Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Biol (Stuttg) ; 26(5): 665-674, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38935692

RESUMEN

The flower perianth has various, non-mutually exclusive functions, such as visual signalling to pollinators and protecting the reproductive organs from the elements and from florivores, but how different perianth structures and their different sides play a role in these functions is unclear. Intriguingly, in many species there is a clear colour difference between the different sides of the perianth, with colour patterns or pigmentation present on only one side. Any adaptive benefit from such colour asymmetry is unclear, as is how the asymmetry evolved. In this viewpoint paper, we address the phenomenon of flowers with differently coloured inner and outer perianth sides, focusing on petals of erect flowers. Guided by existing literature and our own observations, we delineate three non-mutually exclusive evolutionary hypotheses that may explain the factors underlying differently coloured perianth sides. The pollen-protection hypothesis predicts that the outer side of petals contributes to protect pollen against UV radiation, especially during the bud stage. The herbivore-avoidance hypothesis predicts that the outer side of petals reduces the flower's visibility to herbivores. The signalling-to-pollinators hypothesis predicts that flower colours evolve to increase conspicuousness to pollinators. The pollen-protection hypothesis, the herbivore-avoidance hypothesis, and the signalling-to-pollinators hypothesis generate largely but not entirely overlapping predictions about the colour of the inner and outer side of the petals. Field and laboratory research is necessary to disentangle the main drivers and adaptive significance of inner-outer petal side colour asymmetry.


Asunto(s)
Evolución Biológica , Flores , Pigmentación , Polinización , Animales , Color , Flores/fisiología , Flores/anatomía & histología , Herbivoria/fisiología , Pigmentación/fisiología , Polen/fisiología , Polinización/fisiología
2.
Mol Hortic ; 4(1): 15, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649966

RESUMEN

The molecular basis of orchid flower development involves a specific regulatory program in which MADS-box transcription factors play a central role. The recent 'perianth code' model hypothesizes that two types of higher-order heterotetrameric complexes, namely SP complex and L complex, play pivotal roles in the orchid perianth organ formation. Therefore, we explored their roles and searched for other components of the regulatory network.Through the combined analysis for transposase-accessible chromatin with high-throughput sequencing and RNA sequencing of the lip-like petal and lip from Phalaenopsis equestris var.trilip, transcription factor-(TF) genes involved in lip development were revealed. PeNAC67 encoding a NAC-type TF and PeSCL23 encoding a GRAS-type TF were differentially expressed between the lip-like petal and the lip. PeNAC67 interacted with and stabilized PeMADS3, which positively regulated the development of lip-like petal to lip. PeSCL23 and PeNAC67 competitively bound with PeKAN2 and positively regulated the development of lip-like petal to petal by affecting the level of PeMADS3. PeKAN2 as an important TF that interacts with PeMADS3 and PeMADS9 can promote lip development. These results extend the 'perianth code' model and shed light on the complex regulation of orchid flower development.

3.
Front Plant Sci ; 15: 1352119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375086

RESUMEN

TCP is a widely distributed, essential plant transcription factor that regulates plant growth and development. An in-depth study of TCP genes in Dendrobium nobile, a crucial parent in genetic breeding and an excellent model material to explore perianth development in Dendrobium, has not been conducted. We identified 23 DnTCP genes unevenly distributed across 19 chromosomes and classified them as Class I PCF (12 members), Class II: CIN (10 members), and CYC/TB1 (1 member) based on the conserved domain and phylogenetic analysis. Most DnTCPs in the same subclade had similar gene and motif structures. Segmental duplication was the predominant duplication event for TCP genes, and no tandem duplication was observed. Seven genes in the CIN subclade had potential miR319 and -159 target sites. Cis-acting element analysis showed that most DnTCP genes contained many developmental stress-, light-, and phytohormone-responsive elements in their promoter regions. Distinct expression patterns were observed among the 23 DnTCP genes, suggesting that these genes have diverse regulatory roles at different stages of perianth development or in different organs. For instance, DnTCP4 and DnTCP18 play a role in early perianth development, and DnTCP5 and DnTCP10 are significantly expressed during late perianth development. DnTCP17, 20, 21, and 22 are the most likely to be involved in perianth and leaf development. DnTCP11 was significantly expressed in the gynandrium. Specially, MADS-specific binding sites were present in most DnTCP genes putative promoters, and two Class I DnTCPs were in the nucleus and interacted with each other or with the MADS-box. The interactions between TCP and the MADS-box have been described for the first time in orchids, which broadens our understanding of the regulatory network of TCP involved in perianth development in orchids.

4.
BMC Plant Biol ; 24(1): 22, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166716

RESUMEN

BACKGROUND: Floral patterns are crucial for insect pollination and plant reproduction. Generally, once these patterns are established, they exhibit minimal changes under natural circumstances. However, the Clematis cultivar' Vyvyan Pennell', the apetalous lineage in the Ranunculaceae family, produces two distinct types of flowers during different seasons. The regulatory mechanism responsible for this phenomenon remains largely unknown. In this study, we aim to shed light on this floral development with shifting seasonal patterns by conducting extensive morphological, transcriptomic, and hormone metabolic analyses. Our findings are anticipated to contribute valuable insights into the diversity of flowers in the Ranunculaceae family. RESULTS: The morphological analysis revealed that the presence of extra petaloid structures in the spring double perianth was a result of the transformation of stamens covered with trichomes during the 5th developmental stage. A de novo reference transcriptome was constructed by comparing buds and organs within double and single perianth from both seasons. A total of 209,056 unigenes were assembled, and 5826 genes were successfully annotated in all six databases. Among the 69,888 differentially expressed genes from the comparative analysis, 48 genes of utmost significance were identified. These critical genes are associated with various aspects of floral development. Interestingly, the A-, B-, and C-class genes exhibited a wider range of expression and were distinct within two seasons. The determination of floral organ identity was attributed to the collaborative functioning of all the three classes genes, aligning with a modified "fading border model". The phytohormones GA3, salicylic acid, and trans-zeatin riboside may affect the formation of the spring double perianth, whereas GA7 and abscisic acid may affect single flowers in autumn. CONCLUSIONS: We presumed that the varying temperatures between the two seasons served as the primary factor in the alteration of floral patterns, potentially affecting the levels of plant hormones and expressions of organ identity genes. However, a more thorough investigation is necessary to fully comprehend the entire regulatory network. Nonetheless, our study provides some valuable informations for understanding the underlying mechanism of floral pattern alterations in Clematis.


Asunto(s)
Clematis , Estaciones del Año , Clematis/genética , Clematis/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Flores , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Front Plant Sci ; 14: 1226331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810400

RESUMEN

Insects are vital pollinators for angiosperms, playing a crucial role in their reproductive success and fruit production. Aristolochia contorta is a perennial herbaceous vine that occurs in fragmented populations across East Asia. One notable feature of this plant is its trap flower, which employs a unique mechanism to attract, trap, retain, and release insects, ensuring effective pollination. The presence of this trap flower significantly influences the pollination system of A. contorta. Field surveys and pollination experiments were conducted to understand the processes and effectiveness of its pollination mechanism. It was allogamous and was pollinated by the species from Ceratopogonidae. During the insect attraction stage, 11.57% of the flowers contained insects, primarily Ceratopogonidae spp. Most Ceratopogonidae spp. concentrated in few flowers, indicating that although overall attraction might be modest, specific flowers acted as significant focal points for gathering. Trichomes effectively trapped Ceratopogonidae spp. inside flower tubes. In the retention stage, 26.16% of Ceratopogonidae spp. were loaded with pollen grains, but only 7.91% of those exited the flowers in the release stage. The sticky texture of the perianth's internal cavity posed challenges during this release, leading to adhesion and clogging of the narrow perianth tube. Consequently, a significant portion of Ceratopogonidae spp. became trapped on the perianth wall and perished. This highlights that despite the significant energy and resources invested in flower development, the perianth contributes to the low pollination effectiveness. This study revealed additive factors with negative effects on pollination, including the densely clustered distribution of its pollinators within only a few flowers, insufficient pollen loading onto pollinators, hindered release of entrapped pollinators due to the perianth adhesive surface, and a high rate of defective pollen grains in A. contorta. These factors account for the observed phenomenon of low fruit set (7.7%) and contribute to the diminished rate of sexual reproduction in A. contorta populations. This might lead the species to heavily rely on asexual reproduction, which could potentially lead to gene erosion within populations. The implications of these findings extend to the ecological and conservation aspects, emphasizing the need to understand and conserve the unique pollination system of A. contorta.

6.
J Exp Bot ; 74(21): 6588-6607, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37656729

RESUMEN

Trichomes are specialized epidermal cells in aerial plant parts. Trichome development proceeds in three stages, determination of cell fate, specification, and morphogenesis. Most genes responsible for these processes have been identified in the unicellular branched leaf trichomes from the model Arabidopsis thaliana. Less is known about the molecular basis of multicellular trichome formation across flowering plants, especially those formed in floral organs of early diverging angiosperms. Here, we aim to identify the genetic regulatory network (GRN) underlying multicellular trichome development in the kettle-shaped trap flowers of Aristolochia (Aristolochiaceae). We selected two taxa for comparison, A. fimbriata, with trichomes inside the perianth, which play critical roles in pollination, and A. macrophylla, lacking specialized trichomes in the perianth. A detailed morphoanatomical characterization of floral epidermis is presented for the two species. We compared transcriptomic profiling at two different developmental stages in the different perianth portions (limb, tube, and utricle) of the two species. Moreover, we present a comprehensive expression map for positive regulators and repressors of trichome development, as well as cell cycle regulators. Our data point to extensive modifications in gene composition, expression, and putative roles in all functional categories when compared with model species. We also record novel differentially expressed genes (DEGs) linked to epidermis patterning and trichome development. We thus propose the first hypothetical genetic regulatory network (GRN) underlying floral multicellular trichome development in Aristolochia, and pinpoint key factors responsible for the presence and specialization of floral trichomes in phylogenetically distant species of the genus.


Asunto(s)
Arabidopsis , Aristolochia , Aristolochiaceae , Tricomas/metabolismo , Aristolochia/genética , Aristolochiaceae/genética , Transcriptoma , Redes Reguladoras de Genes , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas
7.
Front Plant Sci ; 13: 892667, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665147

RESUMEN

Land degradation caused by soil salinization and wind erosion is the major obstruction to sustainable agriculture in the arid region. Salsola species have the potential to prevent land degradation. However, there is limited information about seed germination requirements and tolerance to salinity and drought for representative Salsola species. This study aimed to assess the effects of the winged perianth (seed structural features) and abiotic factors (light, temperature, salinity, and drought) on the seed germination of these species. These Salsola species varied considerably in seed germination characteristics. Compared with naked seeds, winged seeds had lower germination percentages for S. heptapotamica S. rosacea, and S. nitraria species. Darkness decreased the germination percentage of winged and naked seeds of S. rosacea, however, for S. heptapotamica and S. nitraria, decreased seed germination was only when the winged perianth existed. Germination of S. heptapotamica, S. rosacea, and S. nitraria seeds depended on the perianth and light conditions. The naked seeds of these three species could germinate at a wide range of temperatures, especially in light. The presence of perianth, light, and temperature did not significantly influence the germination of S. ruthenica seeds. When cultivating these species, it is beneficial to remove the winged perianth of seeds and sow it on the soil surface when the temperature is above 5/15°C. In addition, seed germination of Salsola displayed high tolerance to salinity and drought. Compared with winged seeds, naked seeds showed lower recovery germination under high salinity but had a similar recovery of germination under high PEG concentration. Our study provides detailed germination information for the cultivation of these four representative Salsola species in degraded saline soils of the arid zone.

8.
BMC Plant Biol ; 22(1): 52, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35078406

RESUMEN

BACKGROUND: A puzzle in evolution is the understanding of how the environment might drive subtle phenotypic variation, and whether this variation is adaptive. Under the neutral evolutionary theory, subtle phenotypes are almost neutral with little adaptive value. To test this idea, we studied the infraspecific variation in flower shape and color in Mammillaria haageana, a species with a wide geographical distribution and phenotypic variation, which populations are often recognized as infraspecific taxa. RESULTS: We collected samples from wild populations, kept them in the greenhouse for at least one reproductive year, and collected newly formed flowers. Our first objective was to characterize tepal natural variation in M. haageana through geometric morphometric and multivariate pigmentation analyses. We used landmark-based morphometrics to quantify the trends of shape variation and tepal color-patterns in 20 M. haageana accessions, belonging to five subspecies, plus 8 M. albilanata accessions for comparison as the sister species. We obtained eight geometric morphometric traits for tepal shape and color-patterns. We found broad variation in these traits between accessions belonging to the same subspecies, without taxonomic congruence with those infraspecific units. Also the phenetic cluster analysis showed different grouping patterns among accessions. When we correlated these phenotypes to the environment, we also found that solar radiation might explain the variation in tepal shape and color, suggesting that subtle variation in flower phenotypes might be adaptive. Finally we present anatomical sections in M. haageana subsp. san-angelensis to propose some of the underlying tepal structural features that may give rise to tepal variation. CONCLUSIONS: Our geometric morphometric approach of flower shape and color allowed us to identify the main trends of variation in each accession and putative subspecies, but also allowed us to correlate these variation to the environment, and propose anatomical mechanisms underlying this diversity of flower phenotypes.


Asunto(s)
Evolución Biológica , Cactaceae/genética , Flores/anatomía & histología , Flores/genética , Pigmentos Biológicos/metabolismo , Adaptación Fisiológica , Cactaceae/fisiología , Flores/fisiología , Pigmentos Biológicos/genética
10.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923850

RESUMEN

This review is devoted to the structure, assembly and function of cuticle. The topics are discussed from the mechanical perspective and whenever the data are available a special attention is paid to the cuticle of perianth organs, i.e., sepals, petals or tepals. The cuticle covering these organs is special in both its structure and function and some of these peculiarities are related to the cuticle mechanics. In particular, strengthening of the perianth surface is often provided by a folded cuticle that functionally resembles profiled plates, while on the surface of the petal epidermis of some plants, the cuticle is the only integral continuous layer. The perianth cuticle is distinguished also by those aspects of its mechanics and development that need further studies. In particular, more investigations are needed to explain the formation and maintenance of cuticle folding, which is typical for the perianth epidermis, and also to elucidate the mechanical properties and behavior of the perianth cuticle in situ. Gaps in our knowledge are partly due to technical problems caused by very small thicknesses of the perianth cuticle but modern tools may help to overcome these obstacles.


Asunto(s)
Epidermis de la Planta/ultraestructura , Fenómenos Mecánicos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Epidermis de la Planta/metabolismo
11.
Appl Microbiol Biotechnol ; 105(7): 2951-2965, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33687502

RESUMEN

Echinacea purpurea is a plant cultivated worldwide for its pharmaceutical properties, mainly related to the stimulation of the immune system in the treatment of respiratory infections. The cypselas (fruits) of E. purpurea were examined in order to investigate the presence, localization and potential function(s) of endophytic microorganisms. Electron and confocal microscopy observations showed that three different components of microorganisms were associated to cypselas of E. purpurea: (i) one endocellular bacterial component in the cotyledons, enclosed within the host membrane; (ii) another more generic bacterial component adhering to the external side of the perianth; and (iii) a fungal component inside the porous layer of the perianth, the woody and porous modified residual of the flower, in the form of numerous hyphae able to cross the wall between adjacent cells. Isolated bacteria were affiliated to the genera Paenibacillus, Pantoea, and Sanguibacter. Plate tests showed a general resistance to six different antibiotics and also to an antimicrobial-producing Rheinheimera sp. test strain. Finally, microbiome-deprived E. purpurea seeds showed a reduced ability to germinate, suggesting an active role of the microbiome in the plant vitality. Our results suggest that the endophytic bacterial community of E. purpurea, previously found in roots and stem/leaves, might be already carried at the seed stage, hosted by the cotyledons. A further microbial fungal component is transported together with the seed in the perianth of the cypsela, whose remarkable structure may be considered as an adaptation for fungal transportation, and could influence the capability of the seed to germinate in the soil.Key Points• The fruit of Echinacea purpurea contains fungi not causing any damage to the plant.• The seed cotyledons contain endocellular bacteria.• Seed/fruit deprived of the microbiome showed a reduced ability to germinate.


Asunto(s)
Echinacea , Bacterias , Extractos Vegetales , Hojas de la Planta , Raíces de Plantas , Microbiología del Suelo
12.
Ann Bot ; 127(6): 749-764, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33630993

RESUMEN

BACKGROUND AND AIMS: The epidermis constitutes the outermost tissue of the plant body. Although it plays major structural, physiological and ecological roles in embryophytes, the molecular mechanisms controlling epidermal cell fate, differentiation and trichome development have been scarcely studied across angiosperms, and remain almost unexplored in floral organs. METHODS: In this study, we assess the spatio-temporal expression patterns of GL2, GL3, TTG1, TRY, MYB5, MYB6, HDG2, MYB106-like, WIN1 and RAV1-like homologues in the magnoliid Aristolochia fimbriata (Aristolochiaceae) by using comparative RNA-sequencing and in situ hybridization assays. KEY RESULTS: Genes involved in Aristolochia fimbriata trichome development vary depending on the organ where they are formed. Stem, leaf and pedicel trichomes recruit most of the transcription factors (TFs) described above. Conversely, floral trichomes only use a small subset of genes including AfimGL2, AfimRAV1-like, AfimWIN1, AfimMYB106-like and AfimHDG2. The remaining TFs, AfimTTG1, AfimGL3, AfimTRY, AfimMYB5 and AfimMYB6, are restricted to the abaxial (outer) and the adaxial (inner) pavement epidermal cells. CONCLUSIONS: We re-evaluate the core genetic network shaping trichome fate in flowers of an early-divergent angiosperm lineage and show a morphologically diverse output with a simpler genetic mechanism in place when compared to the models Arabidopsis thaliana and Cucumis sativus. In turn, our results strongly suggest that the canonical trichome gene expression appears to be more conserved in vegetative than in floral tissues across angiosperms.


Asunto(s)
Proteínas de Arabidopsis , Aristolochia , Aristolochiaceae , Proteínas de Arabidopsis/genética , Aristolochia/genética , Epidermis , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Tricomas/genética
13.
Plant Direct ; 3(8): e00157, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31406958

RESUMEN

The competition between L (lip) and SP (sepal/petal) complexes in P-code model determines the identity of complex perianth patterns in orchids. Orchid tetraspanin gene Auxin Activation Factor (AAF) orthologs, whose expression strongly correlated with the expansion and size of the perianth after P code established, were identified. Virus-induced gene silencing (VIGS) of OAGL6-2 in L complex resulted in smaller lips and the down-regulation of Oncidium OnAAF. VIGS of PeMADS9 in L complex resulted in the enlarged lips and up-regulation of Phalaenopsis PaAAF. Furthermore, the larger size of Phalaenopsis variety flowers was associated with higher PaAAF expression, larger and more cells in the perianth. Thus, a rule is established that whenever bigger perianth organs are made in orchids, higher OnAAF/PaAAF expression is observed after their identities are determined by P-code complexes. Ectopic expression Arabidopsis AtAAF significantly increased the size of flower organs by promoting cell expansion in transgenic Arabidopsis due to the enhancement of the efficiency of the auxin response and the subsequent suppression of the jasmonic acid (JA) biosynthesis genes (DAD1/OPR3) and BIGPETAL gene during late flower development. In addition, auxin-controlled phenotypes, such as indehiscent anthers, enhanced drought tolerance, and increased lateral root formation, were also observed in 35S::AtAAF plants. Furthermore, 35S::AtAAF root tips maintained gravitropism during auxin treatment. In contrast, the opposite phenotype was observed in palmitoylation-deficient AtAAF mutants. Our data demonstrate an interaction between the tetraspanin AAF and auxin/JA that regulates the size of flower organs and impacts various developmental processes.

14.
Int J Mol Sci ; 20(8)2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022949

RESUMEN

Fagopyrum esculentum (Polygonaceae: Caryophyllales) exhibits an undifferentiated perianth comprising five showy tepals, which does not completely correspond to the perianth differentiated into typical sepals and petals in most core eudicots. In Arabidopsis, the APETALA1 (AP1) gene is involved in specifying sepals and petals development. Here we isolated AP1 ortholog, FaesAP1, and a 2.2kb FaesAP1 promoter (pFaesAP1) from F. esculentum. FaesAP1 expression is mainly detectable in all floral organs and maintains at a high level when tepals elongate rapidly both in pin and thrum flowers. Moreover, the GUS reporter gene driven by pFaesAP1 was activated in flowers where the sepals were intense, but the petals very weak or absent. Additionally, FaesAP1 ectopic expression in Arabidopsis ap1-10 mutant rescues sepal development fully, obviously prompting early flowering, but failing to complement petal development. In this study, evidence was provided that the showy tepals in the F. esculentum are homologs to core eudicots sepals. Furthermore, these findings show a different perianth identity program in Caryophyllales, suggesting that AP1 orthologs involved in petal development may evolve independently across different clades of core eudicots. Our results also suggest that FaesAP1 holds potential for biotechnical engineering to develop early flowering varieties of F. esculentum.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Expresión Génica Ectópica , Fagopyrum/genética , Flores/genética , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Fagopyrum/química , Fagopyrum/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Dominio MADS/química , Mutación , Filogenia , Proteínas de Plantas/química , Regiones Promotoras Genéticas , Alineación de Secuencia
15.
PhytoKeys ; (118): 33-64, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30853835

RESUMEN

Morphological variations, particularly flower colour, could be considered as an evolutionarily and ornamentally significant taxonomic criterion for Epimedium. Our extensive field investigation based on population studies revealed abundant intraspecific variations in flower colour. Five species, (i.e., E.acuminatum Franch., E.leptorrhizum Stearn, E.pauciflorum K.C.Yen, E.mikinorii Stearn, and E.glandulosopilosum H.R.Liang) were found to possess polymorphic flower colour, which is first described and illustrated here. Moreover, all these species were found to be polymorphic in other diagnostic characters, such as the type of rhizome, the number and arrangement of stem-leaves, and/or their indumentum, which have not been adequately described in previous studies. Therefore, their morphological descriptions have been complemented and/or revised. We also provide notes on the morphology and nomenclature for each species. Additionally, a key to the species in China has been provided. The present study could serve as a basis for understanding their taxonomy and helping their utilisation as an ornamental plant.

16.
Am J Bot ; 106(3): 334-351, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30845367

RESUMEN

PREMISE OF THE STUDY: Bilateral symmetry in core eudicot flowers is established by the differential expression of CYCLOIDEA (CYC), DICHOTOMA (DICH), and RADIALIS (RAD), which are restricted to the dorsal portion of the flower, and DIVARICATA (DIV), restricted to the ventral and lateral petals. Little is known regarding the evolution of these gene lineages in non-core eudicots, and there are no reports on gene expression that can be used to assess whether the network predates the diversification of core eudicots. METHODS: Homologs of the RAD and DIV lineages were isolated from available genomes and transcriptomes, including those of three selected non-core eudicot species, the magnoliid Aristolochia fimbriata and the monocots Cattleya trianae and Hypoxis decumbens. Phylogenetic analyses for each gene lineage were performed. RT-PCR was used to evaluate the expression and putative contribution to floral symmetry in dissected floral organs of the selected species. KEY RESULTS: RAD-like genes have undergone at least two duplication events before eudicot diversification, three before monocots and at least four in Orchidaceae. DIV-like genes also duplicated twice before eudicot diversification and underwent independent duplications specific to Orchidaceae. RAD-like and DIV-like genes have differential dorsiventral expression only in C. trianae, which contrasts with the homogeneous expression in the perianth of A. fimbriata. CONCLUSIONS: Our results point to a common genetic regulatory network for floral symmetry in monocots and core eudicots, while alternative genetic mechanisms are likely driving the bilateral perianth symmetry in the early-diverging angiosperm Aristolochia.


Asunto(s)
Aristolochia/genética , Evolución Biológica , Flores/genética , Redes Reguladoras de Genes , Genes de Plantas , Hypoxis/genética , Orchidaceae/genética , Perfilación de la Expresión Génica , Filogenia
17.
Front Plant Sci ; 9: 1573, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30420867

RESUMEN

The flower of angiosperms is considered to be a major evolutionary innovation that impacted the whole biome. In particular, two properties of the flower are classically linked to its ecological success: bisexuality and a differentiated perianth with sepals and petals. Although the molecular basis for floral organ identity is well understood in extant species and summarized in the famous ABC model, how perianth identity appeared during evolution is still unknown. Here we propose that cadastral mechanisms that maintain reproductive organ identities to the center of the flower could have supported perianth evolution. In particular, repressing B- and C-class genes expression toward the inner whorls of the flower, is a key process to isolate domains with sepal and petal identity in the outer whorls. We review from the literature in model species the diverse regulators that repress B- and C-class genes expression to the center of the flower. This review highlights the existence of both unique and conserved repressors between species, and possible candidates to investigate further in order to shed light on perianth evolution.

18.
Front Plant Sci ; 9: 174, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515600

RESUMEN

The Dasymaschalon alliance within the early divergent angiosperm family Annonaceae comprises c. 180 species in four genera (Dasymaschalon, Desmos, Friesodielsia, and Monanthotaxis). The alliance offers an excellent opportunity for investigating perianth evolution and functional adaptations because of the presence of different numbers of petal whorls and contrasting floral chamber morphologies. The absence of the inner petal whorl in Dasymaschalon renders it distinctive in the family: previous studies have suggested that its three outermost stamens might be homologous with the inner petals of the sister genus, Friesodielsia, reflecting a homeotic shift of floral organ identify from inner petals to stamens. To investigate this hypothesis and general perianth evolution in the alliance, we (i) compared the floral vascularization of selected Dasymaschalon and Friesodielsia species using paraffin serial sectioning, and (ii) mapped selected perianth characters of inferred functional significance onto a molecular phylogenetic framework of the Dasymaschalon alliance (46 accessions; five cpDNA, and two nrDNA markers). The results indicate that the vasculature of the outermost stamen whorl of Dasymaschalon does not fuse with the perianth cortical vascular system, but instead splits from the basal traces of the free stamen bundles, contradicting previous inferences of homology with the inner corolla whorl of other Annonaceae. The loss of the inner petal whorl in Dasymaschalon is less likely to be due to a homeotic mutation, and instead possibly involved either the loss of genes that are responsible for determining inner petals or else the expression failure of these genes. Optimizations of perianth characters indicate that the absence of the inner petal whorl and the connivence of outer petals during anthesis are synapomorphic for Dasymaschalon. Circadian trapping of pollinators is inferred either to be derived in the stem lineage of the Dasymaschalon-Friesodielsia clade, or else to have evolved in parallel in the Dasymaschalon and Friesodielsia lineages. Subsequent changes in the remaining petals of Dasymaschalon flowers (which do not fully separate during anthesis) are likely to have enabled perpetuation of the circadian trapping mechanism, lessening the adverse impacts of inner petal loss.

19.
Ann Bot ; 121(1): 161-174, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29267929

RESUMEN

Background and Aims: Comparative floral ontogeny represents a valuable tool to understand angiosperm evolution. Such an approach may elucidate subtle changes in development that discretely modify floral architecture and underlie reproductive lability in groups with superficial homogeneous morphology. This study presents a comparative survey of floral development in Eugenia (Myrtaceae), one of the largest genera of angiosperms, and shows how previously undocumented ontogenetic trends help to explain the evolution of its megadiversity in contrast to its apparent flower uniformity. Methods: Using scanning electron microscopy, selected steps of the floral ontogeny of a model species (Eugenia punicifolia) are described and compared with 20 further species representing all ten major clades in the Eugenia phylogenetic tree. Additional floral trait data are contrasted for correlation analysis and character reconstructions performed against the Myrtaceae phylogenetic tree. Key results: Eugenia flowers show similar organ arrangement patterns: radially symmetrical, (most commonly) tetramerous flowers with variable numbers of stamens and ovules. Despite a similar general organization, heterochrony is evident from size differences between tissues and structures at similar developmental stages. These differences underlie variable levels of investment in protection, subtle modifications to symmetry, herkogamic effects and independent androecium and gynoecium variation, producing a wide spectrum of floral display and contributing to fluctuations in fitness. During Eugenia's bud development, the hypanthium (as defined here) is completely covered by stamen primordia, unusual in other Myrtaceae. This is the likely plesiomorphic state for Myrteae and may have represented a key evolutionary novelty in the tribe. Conclusions: Floral evolution in Eugenia depends on heterochronic patterns rather than changes in complexity to promote flexibility in floral strategies. The successful early establishment of Myrteae, previously mainly linked to the key innovation of fleshy fruit, may also have benefitted from changes in flower structure.


Asunto(s)
Eugenia/fisiología , Flores/fisiología , Evolución Biológica , Eugenia/anatomía & histología , Eugenia/crecimiento & desarrollo , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Filogenia , Reproducción
20.
Molecules ; 22(9)2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28869565

RESUMEN

Oncidium is an important ornamental crop worldwide, and in recent years, the characteristics of the flower aroma have become a concern for breeders. This study used headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC-MS) analysis of the volatile compounds to study the aroma characteristics of Onc. Rosy Sunset. A total of 45 compounds were identified, with the major compound being linalool. Onc. Rosy Sunset had the highest odor concentration from 10:00 to 12:00 and lowest from 20:00 to 24:00. The inflorescence emitted the highest quantities of volatile compounds during stages 3-6, which then decreased with the aging of the flowers. In Onc. Rosy Sunset, the sepals and petals were the major parts for the floral fragrance emission, in which linalool content was the highest, whereas the lip and column had a different composition of major volatile compounds, of which benzaldehyde, ß-myrcene, and ß-caryophyllene dominated.


Asunto(s)
Flores/química , Odorantes/análisis , Orchidaceae/química , Rosa/química , Compuestos Orgánicos Volátiles/química , Monoterpenos Acíclicos , Benzaldehídos/química , Ritmo Circadiano , Flores/metabolismo , Humanos , Monoterpenos/química , Orchidaceae/metabolismo , Componentes Aéreos de las Plantas/química , Sesquiterpenos Policíclicos , Rosa/metabolismo , Sesquiterpenos/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA