Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
Int J Biol Macromol ; : 134788, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173786

RESUMEN

The long-term use of antibiotics can cause drug resistance. Natural polysaccharides are a novel means of treating bacterial infections, and the development and utilization of litchi pericarp polysaccharide (LPPs) as a bacteriostatic active substance offer a new research direction for the high-value utilization of litchi by-products. This study revealed that LPPs inhibited Staphylococcus aureus more than Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium, with the minimum inhibitory concentrations of 145, 205, 325, and 445 µg/mL, respectively. The inhibitory activity of LPPs was insignificant for Bacillus subtilis at 505 µg/mL. The assessment of antibacterial mechanisms revealed that LPPs influenced the growth, conductivity, protein, and nucleic acid, reducing sugar, respiratory chain dehydrogenase activity, bacterial lipid peroxidation, intracellular adenosine triphosphate, and extracellular alkaline phosphatase levels of S. aureus. Of note, LPPs could modify the cell wall integrity and cell membrane permeability of S. aureus, resulting in the leakage of intracellular large and small molecules, inhibition of cellular respiratory metabolism, and oxidative losses. These processes exhibited an inhibitory effect and made the bacterium nonfunctional, thereby affecting its growth and metabolism or causing cell death. These findings provide support and insights into the potential application of LPPs as a natural antimicrobial agent.

2.
Food Chem X ; 23: 101644, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39148531

RESUMEN

Effects of slightly acidic electrolyzed water (SAEW) on the storability, quality attributes, and reactive oxygen species (ROS) metabolism of litchis were investigated. Results showed that SAEW-treated litchis presented better quality attributes and storability than control litchis. On storage day 5, the commercially acceptable fruit rate of control litchis was 42%, while SAEW-treated litchis displayed 59% higher rate of commercially acceptable fruit, 21% lower pericarp browning index, and 13% lower weight loss percentage than control litchis. Additionally, compared to control litchis, SAEW-treated litchis demonstrated higher activities of SOD, CAT and APX, higher levels of GSH, AsA, DPPH radical scavenging ability, and reducing power, but lower O2 -· generation rate, lower levels of H2O2 and MDA. These findings indicated that SAEW treatment could elevate antioxidant capacity and ROS scavenging ability, reduce ROS production and accumulation, and lower membrane lipid peroxidation, thereby retaining the quality attributes and storability of litchis.

3.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999950

RESUMEN

Macadamia nuts are one of the most important economic food items in the world. Pericarp thickness and flavonoid composition are the key quality traits of Macadamia nuts, but the underlying mechanism of pericarp formation is still unknown. In this study, three varieties with significantly different pericarp thicknesses, namely, A38, Guire No.1, and HAES 900, at the same stage of maturity, were used for transcriptome analysis, and the results showed that there were significant differences in their gene expression profile. A total of 3837 new genes were discovered, of which 1532 were functionally annotated. The GO, COG, and KEGG analysis showed that the main categories in which there were significant differences were flavonoid biosynthesis, phenylpropanoid biosynthesis, and the cutin, suberine, and wax biosynthesis pathways. Furthermore, 63 MiMYB transcription factors were identified, and 56 R2R3-MYB transcription factors were clustered into different subgroups compared with those in Arabidopsis R2R3-MYB. Among them, the S4, S6, and S7 subgroups were involved in flavonoid biosynthesis and pericarp formation. A total of 14 MiMYBs' gene expression were verified by RT-qPCR analysis. These results provide fundamental knowledge of the pericarp formation regulatory mechanism in macadamia nuts.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Macadamia , Nueces , Proteínas de Plantas , Factores de Transcripción , Transcriptoma , Macadamia/genética , Macadamia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Nueces/genética , Nueces/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética , Flavonoides/biosíntesis , Flavonoides/metabolismo , Familia de Multigenes , Arabidopsis/genética , Arabidopsis/metabolismo , Filogenia
4.
Antioxidants (Basel) ; 13(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39061852

RESUMEN

Macadamia integrifolia pericarps (MIP) are byproducts of nut production which are rich in natural antioxidant compounds, making them an excellent source for extracting bioactive compounds. However, the antioxidant compounds in MIP are easily oxidized under natural storage conditions, resulting in significant biomass loss and resource wastage. To preserve the potential of MIP to be used as an antioxidant product, we employed cellulase and Limosilactobacillus fermentum ZC529 (L.f ZC529) fermentation and utilized response surface methodology to optimize the fermentation parameters for mitigating the antioxidant loss. Total antioxidant capacity (T-AOC) was used as the response variable. The fermented MIP water extract (FMIPE) was obtained via ultrasound-assisted extraction, and its biological activity was evaluated to optimize the best fermentation conditions. Results indicated that a cellulase dosage of 0.9%, an L.f ZC529 inoculation size of 4 mL/100 g, and a fermentation time of 7 days were the optimal conditions for MIP fermentation. Compared to spontaneous fermentation, these optimal conditions significantly increased the total phenolic and total flavonoid contents (p < 0.05). T-AOC was 160.72% increased by this optimal fermentation (p < 0.05). Additionally, supplementation with varying concentrations of FMIPE (6.25%, 12.5%, and 25%) increased the T-AOC, SOD activity, and GSH content, and reduced MDA levels of the oxidative-stressed Drosophila melanogaster (p < 0.05). Moreover, 12.5% and 25% of FMIPE treatments elevated CAT activity in the Drosophila melanogaster (p < 0.05). The effects of FMIPE on GSH and MDA in Drosophila melanogaster were equivalent to the 0.5% vitamin C (Vc) treatment. In summary, synergistic fermentation using cellulase and L.f ZC529 effectively preserves the antioxidant activity of the MIP, offering a simple, eco-friendly method to promote the utilization of MIP resources.

5.
Toxins (Basel) ; 16(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39057928

RESUMEN

Mycotoxins, especially aflatoxin B1 (AFB1) and fumonisin B1 (FMB1), are common contaminants in cereal-based foods. Instances of contamination are predicted to increase due to the current challenges induced by climate change. Despite the health benefits of whole grains, the presence of mycotoxins in bran remains a concern. Nonetheless, previous research indicates that wheat bran can adsorb mutagens. Therefore, this study investigated the capacity of maize, wheat, and oat brans to adsorb AFB1 and FMB1 under varying in vitro conditions, including pH, binding time, temperature, particle size, and the amount of bran utilized. Maize bran demonstrated a high AFB1 adsorption capacity (>78%) compared to wheat and oat brans. However, FMB1 was not adsorbed by the brans, possibly due to its hydrophilic nature. Lower temperature (≤25 °C) enhanced AFB1 adsorption efficacy in wheat and oat bran, while for maize bran, the highest adsorption occurred at 37 °C. A linear model following Henry's law best explained AFB1 adsorption by the brans. Further studies identified the pericarp layer of bran as the primary site of AFB1 adsorption, with the initial liquid volume being a critical factor. The study concludes that bran could potentially act as an effective bioadsorbent. Further research is essential to confirm the adsorption efficacy and the bioavailability of AFB1 through in vivo experiments.


Asunto(s)
Aflatoxina B1 , Avena , Fibras de la Dieta , Contaminación de Alimentos , Fumonisinas , Triticum , Zea mays , Zea mays/química , Fumonisinas/química , Triticum/química , Adsorción , Aflatoxina B1/química , Avena/química , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Temperatura , Concentración de Iones de Hidrógeno
6.
Antibiotics (Basel) ; 13(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39061294

RESUMEN

α-mangostin (α-MG) demonstrates antibacterial activity against Staphylococcus species. Therefore, this study aimed to explore the antibacterial activity of α-MG-rich mangosteen pericarp extract (MPE)-loaded liposomes against Staphylococcus isolates from companion animal skin diseases in vitro and evaluated their therapeutic potential in a murine model of superficial skin infection caused by S. pseudintermedius. α-MG-rich extract was purified from mangosteen pericarp and then complexed with γ-cyclodextrin (γ-CD), forming the inclusion complexes. Nanoliposomes containing MPE and γ-CD complexes were prepared by adding lecithin and casein. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of MPE-loaded liposomes were determined using agar dilution and broth microdilution methods. The therapeutic potential of MPE-loaded liposomes was evaluated in vivo on tape-stripped skin lesions infected with S. pseudintermedius. Purified MPE and MPE-loaded liposomes contained 402.43 mg/g and 18.18 mg/g α-MG, respectively. MPE-loaded liposomes showed antibacterial activity against clinical Staphylococcus isolates in vitro but did not show antibacterial activity against Gram-negative bacterial isolates. MPE-loaded liposomes demonstrated consistent MICs and MBCs against Staphylococcus isolates. These liposomes significantly reduced bacterial numbers and lesional sizes in a superficial skin infection model. Moreover, they reconstructed the epidermal barrier in skin lesions. The therapeutic concentrations of MPE-loaded liposomes did not induce cytotoxicity in canine progenitor epidermal keratinocyte cells. In conclusion, MPE-loaded liposomes hold promise for the development of a prospective topical formulation to treat superficial pyoderma in companion animals.

7.
Plants (Basel) ; 13(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999687

RESUMEN

To explore the application of seed germination biomechanical event(s) in seed vigour tests, a new procedure for the evaluation of maize seed vigour tests based on pericarp-testa rupture (PR) and coleorhiza rupture (CR) during seed germination was developed. Twenty-four lots of hybrid maize were used to determine the feasibility of the rupture test (RT) as a seed vigour test in Zea mays. The results showed that the physiological quality pattern of 24 maize seed lots assessed through RT was similar to that obtained through analysis with other seed test methods. Correlation and regression analyses revealed that the percentage of CR and percentage of PR + CR at "15 ± 0.5 °C for 120 h ± 1 h" and "20 ± 0.5 °C for 72 h ± 15 min" exhibited positive correlations with the field seedling emergence data (p < 0.01). Hence, the proposed method (the rupture test) is cogent and effective, thus providing an important reference for more crops to select for seed germination event(s) and establishing corresponding new methods for seed vigour tests in the future.

8.
Front Plant Sci ; 15: 1402607, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903429

RESUMEN

Oxidative damage leading to loss of nutritional quality and pericarp discoloration of harvested litchi fruits drastically limits consumer acceptance and marketability. In the present investigation, the impact of postharvest melatonin application at different concentrations, i.e., 0.1 mM, 0.25 mM, and 0.5 mM, on fruit quality and shelf life of litchi fruits under cold storage conditions was studied. The results revealed the positive effect of melatonin application at all concentrations on fruit quality and shelf life. However, treatment with 0.5 mM concentration of melatonin resulted in minimum weight loss, decay loss, pericarp discoloration, and also retained higher levels of TSS, acidity, total sugar, ascorbic acid, anthocyanin, antioxidant, and phenolics content during cold storage. Melatonin administration also restricted the enzymatic activity of the polyphenol oxidase (PPO) and peroxidase (POD) enzymes in the fruit pericarp and maintained freshness of the fruits up to 30 days in cold storage. At the molecular level, a similar reduction in the expression of browning-associated genes, LcPPO, LcPOD, and Laccase, was detected in preserved litchi fruits treated with melatonin. Anthocyanin biosynthetic genes, LcUFGT and LcDFR, on the other hand showed enhanced expression in melatonin treated fruits compared to untreated fruits. Melatonin, owing to its antioxidant properties, when applied to harvested litchi fruits retained taste, nutritional quality and red color pericarp up till 30 days in cold storage.

9.
Genes (Basel) ; 15(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38927692

RESUMEN

Anthocyanidin reductase (ANR) is a key enzyme regulating anthocyanin synthesis and accumulation in plants. Here, lychee ANR genes were globally identified, their sequence and phylogenetic characteristics were analyzed, and their spatiotemporal expression patterns were characterized. A total of 51 ANR family members were identified in the lychee genome. The length of the encoded amino acid residues ranged from 87 aa to 289 aa, the molecular weight ranged from 9.49 KD to 32.40 KD, and the isoelectric point (pI) ranged from 4.83 to 9.33. Most of the members were acidic proteins. Most members of the LcANR family were located in the cytoplasm. The 51 LcANR family members were unevenly distributed in 11 chromosomes, and their exons and motif conserved structures were significantly different from each other. Promoters in over 90% of LcANR members contained anaerobically induced response elements, and 88% contained photoresponsive elements. Most LcANR family members had low expression in nine lychee tissues and organs (root, young leaf, bud, female flower, male flower, pericarp, pulp, seed, and calli), and some members showed tissue-specific expression patterns. The expression of one gene, LITCHI029356.m1, decreased with the increase of anthocyanin accumulation in 'Feizixiao' and 'Ziniangxi' pericarp, which was negatively correlated with pericarp coloring. The identified LcANR gene was heterologously expressed in tobacco K326, and the function of the LcANR gene was verified. This study provides a basis for the further study of LcANR function, particularly the role in lychee pericarp coloration.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Litchi , Familia de Multigenes , Filogenia , Proteínas de Plantas , Litchi/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antocianinas/biosíntesis , Antocianinas/genética , Antocianinas/metabolismo , Genoma de Planta
10.
Int J Biol Macromol ; 272(Pt 2): 132938, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38848831

RESUMEN

Colored corn pericarp contains unusually high amounts of industrially valuable phytochemicals, such as anthocyanins, flavanols, flavonoids, and phenolic acids. Polyphenols were extracted in an aqueous solution and spray-dried to produce microencapsulates using four carrier materials, namely, maltodextrin (MD), gum arabic (GA), methylcellulose (MC), and skim milk powder (SMP) at three concentrations (1, 2, and 3 %, respectively). The encapsulates were evaluated for their polyphenolic contents using spectrophotometric techniques and HPLC analyses, and their antioxidant properties were evaluated using four different assays. The physicochemical properties of encapsulates were analyzed by measuring the zeta potential (ZP), particle size distribution, water solubility index (WSI), water absorption index (WAI), and color parameters. Structural and thermal properties were evaluated using Fourier transform infrared spectroscopy (FTIR), optical profilometry, and differential scanning calorimetry (DSC) analyses. Comparative analysis of structural characteristics, particle size distribution, zeta potential, WSI, WAI, and aw of the samples confirmed the successful formulation of encapsulates. The microencapsulates embedded with 1 % concentrations of MD, MC, GA, or SMP retained polyphenolic compounds and exhibited noteworthy antioxidant properties. The samples encapsulated with GA or MD (1 %) demonstrated superior physicochemical, color, and thermal properties. Comprehensive metabolomic analysis confirmed the presence of 38 phytochemicals in extracts validating the spray-drying process.


Asunto(s)
Antioxidantes , Composición de Medicamentos , Polifenoles , Secado por Pulverización , Zea mays , Polifenoles/química , Zea mays/química , Antioxidantes/química , Composición de Medicamentos/métodos , Tamaño de la Partícula , Goma Arábiga/química , Sustancias Macromoleculares/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Polisacáridos/química
11.
J Ethnopharmacol ; 333: 118441, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38851471

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Toona sinensis (A. Juss.) Roem. Is a deciduous woody plant native to Eastern and Southeastern Asia. Different parts of this plant have a long history of being applied as traditional medicines to treat various diseases. The fruits have been used for antidiabetic, antidiabetic nephropathy (anti-DN), antioxidant, anti-inflammatory, and other activities. AIM OF THE STUDY: The purpose of this study was to investigate the effects of EtOAc (PEAE) and n-BuOH extracts (PNBE) from T. sinensis pericarps (TSP) on kidney injury in high-fat and high-glucose diet (HFD)/streptozotocin (STZ)-induced DN mice by network pharmacology and pharmacological investigations, as well as to further discover active compounds that could ameliorate oxidative stress and inflammation, thereby delaying DN progression by regulating the Nrf2/NF-κB pathway in high glucose (HG)-induced glomerular mesangial cells (GMCs). MATERIALS AND METHODS: The targets of TSP 1-16 with DN were analyzed by network pharmacology. HFD/STZ-induced DN mouse models were established to evaluate the effects of PEAE and PNBE. Six groups were divided into normal, model, PEAE100, PEAE400, PNBE100, and PNBE400 groups. Fasting blood glucose (FBG) levels, organ indices, plasma MDA, SOD, TNF-α, and IL-6 levels, as well as renal tissue Nrf2, HO-1, NF-κB, TNF-α, and TGF-ß1 levels were determined, along with hematoxylin-eosin (H&E) and immunohistochemical (IHC) analysis of kidney sections. Furthermore, GMC activity screening combined with molecular docking was utilized to discover active compounds targeting HO-1, TNF-α, and IL-6. Moreover, western blotting assays were performed to validate the mechanism of Nrf2 and NF-κB in HG-induced GMCs. RESULTS: Network pharmacology predicted that the main targets of PEAE and PNBE in the treatment of DN include IL-6, INS, TNF, ALB, GAPDH, IL-1ß, TP53, EGFR, and CASP3. Additionally, major pathways include AGE-RAGE and IL-17. In vivo experiments, treatment with PEAE and PNBE effectively reduced FBG levels and organ indices, while plasma MDA, SOD, TNF-α, and IL-6 levels, renal tissue Nrf2, HO-1, NF-κB, TNF-α, and TGF-ß1 levels, and renal function were significantly improved. PEAE and PNBE significantly improved glomerular and tubule injury, and inhibited the development of DN by regulating the levels of oxidative stress and inflammation-related factors. In vitro experiments, compound 11 strongly activated HO-1 and inhibited TNF-α and IL-6. The molecular docking results revealed that compound 11 exhibited a high binding affinity towards the targets HO-1, TNF-α, and IL-6 (<-6 kcal/mol). Western blotting results showed compound 11 effectively regulated Nrf2 and NF-κB p65 protein levels, and significantly improved oxidative stress damage and inflammatory responses in HG-induced GMCs. CONCLUSION: PEAE, PNBE, and their compounds, especially compound 11, may have the potential to prevent and treat DN, and are promising natural nephroprotective agents.


Asunto(s)
Nefropatías Diabéticas , Factor 2 Relacionado con NF-E2 , Farmacología en Red , Extractos Vegetales , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Masculino , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Factor 2 Relacionado con NF-E2/metabolismo , Ratones Endogámicos C57BL , Diabetes Mellitus Experimental/tratamiento farmacológico , Meliaceae/química , Estrés Oxidativo/efectos de los fármacos , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , FN-kappa B/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/aislamiento & purificación , Frutas/química , Dieta Alta en Grasa , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Estreptozocina , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación
12.
Ann Bot ; 134(3): 485-490, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38809749

RESUMEN

BACKGROUND AND AIMS: Some plants germinate their seeds enclosed by a pericarp, whereas others lack the outer packaging. As a maternal tissue, the pericarp might impart seeds with different germination strategies. Plants in a community with different flowering times might separately disperse and germinate their seeds; therefore, flowering time can be considered as one manifestation of maternal effects on the offspring. The mass of the seed is another important factor influencing germination and represents the intrinsic resource of the seed that supports germination. Using seeds from a species-rich alpine meadow located in the Hengduan Mountains of China, a global biodiversity hotspot, we aimed to illustrate whether and how the type of seed (with or without a pericarp) modulates the interaction of flowering time and seed mass with germination. METHODS: Seeds were germinated in generally favourable conditions, and the speed of germination [estimated by mean germination time (MGT)] was calculated. We quantified the maternal conditions by separation of flowering time for 67 species in the meadow, of which 31 produced seeds with pericarps and 36 yielded seeds without pericarps. We also weighed 100 seeds of each species to assess their mass. KEY RESULTS: The MGT varied between the two types of seeds. For seeds with pericarps, MGT was associated with flowering time but not with seed mass. Plants with earlier flowering times in the meadow exhibited more rapid seed germination. For seeds without a pericarp, the MGT depended on seed mass, with smaller seeds germinating more rapidly than larger seeds. CONCLUSIONS: The distinct responses of germination to flowering time and seed mass observed in seeds with and without a pericarp suggest that germination strategies might be mother-reliant for seeds protected by pericarps but self-reliant for those without such protection. This new finding improves our understanding of seed germination by integrating ecologically mediated maternal conditions and inherent genetic properties.


Asunto(s)
Flores , Germinación , Semillas , Germinación/fisiología , Semillas/fisiología , Semillas/crecimiento & desarrollo , Flores/fisiología , Flores/crecimiento & desarrollo , Flores/anatomía & histología , China , Pradera
13.
Compr Rev Food Sci Food Saf ; 23(3): e13366, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775125

RESUMEN

Wheat bran (WB) is a well-known and valuable source of dietary fiber. Arabinoxylan (AX) is the primary hemicellulose in WB and can be isolated and used as a functional component in various food products. Typically, AX is extracted from the whole WB using different processes after mechanical treatments. However, WB is composed of different layers, namely, the aleurone layer, pericarp, testa, and hyaline layer. The distribution, structure, and extractability of AX vary within these layers. Modern fractionation technologies, such as debranning and electrostatic separation, can separate the different layers of WB, making it possible to extract AX from each layer separately. Therefore, AX in WB shows potential for broader applications if it can be extracted from the different layers separately. In this review, the distribution and chemical structures of AX in WB layers are first discussed followed by extraction, physicochemical properties, and health benefits of isolated AX from WB. Additionally, the utilization of AX isolated from WB in foods, including cereal foods, packaging film, and the delivery of food ingredients, is reviewed. Future perspectives on challenges and opportunities in the research field of AX isolated from WB are highlighted.


Asunto(s)
Fibras de la Dieta , Xilanos , Xilanos/química , Fibras de la Dieta/análisis
14.
Plant Biotechnol J ; 22(9): 2379-2394, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38623687

RESUMEN

Tomato (Solanum lycopersicum) stands as one of the most valuable vegetable crops globally, and fruit firmness significantly impacts storage and transportation. To identify genes governing tomato firmness, we scrutinized the firmness of 266 accessions from core collections. Our study pinpointed an ethylene receptor gene, SlEIN4, located on chromosome 4 through a genome-wide association study (GWAS) of fruit firmness in the 266 tomato core accessions. A single-nucleotide polymorphism (SNP) (A → G) of SlEIN4 distinguished lower (AA) and higher (GG) fruit firmness genotypes. Through experiments, we observed that overexpression of SlEIN4AA significantly delayed tomato fruit ripening and dramatically reduced fruit firmness at the red ripe stage compared with the control. Conversely, gene editing of SlEIN4AA with CRISPR/Cas9 notably accelerated fruit ripening and significantly increased fruit firmness at the red ripe stage compared with the control. Further investigations revealed that fruit firmness is associated with alterations in the microstructure of the fruit pericarp. Additionally, SlEIN4AA positively regulates pectinase activity. The transient transformation assay verified that the SNP (A → G) on SlEIN4 caused different genetic effects, as overexpression of SlEIN4GG increased fruit firmness. Moreover, SlEIN4 exerts a negative regulatory role in tomato ripening by impacting ethylene evolution through the abundant expression of ethylene pathway regulatory genes. This study presents the first evidence of the role of ethylene receptor genes in regulating fruit firmness. These significant findings will facilitate the effective utilization of firmness and ripening traits in tomato improvement, offering promising opportunities for enhancing tomato storage and transportation capabilities.


Asunto(s)
Frutas , Estudio de Asociación del Genoma Completo , Proteínas de Plantas , Polimorfismo de Nucleótido Simple , Receptores de Superficie Celular , Solanum lycopersicum , Sistemas CRISPR-Cas , Frutas/genética , Frutas/crecimiento & desarrollo , Edición Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo
15.
Plant Cell Physiol ; 65(6): 999-1013, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38668634

RESUMEN

The cuticle covering aerial organs of land plants is well known to protect against desiccation. Cuticles also play diverse and specialized functions, including organ separation, depending on plant and tissue. Barley shows a distinctive cuticular wax bloom enriched in ß-diketones on leaf sheaths, stem nodes and internodes and inflorescences. Barley also develops a sticky surface on the outer pericarp layer of its grain fruit leading to strongly adhered hulls, 'covered grain', important for embryo protection and seed dispersal. While the transcription factor-encoding gene HvNUDUM (HvNUD) appears essential for adherent hulls, little is understood about how the pericarp cuticle changes during adhesion or whether changes in pericarp cuticles contribute to another phenotype where hulls partially shed, called 'skinning'. To that end, we screened barley lines for hull adhesion defects, focussing on the Eceriferum (= waxless, cer) mutants. Here, we show that the cer-xd allele causes defective wax blooms and compromised hull adhesion, and results from a mutation removing the last 10 amino acids of the GDS(L) [Gly, Asp, Ser, (Leu)]-motif esterase/lipase HvGDSL1. We used severe and moderate HvGDSL1 alleles to show that complete HvGDSL1 function is essential for leaf blade cuticular integrity, wax bloom deposition over inflorescences and leaf sheaths and pericarp cuticular ridge formation. Expression data suggest that HvGDSL1 may regulate hull adhesion independently of HvNUD. We found high conservation of HvGDSL1 among barley germplasm, so variation in HvGDSL1 unlikely leads to grain skinning in cultivated barley. Taken together, we reveal a single locus which controls adaptive cuticular properties across different organs in barley.


Asunto(s)
Esterasas , Regulación de la Expresión Génica de las Plantas , Hordeum , Lípidos de la Membrana , Proteínas de Plantas , Ceras , Hordeum/genética , Hordeum/enzimología , Hordeum/metabolismo , Ceras/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lípidos de la Membrana/metabolismo , Esterasas/metabolismo , Esterasas/genética , Mutación , Epidermis de la Planta/metabolismo , Epidermis de la Planta/genética , Secuencias de Aminoácidos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Fenotipo
16.
Molecules ; 29(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611765

RESUMEN

The color of the pericarp is a crucial characteristic that influences the marketability of papaya fruit. Prior to ripening, normal papaya exhibits a green pericarp, whereas the cultivar 'Zihui' displays purple ring spots on the fruit tip, which significantly affects the fruit's visual appeal. To understand the mechanism behind the formation of purple pericarp, this study performed a thorough examination of the transcriptome, plant hormone, and metabolome. Based on the UPLC-ESI-MS/MS system, a total of 35 anthocyanins and 11 plant hormones were identified, with 27 anthocyanins and two plant hormones exhibiting higher levels of abundance in the purple pericarp. In the purple pericarp, 14 anthocyanin synthesis genes were up-regulated, including CHS, CHI, F3H, F3'5'H, F3'H, ANS, OMT, and CYP73A. Additionally, through co-expression network analysis, three MYBs were identified as potential key regulators of anthocyanin synthesis by controlling genes encoding anthocyanin biosynthesis. As a result, we have identified numerous key genes involved in anthocyanin synthesis and developed new insights into how the purple pericarp of papaya is formed.


Asunto(s)
Carica , Carica/genética , Antocianinas , Reguladores del Crecimiento de las Plantas , Transcriptoma , Espectrometría de Masas en Tándem , Metaboloma , Verduras
17.
Antioxidants (Basel) ; 13(4)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38671942

RESUMEN

Litchi pericarp is rich in polyphenols, and demonstrates significant biological activity. This study assessed the therapeutic effects of litchi pericarp extract (LPE) on type 2 diabetes mellitus in db/db mice. The results showed that LPE ameliorated symptoms of glucose metabolism disorder, oxidative stress, inflammatory response, and insulin resistance in db/db mice. The mechanistic studies indicated that LPE activates adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and suppresses the protein expression of phosphoenolpyruvate carboxykinase (PEPCK), thereby reducing hepatic gluconeogenesis. Additionally, LPE facilitates the translocation of nuclear factor erythroid2-related factor 2 (Nrf2) into the cell nucleus, initiating the transcription of antioxidant factors superoxide dismutase (SOD) and NAD(P)H: quinone oxidoreductase 1 (NQO1), which alleviate oxidative stress and reduce oxidative damage. Furthermore, LPE blocks nuclear factor kappa-B (NF-κB) nuclear translocation and subsequent inflammatory response initiation, thereby reducing inflammation. These findings indicate that LPE addresses type 2 diabetes mellitus by activating the AMPK energy metabolic pathway and regulating the Nrf2 oxidative stress and NF-κB inflammatory signaling pathways.

18.
BMC Plant Biol ; 24(1): 338, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664642

RESUMEN

Proper pericarp thickness protects the maize kernel against pests and diseases, moreover, thinner pericarp improves the eating quality in fresh corn. In this study, we aimed to investigate the dynamic changes in maize pericarp during kernel development and identified the major quantitative trait loci (QTLs) for maize pericarp thickness. It was observed that maize pericarp thickness first increased and then decreased. During the growth and formation stages, the pericarp thickness gradually increased and reached the maximum, after which it gradually decreased and reached the minimum during maturity. To identify the QTLs for pericarp thickness, a BC4F4 population was constructed using maize inbred lines B73 (recurrent parent with thick pericarp) and Baimaya (donor parent with thin pericarp). In addition, a high-density genetic map was constructed using maize 10 K SNP microarray. A total of 17 QTLs related to pericarp thickness were identified in combination with the phenotypic data. The results revealed that the heritability of the thickness of upper germinal side of pericarp (UG) was 0.63. The major QTL controlling UG was qPT1-1, which was located on chromosome 1 (212,215,145-212,948,882). The heritability of the thickness of upper abgerminal side of pericarp (UA) was 0.70. The major QTL controlling UA was qPT2-1, which was located on chromosome 2 (2,550,197-14,732,993). In addition, a combination of functional annotation, DNA sequencing analysis and quantitative real-time PCR (qPCR) screened two candidate genes, Zm00001d001964 and Zm00001d002283, that could potentially control maize pericarp thickness. This study provides valuable insights into the improvement of maize pericarp thickness during breeding.


Asunto(s)
Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Zea mays , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Zea mays/anatomía & histología , Zea mays/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/anatomía & histología , Fenotipo , Cromosomas de las Plantas/genética , Polimorfismo de Nucleótido Simple
19.
Front Pharmacol ; 15: 1344983, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455959

RESUMEN

The pericarp of Herpetospermum pedunculosum (HPP) has traditionally been used for treating jaundice and hepatitis. However, the specific hepatoprotective components and their safety/efficacy profiles remain unclear. This study aimed to characterize the total cucurbitacins (TCs) extracted from HPP and evaluate their hepatoprotective potential. As a reference, Hu-lu-su-pian (HLSP), a known hepatoprotective drug containing cucurbitacins, was used for comparison of chemical composition, effects, and safety. Molecular networking based on UHPLC-MS/MS identified cucurbitacin B, isocucurbitacin B, and cucurbitacin E as the major components in TCs, comprising 70.3%, 26.1%, and 3.6% as determined by RP-HPLC, respectively. TCs treatment significantly reversed CCl4-induced metabolic changes associated with liver damage in a dose-dependent manner, impacting pathways including energy metabolism, oxidative stress and phenylalanine metabolism, and showed superior efficacy to HLSP. Safety evaluation also showed that TCs were safe, with higher LD50 and no observable adverse effect level (NOAEL) values than HLSP. The median lethal dose (LD50) and NOAEL values of TCs were 36.21 and 15 mg/kg body weight (BW), respectively, while the LD50 of HLSP was 14 mg/kg BW. In summary, TCs extracted from HPP demonstrated promising potential as a natural hepatoprotective agent, warranting further investigation into synergistic effects of individual cucurbitacin components.

20.
Front Plant Sci ; 15: 1358312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525145

RESUMEN

The transition from germinating seeds to emerging seedlings is one of the most vulnerable plant life cycle stages. Heteromorphic diaspores (seed and fruit dispersal units) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments. While the roles and mechanisms of seedling traits have been studied in monomorphic species, which produce one type of diaspore, very little is known about seedlings in heteromorphic species. Using the dimorphic diaspore model Aethionema arabicum (Brassicaceae), we identified contrasting mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained from IND fruits by pericarp (fruit coat) removal. What follows the completion of germination is the pre-emergence seedling growth phase, which we investigated by comparative growth assays of early seedlings derived from the M+ seeds, bare M- seeds, and IND fruits. The dimorphic seedlings derived from M+ and M- seeds did not differ in their responses to ambient temperature and water potential. The phenotype of seedlings derived from IND fruits differed in that they had bent hypocotyls and their shoot and root growth was slower, but the biomechanical hypocotyl properties of 15-day-old seedlings did not differ between seedlings derived from germinated M+ seeds, M- seeds, or IND fruits. Comparison of the transcriptomes of the natural dimorphic diaspores, M+ seeds and IND fruits, identified 2,682 differentially expressed genes (DEGs) during late germination. During the subsequent 3 days of seedling pre-emergence growth, the number of DEGs was reduced 10-fold to 277 root DEGs and 16-fold to 164 shoot DEGs. Among the DEGs in early seedlings were hormonal regulators, in particular for auxin, ethylene, and gibberellins. Furthermore, DEGs were identified for water and ion transporters, nitrate transporter and assimilation enzymes, and cell wall remodeling protein genes encoding enzymes targeting xyloglucan and pectin. We conclude that the transcriptomes of seedlings derived from the dimorphic diaspores, M+ seeds and IND fruits, undergo transcriptional resetting during the post-germination pre-emergence growth transition phase from germinated diaspores to growing seedlings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA