Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(32): 18225-18233, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39079057

RESUMEN

Allergen detection methods support food labeling and quality assessment at the allergen component level of allergen preparations used for allergy diagnosis and immunotherapy (AIT). Commonly applied enzyme-linked immunosorbent assay (ELISA) requires animal antibodies but potentially shows batch variations. We developed synthetic aptamers as alternative binders in allergen detection to meet the replacement, reduction, and refinement (3R) principle on animal protection in science. ssDNA aptamers were specifically selected against the major peanut allergen Ara h 1 and identified by next-generation sequencing. Application in various detection systems (ELISA-like assays, western blot, and surface plasmon resonance) was demonstrated. The ELISA-like assay comprised a sensitivity of 10 ng/mL Ara h 1, comparable to published antibody-based ELISA, and allowed Ara h 1 detection in various peanut flours, similar to those used in peanut AIT as well as in processed food. This ELISA-like aptamer-based assay proofs antibody-free allergen detection for food labeling or quality assessment of diagnostic and therapeutic allergen products.


Asunto(s)
Alérgenos , Antígenos de Plantas , Aptámeros de Nucleótidos , Arachis , Ensayo de Inmunoadsorción Enzimática , Proteínas de Plantas , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/inmunología , Arachis/química , Arachis/inmunología , Antígenos de Plantas/inmunología , Antígenos de Plantas/análisis , Antígenos de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas de Plantas/genética , Alérgenos/inmunología , Alérgenos/análisis , Hipersensibilidad al Cacahuete/inmunología , Glicoproteínas/inmunología , Glicoproteínas/química , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/genética , Humanos , Técnica SELEX de Producción de Aptámeros/métodos
2.
Food Technol Biotechnol ; 62(1): 4-14, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38601963

RESUMEN

Research background: Peanut allergy poses a significant threat to human health due to the increased risk of long-term morbidity at low doses. Modifying protein structure to affect sensitization is a popular topic. Experimental approach: In this study, the purified peanut allergen Ara h 1 was enzymatically hydrolysed using Flavourzyme, alkaline protease or a combination of both. The binding ability of Ara h 1 to antibodies, gene expression and secretion levels of the proinflammatory factors interleukin-5 and interleukin-6 in Caco-2 cells was measured. Changes in the secondary and tertiary structures before and after treatment with Ara h 1 were analysed by circular dichroism and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Results and conclusions: The results indicated a decrease of the allergenicity and proinflammatory ability of Ara h 1. The evaluation showed that the Flavourzyme and alkaline protease treatments caused particle shortening and aggregation. The fluorescence emission peak increased by 3.4-fold after the combined treatment with both proteases. Additionally, the secondary structure underwent changes and the hydrophobicity also increased 8.95-fold after the combined treatment. Novelty and scientific contribution: These findings partially uncover the mechanism of peanut sensitization and provide an effective theoretical basis for the development of a new method of peanut desensitization.

3.
Front Nutr ; 11: 1323553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439921

RESUMEN

Background: Peanut is an important source of dietary protein for human beings, but it is also recognized as one of the eight major food allergens. Binding of IgE antibodies to specific epitopes in peanut allergens plays important roles in initiating peanut-allergic reactions, and Ara h 2 is widely considered as the most potent peanut allergen and the best predictor of peanut allergy. Therefore, Ara h 2 IgE epitopes can serve as useful biomarkers for prediction of IgE-binding variations of Ara h 2 and peanut in foods. This study aimed to develop and validate an IgE epitope-specific antibodies (IgE-EsAbs)-based sandwich ELISA (sELISA) for detection of Ara h 2 and measurement of Ara h 2 IgE-immunoreactivity changes in foods. Methods: DEAE-Sepharose Fast Flow anion-exchange chromatography combining with SDS-PAGE gel extraction were applied to purify Ara h 2 from raw peanut. Hybridoma and epitope vaccine techniques were employed to generate a monoclonal antibody against a major IgE epitope of Ara h 2 and a polyclonal antibody against 12 IgE epitopes of Ara h 2, respectively. ELISA was carried out to evaluate the target binding and specificity of the generated IgE-EsAbs. Subsequently, IgE-EsAbs-based sELISA was developed to detect Ara h 2 and its allergenic residues in food samples. The IgE-binding capacity of Ara h 2 and peanut in foods was determined by competitive ELISA. The dose-effect relationship between the Ara h 2 IgE epitope content and Ara h 2 (or peanut) IgE-binding ability was further established to validate the reliability of the developed sELISA in measuring IgE-binding variations of Ara h 2 and peanut in foods. Results: The obtained Ara h 2 had a purity of 94.44%. Antibody characterization revealed that the IgE-EsAbs recognized the target IgE epitope(s) of Ara h 2 and exhibited high specificity. Accordingly, an IgE-EsAbs-based sELISA using these antibodies was able to detect Ara h 2 and its allergenic residues in food samples, with high sensitivity (a limit of detection of 0.98 ng/mL), accuracy (a mean bias of 0.88%), precision (relative standard deviation < 16.50%), specificity, and recovery (an average recovery of 98.28%). Moreover, the developed sELISA could predict IgE-binding variations of Ara h 2 and peanut in foods, as verified by using sera IgE derived from peanut-allergic individuals. Conclusion: This novel immunoassay could be a user-friendly method to monitor low level of Ara h 2 and to preliminary predict in vitro potential allergenicity of Ara h 2 and peanut in processed foods.

4.
J Agric Food Chem ; 72(6): 3142-3149, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38299554

RESUMEN

Peanut allergy is a prevalent and concerning food allergy. Roasting can introduce structural changes to peanut allergens, affecting their allergenicity, but the structure on the primary structure is unclear. Here, the breakage sites were identified by mass spectrometry and software tools, and structural changes were simulated by molecular dynamics and displayed by PyMOL software. Results revealed that the appearance frequencies of L, Q, F, and E were high at the N-terminal of the breakage site, while S and E were dominant at the C-terminal. In the conformational structure, breakage sites were found close to disulfide bonds and the Cupin domains of Ara h 1 and Ara h 3. The breakage of allergens destroyed linear epitopes and might change the conformation of epitopes, which could influence peanuts' potential allergenicity.


Asunto(s)
Arachis , Hipersensibilidad al Cacahuete , Arachis/química , Antígenos de Plantas/análisis , Alérgenos/química , Calor , Inmunoglobulina E , Epítopos , Espectrometría de Masas , Proteínas de Plantas/química
5.
J Sci Food Agric ; 103(6): 3017-3027, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36646652

RESUMEN

BACKGROUND: Peanut allergy is recognized as a major food allergy that triggers severe and even fatal symptoms. Avoidance of peanuts in the diet is the main option for current safety management. Processing techniques reducing peanut allergenicity are required to develop other options. Cold plasma is currently considered as a novel non-thermal approach to alter protein structure and has the potential to alleviate immunoreactivity of protein allergen. RESULTS: The application of a cold argon plasma jet to peanut protein extract could reduce the amount of a 64 kDa protein band corresponding to a major peanut allergen Ara h 1 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but the overall protein size distribution did not change significantly. A decrease in peanut protein solubility was a possible cause that led to the loss of protein content in the soluble fraction. Immunoblotting and enzyme-linked immunosorbent assay elucidated that the immunoreactivity of Ara h 1 was significantly decreased with the time treated with plasma. Ara h 1 antigenicity reduced by 38% after five scans (approximately 3 min) of cold argon plasma jet treatment, and the reduction was up to 66% after approximately 15 min of treatment. CONCLUSION: The results indicate that cold argon plasma jet treatment could be a suitable platform for alleviating the immunoreactivity of peanut protein. This work demonstrates an efficient, compact, and rapid platform for mitigating the allergenicity of peanuts, and shows great potential for the plasma platform as a non-thermal technique in the food industry. © 2023 Society of Chemical Industry.


Asunto(s)
Hipersensibilidad al Cacahuete , Gases em Plasma , Arachis/química , Antígenos de Plantas/química , Alérgenos/química , Proteínas de Plantas/metabolismo , Presión Atmosférica
6.
Foods ; 11(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36553735

RESUMEN

Post-translational modifications (PTMs) are covalent changes occurring on amino acid side chains of proteins and yet are neglected structural and functional aspects of protein architecture. The objective was to detect differences in PTM profiles that take place after roasting using open PTM search. We conducted a bottom-up proteomic study to investigate the impact of peanut roasting on readily soluble allergens and their PTM profiles. Proteomic PTM profiling of certain modifications was confirmed by Western blotting with a series of PTM-specific antibodies. In addition to inducing protein aggregation and denaturation, roasting may facilitate change in their PTM pattern and relative profiling. We have shown that Ara h 1 is the most modified major allergen in both samples in terms of modification versatility and extent. The most frequent PTM was methionine oxidation, especially in roasted samples. PTMs uniquely found in roasted samples were hydroxylation (Trp), formylation (Arg/Lys), and oxidation or hydroxylation (Asn). Raw and roasted peanut extracts did not differ in the binding of IgE from the serum of peanut-sensitised individuals done by ELISA. This study provides a better understanding of how roasting impacts the PTM profile of major peanut allergens and provides a good foundation for further exploration of PTMs.

7.
Cell Immunol ; 381: 104611, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36194940

RESUMEN

Herein, we show that profound afferent long-term peanut-allergen-specific IgE immunological tolerance for 3 to 9 months induced sustained unresponsiveness (SU) in naïve or peanut-sensitized rodents after peanut allergen immunization. Rodents were vaccinated sublingually with a peanut allergen extract or recombinant peanut allergen in chenodeoxycholate (CDCA), a fanesoid X receptor (FXR, NR1H4) agonist that downregulates SREBP-1c (sterol regulatory element binding protein-1c) and upregulates SHP in bone marrow-derived tolerogenic dendritic cells (DCs). Approximately 90 âˆ¼ 95 % of the total circulating PE-potentiated IgE and Ara h1, Ara h 2, and Ara h 6 peanut allergen-specific IgE responses were suppressed by recombinant peanut allergen-conjugated solid magnetic beads (sensitivity of 0.2 IU/ml). In contrast, peanut allergen-specific IgG production was not affected. Similarly, oleoylethanolamine (OEA), a peroxisome proliferator-activator receptor alpha (PPARα) agonist, and GW9662, a PPARγ antagonist, induced long-term peanut-specific IgE tolerance when administered via the sublingual, oral or i.p. route. Prophylactic Ara h2 DNA immunization with caNRF2 and IL-35 coexpression induced Ara h2 IgE tolerance. In summary, peanut allergen vaccination with select natural molecular ligands of nuclear receptors induced long-term peanut allergen-specific IgE tolerance via the afferent limb, which indicates that vaccination is an immune tolerance-promoting strategy that is effective at the DC level and that differs from Noon's daily desensitization program, which is effective at the mast cell level.

8.
Food Chem ; 383: 132592, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35413757

RESUMEN

This study improves LC-MS-based trace level peanut allergen quantification in processed food by refining method robustness, total analysis time and method sensitivity. Extraction buffer (six compared) and peptide choice were optimised and found to profoundly affect method robustness. A rapid extraction and in-solution digestion method was developed omitting subsequent reduction, alkylation and sample clean-up steps effectively reducing total analysis time from the previously reported ∼5.5-20 h to ∼2.5 h. For the three best performing peptides, accurate quantification (CVs < 15%) with matrix-matched calibration curves (R2 = 0.99-0.97) was achieved for peanut muffin and ice-cream with excellent linearity (0.25-1000 mg kg-1). The best performing peptide enabled excellent recovery rates in ice-cream (106.0 ± 15.1%) and peanut muffin (72.7 ± 13.4%). Sensitivity (LOD = 0.25-0.5 mg kg-1; LOQ = 0.5-1.0 mg kg-1) was 2- to 20-fold improved compared to previous methods depending on the peptide. These methodological improvements contribute to robust peanut detection in food and can be translated to additional food-borne allergens.


Asunto(s)
Arachis , Hipersensibilidad a los Alimentos , Alérgenos/análisis , Análisis de los Alimentos/métodos , Péptidos , Proteínas de Plantas/análisis , Proteómica/métodos
9.
Food Chem ; 385: 132569, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35338998

RESUMEN

The effect of high-moisture extrusion (HME) with or without transglutaminase (TGase) on peanut allergen levels and their extractability was studied. A three-stage sequential protein extraction significantly improved the protein recovery in processed samples (extrudate meat analogue); from 5.56 to 18.75 mg/100 mg without TGase, and from 4.59 to 20.82 mg/100 mg with 0.3% TGase. The total major allergen content was reduced by 91% (Ara h 1), 61% (Ara h 2), 60% (Ara h 6), and 55% (Ara h 3). Western-blot analysis of soluble extracts reflected the presence of Ara h 1 and Ara h 2 in significantly lower, indicating a potential reduction in IgE binding. During different processing zones, the most significant reduction in allergenic proteins was in the melting zone. The significant alteration in secondary and tertiary structures as a result of crosslinking shearing and degradation of proteins is likely to lead to allergen reduction.


Asunto(s)
Arachis , Hipersensibilidad al Cacahuete , Alérgenos/química , Antígenos de Plantas/química , Arachis/química , Inmunoglobulina E/metabolismo , Proteínas de Plantas/metabolismo , Transglutaminasas
10.
Biosensors (Basel) ; 12(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35049652

RESUMEN

The highly sensitive detection of peanut allergens (PAs) using silicon-based electrolyte-gated transistors (Si-EGTs) was demonstrated. The Si-EGT was made using a top-down technique. The fabricated Si-EGT showed excellent intrinsic electrical characteristics, including a low threshold voltage of 0.7 V, low subthreshold swing of <70 mV/dec, and low gate leakage of <10 pA. Surface functionalization and immobilization of antibodies were performed for the selective detection of PAs. The voltage-related sensitivity (SV) showed a constant behavior from the subthreshold regime to the linear regime. The current-related sensitivity (SI) was high in the subthreshold regime and then significantly decreased as the drain current increased. The limit of detection (LOD) was calculated to be as low as 25 pg/mL based on SI characteristics, which is the lowest value reported to date in the literature for various sensor methodologies. The Si-EGT showed selective detection of PA through a non-specific control test. These results confirm that Si-EGT is a high-sensitivity and low-power biosensor for PA detection.


Asunto(s)
Alérgenos/análisis , Arachis , Silicio , Transistores Electrónicos , Electrólitos
11.
J Agric Food Chem ; 70(2): 626-633, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35000380

RESUMEN

Peanut allergy is the leading pediatric food allergy. Many attempts have been made to reduce its allergenicity by processing. After roasting, Ara h 2 and its derivatives in the matrix were isolated by immunoaffinity chromatography (IAC). The structure and allergenicity of Ara h 2 were analyzed by circular dichroism, mass spectrometry (MS), western blotting, the enzyme-linked immunoassay, and cell modeling. Our results showed that a large portion of Ara h 2 was fragmented and cross-linked. Ara h 2 monomers accounted for only 13% of the total proteins after IAC purification. In addition, the structure of Ara h 2 changed after roasting. In addition to methylation and oxidation modification, the disulfide bonds of Ara h 2 were found to be rearranged after roasting. In the conformational structure of Ara h 2, the content of the α-helix decreased from 27.1 to 21.6% after roasting, while the content of the random coil increased from 29.1 to 34.3%. Six cleavage sites of trypsin were exposed, while three were covered. In terms of allergenicity, most of the cross-linking products were not recognized by patients' sera. Only one faint band around 40 kDa was observed in our blotting. For Ara h 2 monomers, roasting enhanced their IgE binding capacity and ability to stimulate the degranulation of basophils. The potential allergenicity increase of Ara h 2 monomers did not reflect the allergenicity change of Ara h 2 in the matrix due to the amount and property of its derivatives after roasting.


Asunto(s)
Arachis , Hipersensibilidad al Cacahuete , Albuminas 2S de Plantas , Alérgenos , Antígenos de Plantas , Niño , Calor , Humanos , Inmunoglobulina E , Proteínas de Plantas
12.
Food Chem ; 375: 131844, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34952385

RESUMEN

This study describes an immunomagnetic nanoparticle (IMNP)-based lateral flow assay (LFA) for detecting the major peanut allergen Ara h 1. We developed a clearly specific method in identifying peanut from ten other seeds and nuts, and a good visual limit of detection (vLOD) of 0.01 µg/mL Ara h 1 in PBS. PBS that contains 1 M NaCl and 2% Tween 20 was determined to be the optimal extraction buffer for isolating Ara h 1 from cookie, milk and chocolate with vLOD values of 0.5 µg/g, 0.5 µg/mL, and 1 µg/g, respectively. Forty two processed foods were simultaneously analyzed using this method and an AOAC-approved ELISA kit. The specificity and sensitivity of this assay were thus determined to be 100 and 95%, respectively. This new IMNP-based LFA has potential as a rapid tool for screening processed foods for Ara h 1 residues.


Asunto(s)
Nanopartículas de Magnetita , Hipersensibilidad al Cacahuete , Albuminas 2S de Plantas , Alérgenos , Antígenos de Plantas , Arachis , Ensayo de Inmunoadsorción Enzimática , Glicoproteínas , Humanos , Inmunoensayo , Proteínas de Plantas
13.
Foods ; 10(8)2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34441496

RESUMEN

Efficiently detecting peanut traces in food products can prevent severe allergic reactions and serious health implications. This work presents the development of an electrochemical dual immunosensor for the simultaneous analysis of two major peanut allergens, Ara h 1 and Ara h 6, in food matrices. A sandwich immunoassay was performed on a dual working screen-printed carbon electrode using monoclonal antibodies. The antibody-antigen interaction was detected by linear sweep voltammetry through the oxidation of enzymatically deposited silver, which was formed by using detection antibodies labeled with alkaline phosphatase and a 3-indoxyl phosphate/silver nitrate mixture as the enzymatic substrate. The assay time was 2 h 20 min, with a hands-on time of 30 min, and precise results and low limits of detection were obtained (Ara h 1: 5.2 ng·mL-1; Ara h 6: 0.017 ng·mL-1). The selectivity of the method was confirmed through the analysis of other food allergens and ingredients (e.g., hazelnut, soybean and lupin). The dual sensor was successfully applied to the analysis of several food products and was able to quantify the presence of peanuts down to 0.05% (w/w). The accuracy of the results was confirmed through recovery studies and by comparison with an enzyme-linked immunosorbent assay. Tracking food allergens is of utmost importance and can be performed using the present biosensor in a suitable and practical way.

14.
Front Nutr ; 8: 696355, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222311

RESUMEN

Peanut allergy is becoming a life-threatening disease that could induce severe allergic reactions in modern society, especially for children. The most promising method applied for deallergization is heating pretreatment. However, the mechanism from the view of spectroscopy has not been illustrated. In this study, near-infrared spectroscopy (NIRS) combined with aquaphotomics was introduced to help us understand the detailed structural changes information during the heating process. First, near-infrared (NIR) spectra of Ara h1 were acquired from 25 to 80°C. Then, aquaphotomics processing tools including principal component analysis (PCA), continuous wavelet transform (CWT), and two-dimensional correlation spectroscopy (2D-COS) were utilized for better understanding the thermodynamic changes, secondary structure, and the hydrogen bond network of Ara h1. The results indicated that about 55°C could be a key temperature, which was the structural change point. During the heating process, the hydrogen bond network was destroyed, free water was increased, and the content of protein secondary structure was changed. Moreover, it could reveal the interaction between the water structure and Ara h1 from the perspective of water molecules, and explain the effect of temperature on the Ara h1 structure and hydrogen-bonding system. Thus, this study described a new way to explore the thermodynamic properties of Ara h1 from the perspective of spectroscopy and laid a theoretical foundation for the application of temperature-desensitized protein products.

15.
Foods ; 9(7)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630617

RESUMEN

Ara h 2 is a relevant peanut allergen linked to severe allergic reactions. The interaction of Ara h 2 with components of the sensitization phase of food allergy (e.g., dendritic cells) has not been investigated, and could be key to understanding the allergenic potential of this allergen. In this study, we aimed to analyze such interactions and the possible mechanism involved. Ara h 2 was purified from two forms of peanut, raw and roasted, and labeled with a fluorescent dye. Human monocyte-derived dendritic cells (MDDCs) were obtained, and experiments of Ara h 2 internalization by MDDCs were carried out. The role of the mannose receptor in the internalization of Ara h 2 from raw and roasted peanuts was also investigated. Results showed that Ara h 2 internalization by MDDCs was both time and dose dependent. Mannose receptors in MDDCs had a greater implication in the internalization of Ara h 2 from roasted peanuts. However, this receptor was also important in the internalization of Ara h 2 from raw peanuts, as opposed to other allergens such as raw Ara h 3.

17.
Anal Bioanal Chem ; 412(12): 2815-2827, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32125467

RESUMEN

Peanut is a major cause of severe IgE-mediated food allergic reactions, which can be exacerbated by factors, such as exercise, that may increase allergen uptake into the circulation. Enzyme-linked immunosorbent assays (ELISAs) have been used to determine allergen uptake into serum, but there are concerns over their specificity and a confirmatory method is required. Mass spectrometry (MS) methods have the potential to provide rigorous alternatives for allergen determination. A suite of peptide targets representing the major clinically relevant peanut allergens previously applied in food analysis were used to develop a targeted multiple reaction monitoring (MRM) method for determination of peanut in serum. Depletion of serum using affinity chromatography was found to be essential to allow detection of the peptide targets. A comparison of triple quadrupole and Q-TOF methods showed that one Ara h 2 peptide was only detected by the Q-TOF, the other peptide targets giving similar assay sensitivities with both MS platforms, although transitions for all the peptides were detected more consistently with the Q-TOF. The Q-TOF MRM assay detected peanut from spiked serum more effectively than the triple quadrupole assay, with Ara h 3 being detected down to 3 mg total peanut protein/L of serum, comparable with an Ara h 3-specific ELISA. The poor recoveries observed for both methods are likely due to loss of peanut immune complexes during the serum depletion process. Nevertheless, the Q-TOF MRM method has much promise to confirm the uptake of peanut proteins in serum samples providing immune complexes can be disrupted effectively prior to depletion. Graphical abstract.


Asunto(s)
Alérgenos/sangre , Antígenos de Plantas/sangre , Arachis/química , Análisis de los Alimentos/métodos , Hipersensibilidad al Cacahuete/diagnóstico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Humanos , Hipersensibilidad al Cacahuete/sangre
18.
World Allergy Organ J ; 13(8): 100445, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33664931

RESUMEN

BACKGROUND: In some countries of the world, peanut allergy represents an important source of anaphylactic reactions. Traditionally treated with the avoidance of responsible allergens, this condition can also be targeted by oral peanut immunotherapy. METHODS: In this study, we review the beneficial and side effects of currently available forms of peanut oral immunotherapy (POIT). We report the discussions resulting from the publication of a meta-analysis that brought to light the downsides of oral immunotherapy for peanuts. RESULTS: In some clinical situations, the risk-benefit ratio can favor peanut oral immunotherapy over avoidance. In many other situations, this is not the case. The decision must be based on the values and preferences of clinicians and patients. Those not ready to accept serious adverse effects from POIT are likely to continue the elimination diet; those motivated to achieving desensitization, and prepared to accept serious adverse effects, may choose to undergo POIT. CONCLUSIONS: Without being prejudiced against peanut oral immunotherapy, we indicate the possible evolution of treatment for this condition is in a rapidly evolving broader scenario. Among the future options, sublingual immunotherapy, parenteral immunotherapy with modified allergens, transcutaneous immunotherapy, and the use of biologics will become important options.

19.
Food Chem ; 302: 125186, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400700

RESUMEN

Enzymatic processing could reduce the allergenicity of peanut proteins while may lose the functional properties. Transglutaminase (TGase) is an enzyme for improving the functional properties of proteins/hydrolysates. No studies have been conducted on peanut hydrolysates that are crosslinked with TGase. In this study, allergenicity and functional properties of peanut protein hydrolysate cross-linked by TGase were tested. Papain, ficin and bromelain were selected out of eight food-grade enzymes for the kinetic analysis of peanut protein hydrolysis that lead to high reduction rate (K) of the IgE-binding property. Peanuts hydrolyzed by the three selected enzymes (200 AzU/g) were used for IgE binding, TGase-crosslinking and functional property characterization. After hydrolysis, the IgE-binding properties of the peanut soluble extracts were decreased (by 85%-95%); and functional properties were also decreased as compared to intact peanut protein extracts. The TGase crosslinked hydrolysates had similar IgE-binding properties to the un-crosslinked hydrolysates, but with higher functional properties.


Asunto(s)
Alérgenos/metabolismo , Arachis/inmunología , Proteínas de Plantas/metabolismo , Transglutaminasas/metabolismo , Alérgenos/inmunología , Humanos , Hidrólisis , Inmunoglobulina E/metabolismo , Cinética , Proteínas de Plantas/inmunología
20.
Food Chem X ; 1: 100004, 2019 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31432004

RESUMEN

Peanuts contain four major allergens with differences in allergenic potency. Thermal processing can influence the allergenic properties of peanuts. Until now, a kinetic model has not been reported to assess the changes of soluble allergen (extracted from processed peanuts) content as affected by various thermal processing methods. Our objective is to characterize the reaction kinetics of the thermal processing methods, including wet processing (boiling with/without high-pressure, steaming with/without high-pressure), deep-frying and dry processing (microwaving and roasting) using five time intervals. The relationships between processing time and extractable major allergen content could be explained by a simple linear regression kinetic model (except high-pressure steaming). Among all the methods with optimal processing point, frying for 6 min had a relatively lower IgE binding (linear epitopes) ratio, possibly due to the processing conditions, which caused break down, cross-linking and aggregation of Ara h 2, and a relatively lower solubility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA