbiont diversity in the Central and Western Indo-Pacific. In contrast, the documentation of copepod-crinoid associations in the Atlantic appears markedly limited. Copepods have been found predominantly in ectosymbiotic relationships with crinoids, with a lower incidence of endosymbiosis. Copepods of the genera Collocheres Canu, 1893 and Pseudanthessius Claus, 1889 are particularly prominent in the list, and the comatulid family Comatulidae displays the most diverse assortment of copepod associations. The current scope of knowledge encompasses a mere 5% of the potential crinoid host diversity, underscoring the need for more extensive research in this area.

20.
Int J Parasitol ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38460721

RESUMEN

Parasites are a key driving force behind many ecological and evolutionary processes. Prevalence and diversity of parasites, as well as their effects on hosts, are not uniform across host species. As such, the potential parasite spillover between species can significantly influence outcomes of interspecific interactions. We screened two species of Luscinia nightingales for haemosporidian blood parasites (Plasmodium, Leucocytozoon and Haemoproteus) along an approximately 3000 km transect in Europe, incorporating areas of host distant allopatry, close allopatry and sympatry. We found significant differences in infection rates between the two host species, with common nightingales having much lower parasite prevalence than thrush nightingales (36.7% versus 83.8%). This disparity was mostly driven by Haemoproteus prevalence, which was significantly higher in thrush nightingales while common nightingales had a small, but significantly higher, Plasmodium prevalence. Furthermore, we found no effect of proximity to the contact zone on infection rate in either host species. Despite having lower infection prevalence, common nightingales were infected with a significantly higher diversity of parasite lineages than thrush nightingales, and lineage assemblages differed considerably between the two species, even in sympatry. This pattern was mostly driven by the large diversity of comparatively rare lineages, while the most abundant lineages were shared between the two host species. This suggests that, despite the close evolutionary relationships between the two nightingales, there are significant differences in parasite prevalence and diversity, regardless of the distance from the contact zone. This suggests that spillover of haemosporidian blood parasites is unlikely to contribute towards interspecific interactions in this system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...