Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Med ; 116: 103183, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38000102

RESUMEN

BACKGROUND: The risk of radiogenic cancer induction due to radiotherapy depends on the dose received by the patient's organs. Knowing the position of all organs is needed to assess this dose in a personalized way. However, radiotherapy planning computed tomography (pCT) scans contain truncated patient anatomy, limiting personalized dose evaluation. PURPOSE: To develop a simple and freely available computational tool that adapts an ICRP reference computational phantom to generate a patient-specific whole-body CT for peripheral dose computations. METHODS: Various bone-segmentation methods were explored onto fifteen pCTs, and the one with the highest Sørensen-Dice coefficient was implemented. The reference phantom is registered to the pCT, obtaining a registration transform matrix, which is then applied to create the whole-body virtual CT. Additional validation involved a comparison of absorbed doses to organs delineated on both the pCT and the virtual CT. RESULTS: A dedicated graphical user interface was designed and implemented to house the developed functions for i) selecting a registration region on which automatic bone segmentation and rigid registration will occur, ii) displaying the results of these processes under selectable views, and iii) exporting the final patient-specific whole-body CT. This software was termed IS2aR. The tested whole-body virtual CT generated by IS2aR fulfilled our requirements. CONCLUSIONS: IS2aR is a user-friendly computational software to create a personalized whole-body CT containing the original structures in the reference phantom. The personalized dose deposited in peripheral organs can be estimated further to assess second cancer induction risk in epidemiological studies.


Asunto(s)
Programas Informáticos , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos
3.
Front Oncol ; 12: 872752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276161

RESUMEN

Considering that cancer survival rates have been growing and that nearly two-thirds of those survivors were exposed to clinical radiation during its treatment, the study of long-term radiation effects, especially secondary cancer induction, has become increasingly important. To correctly assess this risk, knowing the dose to out-of-field organs is essential. As it has been reported, commercial treatment planning systems do not accurately calculate the dose far away from the border of the field; analytical dose estimation models may help this purpose. In this work, the development and validation of a new three-dimensional (3D) analytical model to assess the photon peripheral dose during radiotherapy is presented. It needs only two treatment-specific input parameter values, plus information about the linac-specific leakage, when available. It is easy to use and generates 3D whole-body dose distributions and, particularly, the dose to out-of-field organs (as dose-volume histograms) outside the 5% isodose for any isocentric treatment using coplanar beams [including intensity modulated radiotherapy and volumetric modulated arc therapy (VMAT)]. The model was configured with the corresponding Monte Carlo simulation of the peripheral absorbed dose for a 6 MV abdomen treatment on the International Comission on Radiological Protection (ICRP) 110 computational phantom. It was then validated with experimental measurements using thermoluminescent dosimeters in the male ATOM anthropomorphic phantom irradiated with a VMAT treatment for prostate cancer. Additionally, its performance was challenged by applying it to a lung radiotherapy treatment very different from the one used for training. The model agreed well with measurements and simulated dose values. A graphical user interface was developed as a first step to making this work more approachable to a daily clinical application.

4.
Med Phys ; 47(9): 4616-4625, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32583441

RESUMEN

PURPOSE: An accurate assessment of out-of-field dose is necessary to estimate the risk of second cancer after radiotherapy and the damage to the organs at risk surrounding the planning target volume. Although treatment planning systems (TPSs) calculate dose distributions outside the treatment field, little is known about the accuracy of these calculations. The aim of this work is to thoroughly compare the out-of-field dose distributions given by two algorithms implemented in the Monaco TPS, with measurements and full Monte Carlo simulations. METHODS: Out-of-field dose distributions predicted by the collapsed cone convolution (CCC) and Monte Carlo (MCMonaco ) algorithms, built into the commercially available Monaco version 5.11 TPS, are compared with measurements carried out on an Elekta Axesse linear accelerator. For the measurements, ion chambers, thermoluminescent dosimeters, and EBT3 film are used. The BEAMnrc code, built on the EGSnrc system, is used to create a model of the Elekta Axesse with the Agility collimation system, and the space phase file generated is scored by DOSXYZnrc to generate the dose distributions (MCEGSnrc ). Three different irradiation scenarios are considered: (a) a 10 × 10 cm2 field, (b) an IMRT prostate plan, and (c) a three-field lung plan. Monaco's calculations, experimental measurements, and Monte Carlo simulations are carried out in water and/or in an ICRP110 phantom. RESULTS: For the 10 × 10 cm2 field case, CCC underestimated the dose, compared to ion chamber measurements, by 13% (differences relative to the algorithm) on average between the 5% and the ≈2% isodoses. MCMonaco underestimated the dose only from approximately the 2% isodose for this case. Qualitatively similar results were observed for the studied IMRT case when compared to film dosimetry. For the three-field lung plan, dose underestimations of up to ≈90% for MCMonaco and ≈60% for CCC, relative to MCEGSnrc simulations, were observed in mean dose to organs located beyond the 2% isodose. CONCLUSIONS: This work shows that Monaco underestimates out-of-field doses in almost all the cases considered. Thus, it does not describe dose distribution beyond the border of the field accurately. This is in agreement with previously published works reporting similar results for other TPSs. Analytical models for out-of-field dose assessment, MC simulations or experimental measurements may be an adequate alternative for this purpose.


Asunto(s)
Aceleradores de Partículas , Planificación de la Radioterapia Asistida por Computador , Algoritmos , Método de Montecarlo , Fantasmas de Imagen , Radiometría , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA