Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci China Life Sci ; 67(9): 1833-1848, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38951429

RESUMEN

Our knowledge on permafrost carbon (C) cycle is crucial for understanding its feedback to climate warming and developing nature-based solutions for mitigating climate change. To understand the characteristics of permafrost C cycle on the Tibetan Plateau, the largest alpine permafrost region around the world, we summarized recent advances including the stocks and fluxes of permafrost C and their responses to thawing, and depicted permafrost C dynamics within this century. We find that this alpine permafrost region stores approximately 14.1 Pg (1 Pg=1015 g) of soil organic C (SOC) in the top 3 m. Both substantial gaseous emissions and lateral C transport occur across this permafrost region. Moreover, the mobilization of frozen C is expedited by permafrost thaw, especially by the formation of thermokarst landscapes, which could release significant amounts of C into the atmosphere and surrounding water bodies. This alpine permafrost region nevertheless remains an important C sink, and its capacity to sequester C will continue to increase by 2100. For future perspectives, we would suggest developing long-term in situ observation networks of C stocks and fluxes with improved temporal and spatial coverage, and exploring the mechanisms underlying the response of ecosystem C cycle to permafrost thaw. In addition, it is essential to improve the projection of permafrost C dynamics through in-depth model-data fusion on the Tibetan Plateau.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Hielos Perennes , Suelo , Tibet , Suelo/química , Carbono/metabolismo , Ecosistema
2.
mSphere ; 9(7): e0025924, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38860762

RESUMEN

Climate change is rapidly transforming Arctic landscapes where increasing soil temperatures speed up permafrost thaw. This exposes large carbon stocks to microbial decomposition, possibly worsening climate change by releasing more greenhouse gases. Understanding how microbes break down soil carbon, especially under the anaerobic conditions of thawing permafrost, is important to determine future changes. Here, we studied the microbial community dynamics and soil carbon decomposition potential in permafrost and active layer soils under anaerobic laboratory conditions that simulated an Arctic summer thaw. The microbial and viral compositions in the samples were analyzed based on metagenomes, metagenome-assembled genomes, and metagenomic viral contigs (mVCs). Following the thawing of permafrost, there was a notable shift in microbial community structure, with fermentative Firmicutes and Bacteroidota taking over from Actinobacteria and Proteobacteria over the 60-day incubation period. The increase in iron and sulfate-reducing microbes had a significant role in limiting methane production from thawed permafrost, underscoring the competition within microbial communities. We explored the growth strategies of microbial communities and found that slow growth was the major strategy in both the active layer and permafrost. Our findings challenge the assumption that fast-growing microbes mainly respond to environmental changes like permafrost thaw. Instead, they indicate a common strategy of slow growth among microbial communities, likely due to the thermodynamic constraints of soil substrates and electron acceptors, and the need for microbes to adjust to post-thaw conditions. The mVCs harbored a wide range of auxiliary metabolic genes that may support cell protection from ice formation in virus-infected cells. IMPORTANCE: As the Arctic warms, thawing permafrost unlocks carbon, potentially accelerating climate change by releasing greenhouse gases. Our research delves into the underlying biogeochemical processes likely mediated by the soil microbial community in response to the wet and anaerobic conditions, akin to an Arctic summer thaw. We observed a significant shift in the microbial community post-thaw, with fermentative bacteria like Firmicutes and Bacteroidota taking over and switching to different fermentation pathways. The dominance of iron and sulfate-reducing bacteria likely constrained methane production in the thawing permafrost. Slow-growing microbes outweighed fast-growing ones, even after thaw, upending the expectation that rapid microbial responses to dominate after permafrost thaws. This research highlights the nuanced and complex interactions within Arctic soil microbial communities and underscores the challenges in predicting microbial response to environmental change.


Asunto(s)
Carbono , Microbiota , Oxidación-Reducción , Hielos Perennes , Microbiología del Suelo , Suelo , Hielos Perennes/microbiología , Regiones Árticas , Carbono/metabolismo , Suelo/química , Cambio Climático , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Metagenoma , Metano/metabolismo , Congelación
3.
Environ Sci Technol ; 58(9): 4155-4166, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38385246

RESUMEN

Permafrost soils store ∼50% of terrestrial C, with Yedoma permafrost containing ∼25% of the total C. Permafrost is undergoing degradation due to thawing, with potentially hazardous effects on landscape stability and water resources. Complicating ongoing efforts to project the ultimate fate of deep permafrost C is the poorly constrained role of the redox environment, Fe-minerals, and its redox-active phases, which may modulate organic C-abundance, composition, and reactivity through complexation and catalytic processes. We characterized C fate, Fe fractions, and dissolved organic matter (DOM) isolates from permafrost-thaw under varying redox conditions. Under anoxic incubation conditions, 33% of the initial C was lost as gaseous species within 21 days, while under oxic conditions, 58% of C was lost. Under anoxic incubation, 42% of the total initial C was preserved in a dissolved fraction. Lignin-like compounds dominated permafrost-thaw, followed by lipid- and protein-like compounds. However, under anoxic incubation conditions, there was accumulation of lipid-like compounds and reduction in the nominal oxidation state of C over time, regardless of the compound classes. DOM dynamics may be affected by microbial activity and abiotic processes mediated by Fe-minerals related to selective DOM fractionation and/or its oxidation. Chemodiversity DOM signatures could serve as valuable proxies to track redox conditions with permafrost-thaw.


Asunto(s)
Hielos Perennes , Hierro , Materia Orgánica Disuelta , Carbono , Minerales , Oxidación-Reducción , Lípidos , Suelo
4.
FEMS Microbiol Ecol ; 99(11)2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37766397

RESUMEN

Large amounts of carbon sequestered in permafrost on the Tibetan Plateau (TP) are becoming vulnerable to microbial decomposition in a warming world. However, knowledge about how the responsible microbial community responds to warming-induced permafrost thaw on the TP is still limited. This study aimed to conduct a comprehensive comparison of the microbial communities and their functional potential in the active layer of thawing permafrost on the TP. We found that the microbial communities were diverse and varied across soil profiles. The microbial diversity declined and the relative abundance of Chloroflexi, Bacteroidetes, Euryarchaeota, and Bathyarchaeota significantly increased with permafrost thawing. Moreover, warming reduced the similarity and stability of active layer microbial communities. The high-throughput qPCR results showed that the abundance of functional genes involved in liable carbon degradation and methanogenesis increased with permafrost thawing. Notably, the significantly increased mcrA gene abundance and the higher methanogens to methanotrophs ratio implied enhanced methanogenic activities during permafrost thawing. Overall, the composition and functional potentials of the active layer microbial community in the Tibetan permafrost region are susceptible to warming. These changes in the responsible microbial community may accelerate carbon degradation, particularly in the methane releases from alpine permafrost ecosystems on the TP.


Asunto(s)
Euryarchaeota , Microbiota , Hielos Perennes , Hielos Perennes/química , Tibet , Microbiota/genética , Archaea/genética , Archaea/metabolismo , Suelo/química , Euryarchaeota/genética , Euryarchaeota/metabolismo , Carbono/metabolismo
5.
Glob Chang Biol ; 29(19): 5720-5735, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37565359

RESUMEN

Rapid, ongoing permafrost thaw of peatlands in the discontinuous permafrost zone is exposing a globally significant store of soil carbon (C) to microbial processes. Mineralization and release of this peat C to the atmosphere as greenhouse gases is a potentially important feedback to climate change. Here we investigated the effects of permafrost thaw on peat C at a peatland complex in western Canada. We collected 15 complete peat cores (between 2.7 and 4.5 m deep) along four chronosequences, from elevated permafrost peat plateaus to saturated thermokarst bogs that thawed up to 600 years ago. The peat cores were analysed for peat C storage and peat quality, as indicated by decomposition proxies (FTIR and C/N ratios) and potential decomposability using a 200-day aerobic laboratory incubation. Our results suggest net C loss following thaw, with average total peat C stocks decreasing by ~19.3 ± 7.2 kg C m-2 over <600 years (~13% loss). Average post-thaw accumulation of new peat at the surface over the same period was ~13.1 ± 2.5 kg C m-2 . We estimate ~19% (±5.8%) of deep peat (>40 cm below surface) C is lost following thaw (average 26 ± 7.9 kg C m-2 over <600 years). Our FTIR analysis shows peat below the thaw transition in thermokarst bogs is slightly more decomposed than peat of a similar type and age in permafrost plateaus, but we found no significant changes to the quality or lability of deeper peat across the chronosequences. Our incubation results also showed no increase in C mineralization of deep peat across the chronosequences. While these limited changes in peat quality in deeper peat following permafrost thaw highlight uncertainty in the exact mechanisms and processes for C loss, our analysis of peat C stocks shows large C losses following permafrost thaw in peatlands in western Canada.


Asunto(s)
Carbono , Hielos Perennes , Suelo , Suelo/química , Carbono/análisis , Canadá , Congelación , Datación Radiométrica
6.
Environ Sci Technol ; 57(17): 6910-6921, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37074051

RESUMEN

Thaw slumps can lead to considerable carbon loss in permafrost regions, while the loss of components from two major origins, i.e., microbial and plant-derived carbon, during this process remains poorly understood. Here, we provide direct evidence that microbial necromass carbon is a major component of lost carbon in a retrogressive permafrost thaw slump by analyzing soil organic carbon (SOC), biomarkers (amino sugars and lignin phenols), and soil environmental variables in a typical permafrost thaw slump in the Tibetan Plateau. The retrogressive thaw slump led to a ∼61% decrease in SOC and a ∼25% SOC stock loss. As evident in the levels of amino sugars (average of 55.92 ± 18.79 mg g-1 of organic carbon, OC) and lignin phenols (average of 15.00 ± 8.05 mg g-1 OC), microbial-derived carbon (microbial necromass carbon) was the major component of the SOC loss, accounting for ∼54% of the SOC loss in the permafrost thaw slump. The variation of amino sugars was mainly related to the changes in soil moisture, pH, and plant input, while changes in lignin phenols were mainly related to the changes in soil moisture and soil bulk density.


Asunto(s)
Hielos Perennes , Suelo , Carbono , Tibet , Lignina , Fenoles , Amino Azúcares
7.
Glob Chang Biol ; 29(16): 4638-4651, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37114938

RESUMEN

Climate warming leads to widespread permafrost thaw with a fraction of the thawed permafrost carbon (C) being released as carbon dioxide (CO2 ), thus triggering a positive permafrost C-climate feedback. However, large uncertainty exists in the size of this model-projected feedback, partly owing to the limited understanding of permafrost CO2 release through the priming effect (i.e., the stimulation of soil organic matter decomposition by external C inputs) upon thaw. By combining permafrost sampling from 24 sites on the Tibetan Plateau and laboratory incubation, we detected an overall positive priming effect (an increase in soil C decomposition by up to 31%) upon permafrost thaw, which increased with permafrost C density (C storage per area). We then assessed the magnitude of thawed permafrost C under future climate scenarios by coupling increases in active layer thickness over half a century with spatial and vertical distributions of soil C density. The thawed C stocks in the top 3 m of soils from the present (2000-2015) to the future period (2061-2080) were estimated at 1.0 (95% confidence interval (CI): 0.8-1.2) and 1.3 (95% CI: 1.0-1.7) Pg (1 Pg = 1015 g) C under moderate and high Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5, respectively. We further predicted permafrost priming effect potential (priming intensity under optimal conditions) based on the thawed C and the empirical relationship between the priming effect and permafrost C density. By the period 2061-2080, the regional priming potentials could be 8.8 (95% CI: 7.4-10.2) and 10.0 (95% CI: 8.3-11.6) Tg (1 Tg = 1012 g) C year-1 under the RCP 4.5 and RCP 8.5 scenarios, respectively. This large CO2 emission potential induced by the priming effect highlights the complex permafrost C dynamics upon thaw, potentially reinforcing permafrost C-climate feedback.


Asunto(s)
Hielos Perennes , Dióxido de Carbono/análisis , Suelo , Clima
8.
Glob Chang Biol ; 29(10): 2697-2713, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36840688

RESUMEN

Significant attention has been given to the way in which the soil nitrogen (N) cycle responds to permafrost thaw in recent years, yet little is known about anaerobic N transformations in thermokarst lakes, which account for more than one-third of thermokarst landforms across permafrost regions. Based on the N isotope dilution and tracing technique, combined with qPCR and high-throughput sequencing, we presented large-scale measurements of anaerobic N transformations of sediments across 30 thermokarst lakes over the Tibetan alpine permafrost region. Our results showed that gross N mineralization, ammonium immobilization, and dissimilatory nitrate reduction rates in thermokarst lakes were higher in the eastern part of our study area than in the west. Denitrification dominated in the dissimilatory nitrate reduction processes, being two and one orders of magnitude higher than anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA), respectively. The abundances of the dissimilatory nitrate reduction genes (nirK, nirS, hzsB, and nrfA) exhibited patterns consistent with sediment N transformation rates, while α diversity did not. The inter-lake variability in gross N mineralization and ammonium immobilization was dominantly driven by microbial biomass, while the variability in anammox and DNRA was driven by substrate supply and organic carbon content, respectively. Denitrification was jointly affected by nirS abundance and organic carbon content. Overall, the patterns and drivers of anaerobic N transformation rates detected in this study provide a new perspective on potential N release, retention, and removal upon the formation and development of thermokarst lakes.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitratos/análisis , Lagos , Nitrógeno , Anaerobiosis , Desnitrificación , Compuestos Orgánicos , Carbono
9.
Glob Chang Biol ; 29(10): 2714-2731, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36811358

RESUMEN

Thermokarst lagoons represent the transition state from a freshwater lacustrine to a marine environment, and receive little attention regarding their role for greenhouse gas production and release in Arctic permafrost landscapes. We studied the fate of methane (CH4 ) in sediments of a thermokarst lagoon in comparison to two thermokarst lakes on the Bykovsky Peninsula in northeastern Siberia through the analysis of sediment CH4 concentrations and isotopic signature, methane-cycling microbial taxa, sediment geochemistry, lipid biomarkers, and network analysis. We assessed how differences in geochemistry between thermokarst lakes and thermokarst lagoons, caused by the infiltration of sulfate-rich marine water, altered the microbial methane-cycling community. Anaerobic sulfate-reducing ANME-2a/2b methanotrophs dominated the sulfate-rich sediments of the lagoon despite its known seasonal alternation between brackish and freshwater inflow and low sulfate concentrations compared to the usual marine ANME habitat. Non-competitive methylotrophic methanogens dominated the methanogenic community of the lakes and the lagoon, independent of differences in porewater chemistry and depth. This potentially contributed to the high CH4 concentrations observed in all sulfate-poor sediments. CH4 concentrations in the freshwater-influenced sediments averaged 1.34 ± 0.98 µmol g-1 , with highly depleted δ13 C-CH4 values ranging from -89‰ to -70‰. In contrast, the sulfate-affected upper 300 cm of the lagoon exhibited low average CH4 concentrations of 0.011 ± 0.005 µmol g-1 with comparatively enriched δ13 C-CH4 values of -54‰ to -37‰ pointing to substantial methane oxidation. Our study shows that lagoon formation specifically supports methane oxidizers and methane oxidation through changes in pore water chemistry, especially sulfate, while methanogens are similar to lake conditions.


Asunto(s)
Sedimentos Geológicos , Microbiota , Metano/análisis , Anaerobiosis , Lagos , Agua/análisis , Sulfatos/análisis
10.
Glob Chang Biol ; 29(11): 3039-3053, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843502

RESUMEN

Northern lakes disproportionately influence the global carbon cycle, and may do so more in the future depending on how their microbial communities respond to climate warming. Microbial communities can change because of the direct effects of climate warming on their metabolism and the indirect effects of climate warming on groundwater connectivity from thawing of surrounding permafrost, especially at lower landscape positions. Here we used shotgun metagenomics to compare the taxonomic and functional gene composition of sediment microbes in 19 peatland lakes across a 1600-km permafrost transect in boreal western Canada. We found microbes responded differently to the loss of regional permafrost cover than to increases in local groundwater connectivity. These results suggest that both the direct and indirect effects of climate warming, which were respectively associated with loss of permafrost and subsequent changes in groundwater connectivity interact to change microbial composition and function. Archaeal methanogens and genes involved in all major methanogenesis pathways were more abundant in warmer regions with less permafrost, but higher groundwater connectivity partly offset these effects. Bacterial community composition and methanotrophy genes did not vary with regional permafrost cover, and the latter changed similarly to methanogenesis with groundwater connectivity. Finally, we found an increase in sugar utilization genes in regions with less permafrost, which may further fuel methanogenesis. These results provide the microbial mechanism for observed increases in methane emissions associated with loss of permafrost cover in this region and suggest that future emissions will primarily be controlled by archaeal methanogens over methanotrophic bacteria as northern lakes warm. Our study more generally suggests that future predictions of aquatic carbon cycling will be improved by considering how climate warming exerts both direct effects associated with regional-scale permafrost thaw and indirect effects associated with local hydrology.


Asunto(s)
Lagos , Hielos Perennes , Clima , Hielos Perennes/microbiología , Ciclo del Carbono , Archaea/metabolismo , Carbono/metabolismo
11.
Front Microbiol ; 14: 1227909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249484

RESUMEN

Climate warming holds the potential to cause extensive drying of wetlands in the Arctic, but the warming-drying effects on belowground ecosystems, particularly micro-eukaryotes, remain poorly understood. We investigated the responses of soil micro-eukaryotic communities, including fungi, protists, and microbial metazoa, to decadal drainage manipulation in a Siberian wet tundra using both amplicon and shotgun metagenomic sequencing. Our results indicate that drainage treatment increased the abundance of both fungal and non-fungal micro-eukaryotic communities, with key groups such as Ascomycota (mostly order Helotiales), Nematoda, and Tardigrada being notably abundant in drained sites. Functional traits analysis showed an increase in litter saprotrophic fungi and protistan consumers, indicating their increased activities in drained sites. The effects of drainage were more pronounced in the surface soil layer than the deeper layer, as soils dry and warm from the surface. Marked compositional shifts were observed for both communities, with fungal communities being more strongly influenced by drainage-induced vegetation change than the lowered water table itself, while the vegetation effect on non-fungal micro-eukaryotes was moderate. These findings provide insights into how belowground micro-eukaryotic communities respond to the widespread drying of wetlands in the Arctic and improve our predictive understanding of future ecosystem changes.

12.
mSystems ; 7(6): e0058222, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36453933

RESUMEN

Arctic permafrost is thawing due to global warming, with unknown consequences on the microbial inhabitants or associated viruses. DNA viruses have previously been shown to be abundant and active in thawing permafrost, but little is known about RNA viruses in these systems. To address this knowledge gap, we assessed the composition of RNA viruses in thawed permafrost samples that were incubated for 97 days at 4°C to simulate thaw conditions. A diverse RNA viral community was assembled from metatranscriptome data including double-stranded RNA viruses, dominated by Reoviridae and Hypoviridae, and negative and positive single-stranded RNA viruses, with relatively high representations of Rhabdoviridae and Leviviridae, respectively. Sequences corresponding to potential plant and human pathogens were also detected. The detected RNA viruses primarily targeted dominant eukaryotic taxa in the samples (e.g., fungi, Metazoa and Viridiplantae) and the viral community structures were significantly associated with predicted host populations. These results indicate that RNA viruses are linked to eukaryotic host dynamics. Several of the RNA viral sequences contained auxiliary metabolic genes encoding proteins involved in carbon utilization (e.g., polygalacturosase), implying their potential roles in carbon cycling in thawed permafrost. IMPORTANCE Permafrost is thawing at a rapid pace in the Arctic with largely unknown consequences on ecological processes that are fundamental to Arctic ecosystems. This is the first study to determine the composition of RNA viruses in thawed permafrost. Other recent studies have characterized DNA viruses in thawing permafrost, but the majority of DNA viruses are bacteriophages that target bacterial hosts. By contrast RNA viruses primarily target eukaryotic hosts and thus represent potential pathogenic threats to humans, animals, and plants. Here, we find that RNA viruses in permafrost are novel and distinct from those in other habitats studied to date. The COVID-19 pandemic has heightened awareness of the importance of potential environmental reservoirs of emerging RNA viral pathogens. We demonstrate that some potential pathogens were detected after an experimental thawing regime. These results are important for understanding critical viral-host interactions and provide a better understanding of the ecological roles that RNA viruses play as permafrost thaws.


Asunto(s)
COVID-19 , Hielos Perennes , Virus ARN , Humanos , Hielos Perennes/química , Suelo/química , Ecosistema , Eucariontes/metabolismo , Pandemias , Virus ARN/genética , Plantas/metabolismo , Carbono/metabolismo
13.
Glob Chang Biol ; 28(22): 6752-6770, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36039832

RESUMEN

Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m-2  year-1 ; including 6 ± 7 g C-CH4 m-2  year-1 emission). We found, however, that lowering the WT by 10 cm reduced the CO2 sink by 13 ± 15 g C m-2  year-1 and decreased CH4 emission by 4 ± 4 g CH4 m-2  year-1 , thus accumulating less C over 100 years (0.2 ± 0.2 kg C m-2 ). Yet, the reduced emission of CH4 , which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO2-eq  m-2  year-1 . Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost >2 kg C m-2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario.


Asunto(s)
Gases de Efecto Invernadero , Agua Subterránea , Carbono , Dióxido de Carbono/análisis , Secuestro de Carbono , Ecosistema , Gases de Efecto Invernadero/análisis , Metano/análisis , Suelo
14.
Sci Total Environ ; 847: 157624, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905958

RESUMEN

Permafrost thaw due to climate change is altering terrestrial hydrological processes by increasing ground hydraulic conductivity and surface and subsurface hydrologic connectivity across the pan-Arctic. Understanding how runoff responds to changes in hydrologic processes and conditions induced by permafrost thaw is critical for water resources management in high-latitude and high-altitude regions. In this study, we analyzed streamflow recession characteristics for 1964-2016 for the Tahe watershed located at the southern margin of the permafrost region in Eurasia. Results reveal a link between streamflow recession and permafrost degradation as indicated by the statistical analyses of streamflow and the modeled ground warming and active layer thickening. The recession constant and the active layer temperatures at depths of 5, 40, 100, and 200 cm simulated by the backpropagation neural network model significantly increased during the study period from 1972 to 2020 due to intensified climate warming in northeastern China. The onset of seasonal active layer thaw was advanced by 10 days, and the modeled active layer thickness increased by 54 cm in this period. The average annual streamflow recession time increased by 11.5 days (+53 %) from the warming period (1972-1988) to the thawing period (1989-2016), with these periods determined from breakpoint analysis. These hydrologic changes arose from increased catchment storage and were correlated to increased active layer thickness and longer seasonal thawing periods. These results highlight that permafrost degradation can significantly extend the recession flow duration in a watershed underlain by discontinuous, sporadic, and isolated permafrost, and thereby alter flooding dynamics and water resources in the southern margin of the Eurasian permafrost region.


Asunto(s)
Hielos Perennes , Regiones Árticas , Cambio Climático , Hidrología , Agua
15.
Mol Ecol ; 31(5): 1403-1415, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34878672

RESUMEN

Microorganisms are major constituents of the total biomass in permafrost regions, whose underlain soils are frozen for at least two consecutive years. To understand potential microbial responses to climate change, here we examined microbial community compositions and functional capacities across four soil depths in an Alaska tundra site. We showed that a 5-year warming treatment increased soil thaw depth by 25.7% (p = .011) within the deep organic layer (15-25 cm). Concurrently, warming reduced 37% of bacterial abundance and 64% of fungal abundances in the deep organic layer, while it did not affect microbial abundance in other soil layers (i.e., 0-5, 5-15, and 45-55 cm). Warming treatment altered fungal community composition and microbial functional structure (p < .050), but not bacterial community composition. Using a functional gene array, we found that the relative abundances of a variety of carbon (C)-decomposing, iron-reducing, and sulphate-reducing genes in the deep organic layer were decreased, which was not observed by the shotgun sequencing-based metagenomics analysis of those samples. To explain the reduced metabolic capacities, we found that warming treatment elicited higher deterministic environmental filtering, which could be linked to water-saturated time, soil moisture, and soil thaw duration. In contrast, plant factors showed little influence on microbial communities in subsurface soils below 15 cm, despite a 25.2% higher (p < .05) aboveground plant biomass by warming treatment. Collectively, we demonstrate that microbial metabolic capacities in subsurface soils are reduced, probably arising from enhanced thaw by warming.


Asunto(s)
Hielos Perennes , Carbono/metabolismo , Ciclo del Carbono , Hielos Perennes/microbiología , Suelo/química , Microbiología del Suelo , Tundra
16.
Microlife ; 3: uqac003, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37223356

RESUMEN

In the context of global warming, the melting of Arctic permafrost raises the threat of a reemergence of microorganisms some of which were shown to remain viable in ancient frozen soils for up to half a million years. In order to evaluate this risk, it is of interest to acquire a better knowledge of the composition of the microbial communities found in this understudied environment. Here, we present a metagenomic analysis of 12 soil samples from Russian Arctic and subarctic pristine areas: Chukotka, Yakutia and Kamchatka, including nine permafrost samples collected at various depths. These large datasets (9.2 × 1011 total bp) were assembled (525 313 contigs > 5 kb), their encoded protein contents predicted, and then used to perform taxonomical assignments of bacterial, archaeal and eukaryotic organisms, as well as DNA viruses. The various samples exhibited variable DNA contents and highly diverse taxonomic profiles showing no obvious relationship with their locations, depths or deposit ages. Bacteria represented the largely dominant DNA fraction (95%) in all samples, followed by archaea (3.2%), surprisingly little eukaryotes (0.5%), and viruses (0.4%). Although no common taxonomic pattern was identified, the samples shared unexpected high frequencies of ß-lactamase genes, almost 0.9 copy/bacterial genome. In addition to known environmental threats, the particularly intense warming of the Arctic might thus enhance the spread of bacterial antibiotic resistances, today's major challenge in public health. ß-Lactamases were also observed at high frequency in other types of soils, suggesting their general role in the regulation of bacterial populations.

17.
Glob Chang Biol ; 28(3): 950-968, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727401

RESUMEN

Permafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO2 ) and methane (CH4 ). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO2 , and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates. Predicting decomposition rates based on litter quality remains challenging, but a promising new way forward is to incorporate measures of the energetic favorability to soil microbes of plant biomass decomposition. We asked how the variation in one such measure, the nominal oxidation state of carbon (NOSC), interacts with changing quantities of plant material inputs to influence the net C balance of a thawing permafrost peatland. We found: (1) Plant productivity (NPP) increased post-thaw, but instead of contributing to increased standing biomass, it increased plant biomass turnover via increased litter inputs to soil; (2) Plant litter thermodynamic favorability (NOSC) and decomposition rate both increased post-thaw, despite limited changes in bulk C:N ratios; (3) these increases caused the higher NPP to cycle more rapidly through both plants and soil, contributing to higher CO2 and CH4  fluxes from decomposition. Thus, the increased C-storage expected from higher productivity was limited and the high global warming potential of CH4 contributed a net positive warming effect. Although post-thaw peatlands are currently C sinks due to high NPP offsetting high CO2 release, this status is very sensitive to the plant community's litter input rate and quality. Integration of novel bioavailability metrics based on litter chemistry, including NOSC, into studies of ecosystem dynamics, is needed to improve the understanding of controls on arctic C stocks under continued ecosystem transition.


Asunto(s)
Hielos Perennes , Regiones Árticas , Dióxido de Carbono/análisis , Ecosistema , Plantas , Suelo/química
18.
Glob Chang Biol ; 27(22): 5889-5906, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34462999

RESUMEN

Climate change-driven permafrost thaw has a strong influence on pan-Arctic regions, via, for example, the formation of thermokarst ponds. These ponds are hotspots of microbial carbon cycling and greenhouse gas production, and efforts have been put on disentangling the role of bacteria and archaea in recycling the increasing amounts of carbon arriving to the ponds from degrading watersheds. However, despite the well-established role of fungi in carbon cycling in the terrestrial environments, the interactions between permafrost thaw and fungal communities in Arctic freshwaters have remained unknown. We integrated data from 60 ponds in Arctic hydro-ecosystems, representing a gradient of permafrost integrity and spanning over five regions, namely Alaska, Greenland, Canada, Sweden, and Western Siberia. The results revealed that differences in pH and organic matter quality and availability were linked to distinct fungal community compositions and that a large fraction of the community represented unknown fungal phyla. Results display a 16%-19% decrease in fungal diversity, assessed by beta diversity, across ponds in landscapes with more degraded permafrost. At the same time, sites with similar carbon quality shared more species, aligning a shift in species composition with the quality and availability of terrestrial dissolved organic matter. We demonstrate that the degradation of permafrost has a strong negative impact on aquatic fungal diversity, likely via interactions with the carbon pool released from ancient deposits. This is expected to have implications for carbon cycling and climate feedback loops in the rapidly warming Arctic.


Asunto(s)
Hielos Perennes , Regiones Árticas , Ecosistema , Hongos , Estanques
19.
Glob Chang Biol ; 27(20): 5124-5140, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34216067

RESUMEN

Permafrost thaw induces soil hydrological changes which in turn affects carbon cycle processes in the Arctic terrestrial ecosystems. However, hydrological impacts of thawing permafrost on microbial processes and greenhouse gas (GHG) dynamics are poorly understood. This study examined changes in microbial communities using gene and genome-centric metagenomics on an Arctic floodplain subject to decadal drainage, and linked them to CO2 and CH4 flux and soil chemistry. Decadal drainage led to significant changes in the abundance, taxonomy, and functional potential of microbial communities, and these modifications well explained the changes in CO2 and CH4 fluxes between ecosystem and atmosphere-increased fungal abundances potentially increased net CO2 emission rates and highly reduced CH4 emissions in drained sites corroborated the marked decrease in the abundance of methanogens and methanotrophs. Interestingly, various microbial taxa disproportionately responded to drainage: Methanoregula, one of the key players in methanogenesis under saturated conditions, almost disappeared, and also Methylococcales methanotrophs were markedly reduced in response to drainage. Seven novel methanogen population genomes were recovered, and the metabolic reconstruction of highly correlated population genomes revealed novel syntrophic relationships between methanogenic archaea and syntrophic partners. These results provide a mechanistic view of microbial processes regulating GHG dynamics in the terrestrial carbon cycle, and disproportionate microbial responses to long-term drainage provide key information for understanding the effects of warming-induced soil drying on microbial processes in Arctic wetland ecosystems.


Asunto(s)
Microbiota , Hielos Perennes , Ciclo del Carbono , Dióxido de Carbono/análisis , Metano , Suelo
20.
Environ Sci Technol ; 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34310124

RESUMEN

Permafrost thaw could increase methane (CH4) emissions, which largely depends on CH4 production driven by methanogenic archaea. However, large-scale evidence regarding key methanogenic taxa and their relative importance to abiotic factors in mediating methanogenesis remains limited. Here, we explored the methanogenic community, potential CH4 production and its determinants in the active layer and permafrost deposits based on soil samples acquired from 12 swamp meadow sites along a ∼1000 km permafrost transect on the Tibetan Plateau. Our results revealed lower CH4 production potential, mcrA gene abundance, and richness in the permafrost layer than those in the active layer. CH4 production potential in both soil layers was regulated by microbial and abiotic factors. Of the microbial properties, marker OTUs, rather than the abundance and diversity of methanogens, stimulated CH4 production potential. Marker OTUs differed between the two soil layers with hydrogenotrophic Methanocellales and facultative acetoclastic Methanosarcina predominant in regulating CH4 production potential in the permafrost and active layer, respectively. Besides microbial drivers, CH4 production potential increased with the carbon/nitrogen (C/N) ratio in both soil layers and was also stimulated by soil moisture in the permafrost layer. These results provide empirical evidence for model improvements to better predict permafrost carbon feedback to climate warming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA