Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793202

RESUMEN

Micro-scale positioning techniques have become essential in numerous engineering systems. In the field of fluid mechanics, particle tracking velocimetry (PTV) stands out as a key method for tracking individual particles and reconstructing flow fields. Here, we present an overview of the micro-scale particle tracking methodologies that are predominantly employed for particle detection and flow field reconstruction. It covers various methods, including conventional and data-driven techniques. The advanced techniques, which combine developments in microscopy, photography, image processing, computer vision, and artificial intelligence, are making significant strides and will greatly benefit a wide range of scientific and engineering fields.

2.
Med Eng Phys ; 126: 104144, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38621846

RESUMEN

The present study adopts a smartphone-based approach for the experimental characterization of coronary flows. Technically, Particle Tracking Velocimetry (PTV) measurements were performed using a smartphone camera and a low-power continuous wave laser in realistic healthy and stenosed phantoms of left anterior descending artery with inflow Reynolds numbers approximately ranging from 20 to 200. A Lagrangian-Eulerian mapping was performed to convert Lagrangian PTV velocity data to a Eulerian grid. Eulerian velocity and vorticity data obtained from smartphone-based PTV measurements were compared with Particle Image Velocimetry (PIV) measurements performed with a smartphone-based setup and with a conventional setup based on a high-power double-pulsed laser and a CMOS camera. Smartphone-based PTV and PIV velocity flow fields substantially agreed with conventional PIV measurements, with the former characterized by lower average percentage differences than the latter. Discrepancies emerged at high flow regimes, especially at the stenosis throat, due to particle image blur generated by smartphone camera shutter speed and image acquisition frequency. In conclusion, the present findings demonstrate the feasibility of PTV measurements using a smartphone camera and a low-power light source for the in vitro characterization of cardiovascular flows for research, industrial and educational purposes, with advantages in terms of costs, safety and usability.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Teléfono Inteligente , Reología/métodos , Velocidad del Flujo Sanguíneo , Fantasmas de Imagen
3.
J Colloid Interface Sci ; 665: 263-273, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38485631

RESUMEN

HYPOTHESIS: Electronic paper displays rely on electrokinetic effects in nonpolar solvents to drive the displacement of colloidal particles within a fluidic cell. While Electrophoresis (EP) is a well-established and frequently employed phenomenon, electro-osmosis (EO), which drives fluid flow along charged solid surfaces, has not been studied as extensively. We hypothesize that by exploiting the interplay between these effects, an enhanced particle transport can be achieved. EXPERIMENTS: In this study, we experimentally investigate the combined effects of EP and EO for colloidal particles in non-polar solvents, driven by an electric field. We use astigmatism micro-particle tracking velocimetry (A-µPTV) to measure the motion of charged particles within model fluidic cells. Using a simple approach that relies on basic fluid flow properties we extract the contributions due to EP and EO, finding that EO contributes significantly to particle transport. The validity of our approach is confirmed by measurements on particles with different magnitudes of charge, and by comparison to numerical simulations. FINDINGS: We find that EO flows can play a dominant role in the transport of particles in electrokinetic display devices. This can be exploited to speed up particle transport, potentially yielding displays with significantly faster switching times.

4.
Ultrasonics ; 138: 107241, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232448

RESUMEN

Deep learning-based super-resolution ultrasound (DL-SRU) framework has been successful in improving spatial resolution and measuring the velocity field information of a blood flows by localizing and tracking speckle signals of red blood cells (RBCs) without using any contrast agents. However, DL-SRU can localize only a small part of the speckle signals of blood flow owing to ambiguity problems encountered in the classification of blood flow signals from ultrasound B-mode images and the building up of suitable datasets required for training artificial neural networks, as well as the structural limitations of the neural network itself. An artificial intelligence-based speckle featurization and localization (AI-SFL) framework is proposed in this study. It includes a machine learning-based algorithm for classifying blood flow signals from ultrasound B-mode images, dimensionality reduction for featurizing speckle patterns of the classified blood flow signals by approximating them with quantitative values. A novel and robust neural network (ResSU-net) is trained using the online data generation (ODG) method and the extracted speckle features. The super-resolution performance of the proposed AI-SFL and ODG method is evaluated and compared with the results of previous U-net and conventional data augmentation methods under in silico conditions. The predicted locations of RBCs by the AI-SFL and DL-SRU for speckle patterns of blood flow are applied to a PTV algorithm to measure quantitative velocity fields of the flow. Finally, the feasibility of the proposed AI-SFL framework for measuring real blood flows is verified under in vivo conditions.


Asunto(s)
Algoritmos , Inteligencia Artificial , Velocidad del Flujo Sanguíneo/fisiología , Ultrasonografía , Reología/métodos
5.
Sci Total Environ ; 912: 168767, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38008323

RESUMEN

Non-buoyant microplastics (MPs) sink through the marine water column, adversely affecting the ecosystem. The manner in which MPs influence the water environment depends to a large extent on their settling dynamics, driven by their properties and the physio-chemical characteristics of water column. However, some properties of seawater remain elusive, limiting our ability to fully explain the sinking processes of MPs. One of the gaps in our understanding relates to the elevated content of exopolymers (EPSs) secreted by algae and bacteria, which locally transform seawater into a non-Newtonian liquid, altering the hydrodynamics of particle transport. In this study, we present a series of lab-scale experiments on the dynamics of isometric (spheres and irregular particles) and anisometric (disks, rods, and blades) MPs settling in artificial seawater with the addition of polysaccharides. We find that upon the appearance of EPSs in seawater, the sinking velocity of MPs diminishes and may fluctuate, the orientation pattern changes in a non-intuitive way, and MPs may tumble. As measured in rheological tests, these consequences result from seawater gaining viscoelastic and shear-thinning properties. Our findings raise concerns that mucus-rich seawater may favor the aggregation of MPs with organic matter, interaction with biota, and biofouling, which can affect the biogeochemistry of the marine ecosystem. Based on these findings, we recommend that seawater rheology, modified by excessive amounts of EPSs during algal blooms, should be considered in biogeochemical and microplastic transport models.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/química , Agua , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Agua de Mar/química
6.
Data Brief ; 51: 109676, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37965604

RESUMEN

The dataset provided in this paper refers to an experimental campaign conducted in Laboratory of Fluid Dynamics (LTDF) of the Free University of Bozen-Bolzano at NOI Techpark aiming to understand the movement of granular material in fluids of low viscosity and density exhibited in debris flows. One experimental test was performed consisting of 31 repetitions. In detail, a three-litre volume of granular material (d = 1.8mm) was suddenly released from an upstream reservoir in a 1.5 m long acrylic chute tilted at 19 degrees and stopped in the outlet area by a vertical barrier. This vertical barrier used is adjacent to the side wall of the chute, with two vertical gaps and a width equal to twice the size of the particles used (s = 2d). The instrumentation included two high-speed cameras (300fps) and one spotlight. Camera 1 (C1) was located upstream at the lock gate location and Camera 2 was placed at downstream part of the chute, focusing on the vertical barrier site. A Particle Tracking Velocimetry (PTV) was applied to the set of images captured by the camera placed in the downstream area of the chute in a region of interest (ROI) of 4000 pixel width and 300 pixel height. Firstly, the raw data concerns to the particles coordinates (x,z), their along-chute and wall-normal trajectories and particle tag, detected with the PTV algorithm for the 31 repetitions held. The previous data was submitted to filtering processes where we converted particle trajectories into maps of these mean quantities by binning and constructing a data ensemble. To remove some detected outliers, a refinement of ensemble data was subsequently applied [1]. All of the solutions computed to build the pointed dataset were performed by means of Matlab algorithms. This dataset allows researchers to characterize the behaviour of granular processes that may occur in inclined channels partially or fully obstructed.

7.
Micromachines (Basel) ; 14(8)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37630030

RESUMEN

In the present paper, we investigate how the reductions in shear stresses and pressure losses in microfluidic gaps are directly linked to the local characteristics of cell-free layers (CFLs) at channel Reynolds numbers relevant to ventricular assist device (VAD) applications. For this, detailed studies of local particle distributions of a particulate blood analog fluid are combined with wall shear stress and pressure loss measurements in two complementary set-ups with identical flow geometry, bulk Reynolds numbers and particle Reynolds numbers. For all investigated particle volume fractions of up to 5%, reductions in the stress and pressure loss were measured in comparison to a flow of an equivalent homogeneous fluid (without particles). We could explain this due to the formation of a CFL ranging from 10 to 20 µm. Variations in the channel Reynolds number between Re = 50 and 150 did not lead to measurable changes in CFL heights or stress reductions for all investigated particle volume fractions. These measurements were used to describe the complete chain of how CFL formation leads to a stress reduction, which reduces the apparent viscosity of the suspension and results in the Fåhræus-Lindqvist effect. This chain of causes was investigated for the first time for flows with high Reynolds numbers (Re∼100), representing a flow regime which can be found in the narrow gaps of a VAD.

8.
bioRxiv ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37546970

RESUMEN

Over the last decade, there has been a tremendously increased interest in understanding the neurophysiology of cerebrospinal fluid (CSF) flow, which plays a crucial role in clearing metabolic waste from the brain. This growing interest was largely initiated by two significant discoveries: the glymphatic system (a pathway for solute exchange between interstitial fluid deep within the brain and the CSF surrounding the brain) and meningeal lymphatic vessels (lymphatic vessels in the layer of tissue surrounding the brain that drain CSF). These two CSF systems work in unison, and their disruption has been implicated in several neurological disorders including Alzheimer's disease, stoke, and traumatic brain injury. Here, we present experimental techniques for in vivo quantification of CSF flow via direct imaging of fluorescent microspheres injected into the CSF. We discuss detailed image processing methods, including registration and masking of stagnant particles, to improve the quality of measurements. We provide guidance for quantifying CSF flow through particle tracking and offer tips for optimizing the process. Additionally, we describe techniques for measuring changes in arterial diameter, which is an hypothesized CSF pumping mechanism. Finally, we outline how these same techniques can be applied to cervical lymphatic vessels, which collect fluid downstream from meningeal lymphatic vessels. We anticipate that these fluid mechanical techniques will prove valuable for future quantitative studies aimed at understanding mechanisms of CSF transport and disruption, as well as for other complex biophysical systems.

9.
Bioengineering (Basel) ; 10(7)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37508838

RESUMEN

This paper presents an innovative experimental setup that employs the principles of audio technology to subject adherent cells to rhythmic vertical vibrations. We employ a novel approach that combines three-axis acceleration measurements and particle tracking velocimetry to evaluate the setup's performance. This allows us to estimate crucial parameters such as root mean square acceleration, fluid flow patterns, and shear stress generated within the cell culture wells when subjected to various vibration types. The experimental conditions consisted of four vibrational modes: No Vibration, Continuous Vibration, Regular Pulse, and Variable Pulse. To evaluate the effects on cells, we utilized fluorescence microscopy and a customized feature extraction algorithm to analyze the F-actin filament structures. Our findings indicate a consistent trend across all vibrated cell cultures, revealing a reduction in size and altered orientation (2D angle) of the filaments. Furthermore, we observed cell accumulations in the G1 cell cycle phase in cells treated with Continuous Vibration and Regular Pulse. Our results demonstrate a negative correlation between the magnitude of mechanical stimuli and the size of F-actin filaments, as well as a positive correlation with the accumulations of cells in the G1 phase of the cell cycle. By unraveling these analyses, this study paves the way for future investigations and provides a compelling framework for comprehending the intricate cellular responses to rhythmic mechanical stimulation.

10.
Water Res ; 238: 120048, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37159963

RESUMEN

Perfluoroalkyl acids (PFAAs) are continuously accumulated in surface sediments due to extensive and long-term application. However, the mechanisms through which disturbances induced by ship propeller jets at the riverbed cause secondary release of PFAAs from sediments remain unclear. In this study, the effects of different propeller rotational speeds on PFAA migration, release, and distribution in multiphase media were investigated by performing indoor flume experiments combined with particle tracking velocimetry. Moreover, key factors influencing PFAA migration and distribution were identified, and partial least squares regression (PLS) method was applied to develop quantitative prediction models of relationships among hydrodynamics, physicochemical parameters, and PFAA distribution coefficients. The total PFAA concentrations (ΣPFAAs) in overlying water under propeller jet action exhibited transient characteristics and hysteresis with time after the disturbance. In contrast, the ΣPFAAs in suspended particulate matter (SPM) exhibited an upward trend throughout the process with consistent characteristics. The spatial distribution trends of PFAAs in overlying water and SPM at different propeller rotational speeds featured vertical variability and axial consistency. Furthermore, PFAA release from sediments was driven by axial flow velocity (Vx) and Reynolds normal stress Ryy, while PFAA release from porewater was inextricably linked to Reynolds stresses Rxx, Rxy, and Rzz (p < 0.05). PLS regression models showed that variations in Vorticity, dissolved organic carbon, and pH influenced the decreases in PFAA distribution coefficients between SPM and overlying water (KD-SW) as propeller rotational speed increased, except for very long-chain PFAAs (C > 10). The increases in PFAA distribution coefficients between sediment and porewater (KD-SP) were mainly determined by physicochemical parameters of sediments, and the direct effect of hydrodynamics was relatively weak. Our study provides valuable information regarding the migration and distribution of PFAAs in multiphase media under propeller jet disturbance (both during and after disturbance).


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Agua , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis , Material Particulado , Hidrodinámica , Ácidos Alcanesulfónicos/análisis , Monitoreo del Ambiente
11.
Proc Natl Acad Sci U S A ; 120(14): e2217744120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36989300

RESUMEN

Quantifying the flow of cerebrospinal fluid (CSF) is crucial for understanding brain waste clearance and nutrient delivery, as well as edema in pathological conditions such as stroke. However, existing in vivo techniques are limited to sparse velocity measurements in pial perivascular spaces (PVSs) or low-resolution measurements from brain-wide imaging. Additionally, volume flow rate, pressure, and shear stress variation in PVSs are essentially impossible to measure in vivo. Here, we show that artificial intelligence velocimetry (AIV) can integrate sparse velocity measurements with physics-informed neural networks to quantify CSF flow in PVSs. With AIV, we infer three-dimensional (3D), high-resolution velocity, pressure, and shear stress. Validation comes from training with 70% of PTV measurements and demonstrating close agreement with the remaining 30%. A sensitivity analysis on the AIV inputs shows that the uncertainty in AIV inferred quantities due to uncertainties in the PVS boundary locations inherent to in vivo imaging is less than 30%, and the uncertainty from the neural net initialization is less than 1%. In PVSs of N = 4 wild-type mice we find mean flow speed 16.33 ± 11.09 µm/s, volume flow rate 2.22 ± 1.983 × 103 µm3/s, axial pressure gradient ( - 2.75 ± 2.01)×10-4 Pa/µm (-2.07 ± 1.51 mmHg/m), and wall shear stress (3.00 ± 1.45)×10-3 Pa (all mean ± SE). Pressure gradients, flow rates, and resistances agree with prior predictions. AIV infers in vivo PVS flows in remarkable detail, which will improve fluid dynamic models and potentially clarify how CSF flow changes with aging, Alzheimer's disease, and small vessel disease.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Animales , Ratones , Reología/métodos , Encéfalo , Física , Velocidad del Flujo Sanguíneo
12.
Water Res ; 229: 119432, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36495852

RESUMEN

Faucet aerators that form aerated water jets generate aerosols, which can constitute a risk of infection if the water is contaminated, particularly for vulnerable individuals near the sink. In this study, we characterize the size and trajectory of water droplets produced from an aerated jet. The detected particle diameter ranged from 3 to 150µm. The concentration of droplets in the air varied from near-zero to a maximum of 2×1011particles/m3, depending on the location relative to the jet. We found four relevant categories of droplets based on their trajectories following their emission at the jet's free surface: particles with inertia high enough to escape the immediate vicinity of the jet (category 1), particles moving towards the jet (category 2), particles drawn into the aerator, which only included particles with a diameter smaller than 50µm (category 3), and particles with a near-vertical trajectory (category 4). Tracing category 1 particles to their generation location on the water interface shows a higher emission rate near the aerator. Finally, we employ a numerical model to compute the subsequent trajectories of droplets detected at the limits of the sampled domain. We find that particles whose diameter is smaller than 55µm completely dry and become airborne. Larger droplets deposit within a radius of 7cm around the jet, assuming a surface is located 20cm below the aerator tip. These results increase the fundamental understanding of the emission mechanisms of droplets in aerated jets and their fate in the sink environment.


Asunto(s)
Agua , Humanos , Aerosoles
13.
Nanomaterials (Basel) ; 12(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36144991

RESUMEN

Three-dimensional (3D) visualization in water is a technique that, in addition to macroscale visualization, enables micro- and nanoscale visualization via a microfabrication technique, which is particularly important in the study of biological systems. This review paper introduces micro- and nanoscale 3D fluid visualization methods. First, we introduce a specific holographic fluid measurement method that can visualize three-dimensional fluid phenomena; we introduce the basic principles and survey both the initial and latest related research. We also present a method of combining this technique with refractive-index-matched materials. Second, we outline the TIRF method, which is a method for nanoscale fluid measurements, and introduce measurement examples in combination with imprinted materials. In particular, refractive-index-matched materials are unaffected by diffraction at the nanoscale, but the key is to create nanoscale shapes. The two visualization methods reviewed here can also be used for other fluid measurements; however, because these methods can used in combination with refractive-index-matched materials in water, they are expected to be applied to experimental measurements of biological systems.

14.
Adv Sci (Weinh) ; 9(24): e2105009, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35839469

RESUMEN

Catalytic microswimmers that move by a phoretic mechanism in response to a self-induced chemical gradient are often obtained by the design of spherical janus microparticles, which suffer from multi-step fabrication and low yields. Approaches that circumvent laborious multi-step fabrication include the exploitation of the possibility of nonuniform catalytic activity along the surface of irregular particle shapes, local excitation or intrinsic asymmetry. Unfortunately, the effects on the generation of motion remain poorly understood. In this work, single crystalline BiVO4 microswimmers are presented that rely on a strict inherent asymmetry of charge-carrier distribution under illumination. The origin of the asymmetrical flow pattern is elucidated because of the high spatial resolution of measured flow fields around pinned BiVO4 colloids. As a result the flow from oxidative to reductive particle sides is confirmed. Distribution of oxidation and reduction reactions suggests a dominant self-electrophoretic motion mechanism with a source quadrupole as the origin of the induced flows. It is shown that the symmetry of the flow fields is broken by self-shadowing of the particles and synthetic surface defects that impact the photocatalytic activity of the microswimmers. The results demonstrate the complexity of symmetry breaking in nonspherical microswimmers and emphasize the role of self-shadowing for photocatalytic microswimmers. The findings are leading the way toward understanding of propulsion mechanisms of phoretic colloids of various shapes.


Asunto(s)
Coloides , Coloides/química , Electroforesis , Movimiento (Física)
15.
Sci Total Environ ; 838(Pt 1): 156011, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35595148

RESUMEN

Microplastic fibres are the most abundant microplastics in waterways worldwide. The settling of fibres is distinct from other particles because of their aspect ratio and shape. In this paper, we test the hypothesis that length, curliness, and settling orientation control the settling velocity of microplastic fibres in a suite of laboratory experiments. Using a Particle Tracking Velocimetry method, we measured the settling velocity of 683 polyester microplastic fibres of 1 to 4 mm in length. Experimental findings support our hypothesis that for microplastic fibre longer than 1 mm, changing settling orientation from horizontal to vertical can increase 1.7 times the settling velocity. Fibre curliness can significantly reduce the settling velocity, where a curly fibre 1.3 times longer than a straight fibre can settle 1.75 times slower. In contrast, short microplastic fibres (less than 1 mm) mostly settle horizontally, and their settling velocity is unaffected by curliness. The drag force exerting on settling microplastic fibres was analysed, and the sphere-equivalent diameter was found to be a good representation of microplastic fibre size to predict the drag coefficient. Measured settling velocity ranges between 0.1 and 0.55 mm/s and exhibits a slight increase with the increasing length of the fibres. This low-velocity range raises concerns that microplastic fibres can favour biological flocculation, form clustered aggregates with microorganisms, feed aquatic organisms and cause bioaccumulation at higher trophic levels.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Tamaño de la Partícula , Plásticos/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis
16.
Sensors (Basel) ; 22(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35214434

RESUMEN

Many dielectrophoretic (DEP) devices for biomedical application have been suggested, such as the separation, concentration, and detection of biological cells or molecules. Most of these devices utilize the difference in their DEP properties. However, single-cell analysis is required to evaluate individual properties. Therefore, this paper proposed a modified isomotive insulator-based DEP (iDEP) creek-gap device for straightforward single-cell analysis, which is capable of measurement at a wide frequency band. The proposed iDEP device generates more constant particle velocity than the previous study. The insulator was fabricated using backside exposure for accurate forming. We measured the distribution of the particle velocity and frequency property, using homogeneous polystyrene particles to verify the effectiveness of the proposed device. The results show that the particle velocity distribution was consistent with the distribution of the numerically calculated electric field square (∇Erms2). Furthermore, the velocity measurement, at a wide frequency band, from 10 Hz to 20 MHz, was performed because of the long distance between electrodes. These results suggest that the prop-erties of various particles or cells can be obtained by simple measurement using the proposed device.


Asunto(s)
Técnicas Analíticas Microfluídicas , Poliestirenos , Electricidad , Electrodos , Electroforesis/métodos , Técnicas Analíticas Microfluídicas/métodos , Tamaño de la Partícula , Análisis de la Célula Individual
17.
J Biomed Opt ; 26(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34528428

RESUMEN

SIGNIFICANCE: Imaging biofluid flow under physiologic conditions aids in understanding disease processes and health complications. We present a method employing a microparallel plate strain induction chamber (MPPSIC) amenable to optical coherence tomography to track depth-resolved lateral displacement in fluids in real time while under constant and sinusoidal shear. AIM: Our objective is to track biofluid motion under shearing conditions found in the respiratory epithelium, first validating methods in Newtonian fluids and subsequently assessing the capability of motion-tracking in bronchial mucus. APPROACH: The motion of polystyrene microspheres in aqueous glycerol is tracked under constant and sinusoidal applied shear rates in the MPPSIC and is compared with theory. Then 1.5 wt. % bronchial mucus samples considered to be in a normal hydrated state are studied under sinusoidal shear rates of amplitudes 0.7 to 3.2 s - 1. RESULTS: Newtonian fluids under low Reynolds conditions (Re ∼ 10 - 4) exhibit velocity decreases directly proportional to the distance from the plate driven at both constant and oscillating velocities, consistent with Navier-Stokes's first and second problems at finite depths. A 1.5 wt. % mucus sample also exhibits a uniform shear strain profile. CONCLUSIONS: The MPPSIC provides a new capability for studying biofluids, such as mucus, to assess potentially non-linear or strain-rate-dependent properties in a regime that is relevant to the mucus layer in the lung epithelium.


Asunto(s)
Moco , Tomografía de Coherencia Óptica , Pulmón/diagnóstico por imagen , Mucosa Respiratoria , Reología
18.
Curr Protoc ; 1(9): e233, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34491632

RESUMEN

Accurate measurement of cellular traction force is critical for understanding physical interaction between cells and the extracellular matrix. Traction force microscopy (TFM) has become the most widely used tool for this purpose. While TFM has made continual progress in terms of resolution and accuracy, there have been challenges regarding obtaining user-friendly software and choosing the right values for parameters and sub-processes associated with the software. Here we provide step-by-step instructions for a MATLAB-based TFM software application equipped with multiple methods for image deformation quantification and force reconstruction, along with clarification on the computational meaning of the parameters within the software. We outline how to choose the optimal sub-methods and values for parameters for each process, depending on the characteristics of images and purpose of the analyses. The software's runtime is 20, 4, and 0.05 min by Fast BEM L1 (Boundary Element Method L1-regularization), Fast BEM L2 (L2-regularization), and FTTC (Fourier Transform Traction Cytometry), respectively, in addition to 7 min of particle-tracking velocimetry-based deformation tracking, for a single image (1280 × 960 pixel) on a standard workstation. Finally, the colocalization accuracies, in reference to a paxillin-GFP image, are compared between the three force reconstruction methods. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Setting up the TFM package in MATLAB Basic Protocol 2: Running the TFM package Alternate Protocol 1: Stage drift correction: Efficient subpixel registration Alternate Protocol 2: Force field calculation: FastBEM.


Asunto(s)
Algoritmos , Tracción , Simulación por Computador , Microscopía de Fuerza Atómica , Programas Informáticos
19.
Materials (Basel) ; 14(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34300837

RESUMEN

This paper focuses on the investigation of a multiphase flow of water, air, and abrasive particles inside and at the outlet of the abrasive head with the help of computational fluid dynamics calculations and measurements. A standard abrasive head with a water nozzle hole diameter of 0.33 mm (0.013") and an abrasive nozzle cylindrical hole diameter of 1.02 mm (0.04") were used for numerical modelling and practical testing. The computed tomography provided an exact 3D geometrical model of the cutting head that was used for the creation of the model. Velocity fields of abrasive particles at the outlet of the abrasive head were measured and analysed using particle tracking velocimetry and, consequently, compared with the calculated results. The calculation model took the distribution of the abrasive particle diameters with the help of the Rosin-Rammler function in intervals of diameters from 150 to 400 mm. In the present study, four levels of water pressure (105, 194, 302, 406 MPa) and four levels of abrasive mass flow rate (100, 200, 300, 400 kg/min) were combined. The values of water pressures and hydraulic powers measured at the abrasive head inlet were used as boundary conditions for numerical modelling. The hydraulic characteristics of the water jet were created from the measured and calculated data. The calculated pressure distribution in the cylindrical part of the abrasive nozzle was compared with studies by other authors. The details of the experiments and calculations are presented in this paper.

20.
Polymers (Basel) ; 13(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920103

RESUMEN

Convective Marangoni instabilities in drying polymer films may induce surface deformations, which persist in the dry film, deteriorating product performance. While theoretic stability analyses are abundantly available, experimental data are scarce. We report transient three-dimensional flow field measurements in thin poly(vinyl acetate)-methanol films, drying under ambient conditions with several films exhibiting short-scale Marangoni convection cells. An initial assessment of the upper limit of thermal and solutal Marangoni numbers reveals that the solutal effect is likely to be the dominant cause for the observed instabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA