Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
Food Chem ; 459: 140360, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38991443

RESUMEN

Methyl jasmonate (MJ) has potential to regulate fruit ripening and quality. 'Yoho' and 'Jiro' persimmons were sprayed with MJ (0, 2, 4, and 6 mM), four weeks before anticipated harvest to evaluate its effects on fruit colour and bioactive compounds. Preharvest MJ application significantly improved fruit colour with increased a*, b*, chroma, and colour index. The MJ 6 mM application had significantly enhanced soluble solids content (SSC), reduced total chlorophyll content in peel and pulp, and soluble and total tannins in persimmons. MJ treatments exhibited higher contents of total phenolics, flavonoids, carotenoids, and antioxidant activities. Additionally, MJ treatments enhanced the activities of shikimate dehydrogenase (SKDH), phenylalanine ammonia-lyase (PAL), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and lipoxygenase (LOX) enzymes. Overall, pre-harvest MJ application at 6 mM four weeks before anticipated harvest could be useful for advancing colour and improving bioactive compounds in 'Yoho' and 'Jiro' persimmons.

2.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000347

RESUMEN

Persimmon (Diospyros kaki Thunb.) fruit size variation is abundant. Studying the size of the persimmon fruit is helpful in improving its economic value. At present, the regulatory mechanism of persimmon fruit size formation is still unclear. In this study, the mechanism of fruit size formation was investigated through morphological, cytological and transcriptomic analyses, as well as exogenous ethrel and aminoethoxyinylglycine (AVG: ethylene inhibitor) experiments using the large fruit and small fruit of 'Yaoxianwuhua'. The results showed that stages 3-4 (June 11-June 25) are the crucial morphological period for differentiation of large fruit and small fruit in persimmon. At this crucial morphological period, the cell number in large fruit was significantly more than that in small fruit, indicating that the difference in cell number is the main reason for the differentiation of persimmon fruit size. The difference in cell number was caused by cell division. CNR1, ANT, LAC17 and EB1C, associated with cell division, may be involved in regulating persimmon fruit size. Exogenous ethrel resulted in a decrease in fruit weight, and AVG treatment had the opposite effect. In addition, LAC17 and ERF114 were upregulated after ethrel treatment. These results indicated that high ethylene levels can reduce persimmon fruit size, possibly by inhibiting cell division. This study provides valuable information for understanding the regulation mechanism of persimmon fruit size and lays a foundation for subsequent breeding and artificial regulation of fruit size.


Asunto(s)
Diospyros , Frutas , Regulación de la Expresión Génica de las Plantas , Diospyros/genética , Diospyros/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Perfilación de la Expresión Génica , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plants (Basel) ; 13(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891249

RESUMEN

The main units of persimmon proanthocyanidins (PAs) are composed of flavan-3-ols including epigallocatechin gallate (EGCG) and gallocatechin gallate (GCG). Precise quantification of GCG is challenging due to its trace amounts in persimmon. In this study, to establish the optimal UHPLC-Q-Exactive Orbitrap/MS technique for the determination of PAs monomer composition in persimmon fruit flesh of different astringency types, mass spectrometry and chromatographic conditions were optimized. The results showed that when operating in negative ion mode, using a T3 chromatographic column (a type of C18 column with high-strength silica), acetonitrile as the organic phase, a 0.1% mobile phase acid content, and a mobile phase flow rate of 0.2 mL/min, the chromatographic peak shape and resolution of the PAs monomer composition improved. Additionally, there was no tailing phenomenon observed in the chromatographic peaks. At the same time, the intra-day and inter-day precision, stability, and recovery of the procedure were good. The relative standard deviation (RSD) of stability was less than 5%. The intra-day precision was in the range of 1.14% to 2.36%, and the inter-day precision ranged from 1.03% to 2.92%, both of which were less than 5%. The recovery rate ranged from 94.43% to 98.59% with an RSD less than 5%. The results showed that the UHPLC-Q-Exactive Orbitrap/MS technique established in this study can not only be used for the quantification of EGCG and GCG in persimmon fruit flesh but also be suitable for analyzing other PAs monomer compositions, providing robust support for the related research on persimmon PAs.

4.
Plants (Basel) ; 13(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38891381

RESUMEN

Clean tillage frequently causes the loss of soil nutrients and weakens microbial ecosystem service functions. In order to improve orchard soil nutrient cycling, enhance enzyme activities and microbial community structure in a "Jiro" sweet persimmon orchard, sod culture management was carried out to clarify the relationship among soil nutrient, microbial communities, and fruit yield and quality in persimmon orchard. The results showed that sod culture management increased the content of organic matter, total organic carbon, nitrogen, phosphorus, and potassium in the soil, thus improving soil fertility. Compared with clean tillage orchards, sod culture methods significantly increased soil enzyme activities and microbial biomass carbon (MBC) content. The abundance-based coverage estimator (ACE) and the simplest richness estimators (Chao l) indices of the bacterial community and all diversity and richness indices of the fungal community significantly increased in the sod culture orchard, which indicated that sod culture could increase the richness and diversity of the soil microbial community. The dominant bacterial phyla were Proteobacteria (32.21~41.13%) and Acidobacteria (18.76~23.86%), and the dominant fungal phyla were Mortierellomycota (31.11~83.40%) and Ascomycota (3.45~60.14%). Sod culture drove the composition of the microbial community to increase the beneficial microbiome. Correlation analyses and partial least squares path modeling (PLS-PM) comparative analyses showed that the soil chemical properties (mainly including soil organic matter content, total organic carbon content, total potassium content, and total nitrogen content), soil enzyme activities and soil microorganisms were strongly correlated with fruit yield and quality. Meanwhile, soil nutrient, soil enzyme, and soil microbes had also influenced each other. Our results showed that long-term ryegrass planting could improve soil fertility, enzyme activities, and microbial community compositions. Such changes might lead to a cascading effect on the fruit yield and quality of "Jiro" sweet persimmons.

5.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891815

RESUMEN

The growing trend in fruit wine production reflects consumers' interest in novel, diverse drinking experiences and the increasing demand for healthier beverage options. Fruit wines made from kiwi, pomegranates, and persimmons fermented using S. bayanus Lalvin strain EC1118 demonstrate the versatility of winemaking techniques. Kiwifruit, persimmon, and pomegranate wines were analyzed using HPLC and GC-TOFMS analyses to determine their concentrations of phenolic acids and volatile compounds. These results were supported by Fourier transform infrared (FTIR) spectroscopy to characterize and compare chemical shifts in the polyphenol regions of these wines. The wines' characterization included an anti-inflammatory assay based on NO, TNF-alpha, and IL-6 production in the RAW 264.7 macrophage model. FTIR spectroscopy predicted the antioxidant and phenolic contents in the wines. In terms of polyphenols, predominantly represented by chlorogenic, caffeic, and gallic acids, pomegranate and kiwifruit wines showed greater benefits. However, kiwifruit wines exhibited a highly diverse profile of volatile compounds. Further analysis is necessary, particularly regarding the use of other microorganisms in the fermentation process and non-Saccharomyces strains methods. These wines exhibit high biological antioxidant potential and health properties, providing valuable insights for future endeavors focused on designing healthy functional food products.


Asunto(s)
Antiinflamatorios , Fermentación , Frutas , Saccharomyces cerevisiae , Compuestos Orgánicos Volátiles , Vino , Vino/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Ratones , Saccharomyces cerevisiae/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/análisis , Antiinflamatorios/química , Frutas/química , Frutas/metabolismo , Animales , Células RAW 264.7 , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Polifenoles/análisis , Antioxidantes/análisis , Actinidia/química , Granada (Fruta)/química
6.
Food Chem ; 455: 139814, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824735

RESUMEN

Persimmon (Diospyros kaki) leaf is widely used as a tea substitute in East Asia, offering potential health benefits. Although studies have highlighted their effects on hyperpigmentation disorders, the active components remain unidentified. This study introduces a novel approach combining LC-MS/MS-based molecular networking with AlphaFold2-enabled virtual screening to expedite the identification of bioactive components in persimmon leaf. A total of 105 compounds were identified by MS/MS analysis. Further, virtual screening identified five flavonoids with potential anti-melanogenic properties. Bioassays confirmed myricetin, quercetin, and kaempferol inhibited melanogenesis in human melanocytes in a dose-dependent manner. Biolayer interferometry assays revealed strong binding affinity between these flavonols and hsTYR, with KD values of 23.26 ± 11.77 for myricetin, 12.43 ± 0.37 for quercetin, and 14.99 ± 3.80 µM for kaempferol. Molecular dynamics simulations provided insights into the binding interactions of these flavonols with hsTYR, particularly highlighting the essential role of the 3-OH group on the C-ring. This study elucidates the bioactive components responsible for the anti-melanogenic effects of persimmon leaf, supporting their use in product development.


Asunto(s)
Diospyros , Extractos Vegetales , Hojas de la Planta , Espectrometría de Masas en Tándem , Diospyros/química , Hojas de la Planta/química , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanocitos/química , Flavonoides/química , Flavonoides/farmacología , Melaninas/química , Melaninas/metabolismo , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas
7.
Food Microbiol ; 122: 104565, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839213

RESUMEN

To evaluate the effects of bioaugmentation fermentation inoculated with one ester-producing strain (Wickerhamomyces anomalus ZX-1) and two strains of lactic acid bacteria (Lactobacillus plantarum CGMCC 24035 and Lactobacillus acidophilus R2) for improving the flavor of persimmon vinegar, microbial community, flavor compounds and metabolites were analyzed. The results of microbial diversity analysis showed that bioaugmentation fermentation significantly increased the abundance of Lactobacillus, Saccharomyces, Pichia and Wickerhamomyces, while the abundance of Acetobacter, Apiotrichum, Delftia, Komagataeibacter, Kregervanrija and Aspergillus significantly decreased. After bioaugmentation fermentation, the taste was softer, and the sensory irritancy of acetic acid was significantly reduced. The analysis of HS-SPME-GC-MS and untargeted metabolomics based on LC-MS/MS showed that the contents of citric acid, lactic acid, malic acid, ethyl lactate, methyl acetate, isocitrate, acetoin and 2,3-butanediol were significantly increased. By multivariate analysis, 33 differential metabolites were screened out to construct the correlation between the differential metabolites and microorganisms. Pearson correlation analysis showed that methyl acetate, ethyl lactate, betaine, aconitic acid, acetoin, 2,3-butanediol and isocitrate positively associated with Wickerhamomyces and Lactobacillus. The results confirmed that the quality of persimmon vinegar was improved by bioaugmentation fermentation.


Asunto(s)
Ácido Acético , Diospyros , Fermentación , Microbiota , Ácido Acético/metabolismo , Diospyros/microbiología , Diospyros/metabolismo , Saccharomycetales/metabolismo , Gusto , Aromatizantes/metabolismo , Lactobacillus plantarum/metabolismo , Microbiología de Alimentos , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética
8.
Discov Nano ; 19(1): 78, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696067

RESUMEN

The present research aimed at green synthesis of Ag nanoparticles (AgNPs) based colorimetric sensor using persimmon leaf extract (PLE) for selective detection of mercuric ion (Hg2+). Optimization of reaction conditions viz. pH, concentration of PLE, time was done and further AgNPs were characterized using UV, IR, FE-SEM, EDX, XRD and TEM analysis. The developed AgNPs were evaluated for the selective colorimetric detection of Hg2+ in aqueous medium and fluorescence imaging of Hg2+ ions in liver cell lines. Later, the antibacterial activity of AgNPs was performed against S. aureus and E. coli. The findings of the study revealed that PLE mediated AgNPs exhibited notable limit of detection up to 0.1 ppb, high efficiency, and stability. The antibacterial study indicated that developed AgNPs has impressive bacterial inhibiting properties against the tested bacterial strains. In conclusion, developed biogenic AgNPs has high selectivity and notable sensitivity towards Hg2+ ions and may be used as key tool water remediation.

9.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732032

RESUMEN

Fruit shape is an important external feature when consumers choose their preferred fruit varieties. Studying persimmon (Diospyros kaki Thunb.) fruit shape is beneficial to increasing its commodity value. However, research on persimmon fruit shape is still in the initial stage. In this study, the mechanism of fruit shape formation was studied by cytological observations, phytohormone assays, and transcriptome analysis using the long fruit and flat fruit produced by 'Yaoxianwuhua' hermaphroditic flowers. The results showed that stage 2-3 (June 11-June 25) was the critical period for persimmon fruit shape formation. Persimmon fruit shape is determined by cell number in the transverse direction and cell length in the longitudinal direction. High IAA, GA4, ZT, and BR levels may promote long fruit formation by promoting cell elongation in the longitudinal direction, and high GA3 and ABA levels may be more conducive to flat fruit formation by increasing the cell number in the transverse direction and inhibiting cell elongation in the longitudinal direction, respectively. Thirty-two DEGs related to phytohormone biosynthesis and signaling pathways and nine DEGs related to cell division and cell expansion may be involved in the persimmon fruit shape formation process. These results provide valuable information for regulatory mechanism research on persimmon fruit formation.


Asunto(s)
Diospyros , Frutas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Diospyros/genética , Diospyros/metabolismo , Diospyros/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/genética , Flores/metabolismo , Flores/crecimiento & desarrollo
10.
Int J Biol Macromol ; 270(Pt 2): 132232, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734349

RESUMEN

High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.


Asunto(s)
Fármacos Antiobesidad , Microbioma Gastrointestinal , Inulina , Obesidad , Solubilidad , Taninos , Inulina/química , Inulina/farmacología , Taninos/química , Taninos/farmacología , Animales , Ratones , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/química , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Polimerizacion , Diospyros/química , Masculino , Dieta Alta en Grasa/efectos adversos , Polifenoles/química , Polifenoles/farmacología
11.
Int J Biol Macromol ; 270(Pt 2): 132524, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777017

RESUMEN

The interaction mode between persimmon leaf polyphenols (PLP) and corn starch with different amylose content and its effect on starch digestibility was studied. Results of iodine binding test, TGA, and DSC revealed that PLP interacted with starch and reduced the iodine binding capacity and thermal stability of starch. High amylopectin corn starch (HAPS) interacted with PLP mainly via hydrogen bonds, since the FT-IR of HAPS-PLP complex showed higher intensity at 3400 cm-1 and an obvious shift of 21 cm-1 to shorter wavelength, and the chemical shifts of protons in 1H NMR and the shift of C-6 peak in 13C NMR of HAPS moved to low field with the addition of PLP. Results of 1H NMR also showed the preferential formation of hydrogen bonds between PLP and OH-3 of HAPS. Different from HAPS, PLP formed V-type inclusion complex with high amylose corn starch (HAS) because XRD of HAS-PLP complex showed characteristic feature peaks of V-type inclusion complex and C-1 signal in 13C NMR of PLP-complexed HAS shifted to low field. Interaction with PLP reduced starch digestibility and HAS-PLP complex resulted in more resistant starch production than HAPS-PLP complex. To complex PLP with starch might be a potential way to prepare functional starch with slower digestion.


Asunto(s)
Diospyros , Hojas de la Planta , Polifenoles , Almidón , Polifenoles/química , Almidón/química , Hojas de la Planta/química , Diospyros/química , Amilosa/química , Amilopectina/química , Digestión , Zea mays/química , Enlace de Hidrógeno
12.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612933

RESUMEN

Tannins, present in numerous plants, exhibit a binding affinity for proteins. In this study, we aimed to exploit this property to reduce the concentration of allergenic egg white proteins. Tannins were extracted, using hot water, from the lyophilized powder of underutilized resources, such as chestnut inner skin (CIS), young persimmon fruit (YPF), and bayberry leaves (BBLs). These extracts were then incorporated into an egg white solution (EWS) to generate an egg white gel (EWG). Allergen reduction efficacy was assessed using electrophoresis and ELISA. Our findings revealed a substantial reduction in allergenic proteins across all EWGs containing a 50% tannin extract. Notably, CIS and BBL exhibited exceptional efficacy in reducing low allergen levels. The addition of tannin extract resulted in an increase in the total polyphenol content of the EWG, with the order of effectiveness being CIS > YPF > BBL. Minimal color alteration was observed in the BBL-infused EWG compared to the other sources. Additionally, the introduction of tannin extract heightened the hardness stress, with BBL demonstrating the most significant effect, followed by CIS and YPF. In conclusion, incorporating tannin extract during EWG preparation was found to decrease the concentration of allergenic proteins while enhancing antioxidant properties and hardness stress, with BBL being particularly effective in preventing color changes in EWG.


Asunto(s)
Diospyros , Taninos , Alérgenos , Piel , Geles , Extractos Vegetales
13.
Food Res Int ; 184: 114251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609229

RESUMEN

Persimmon (Diospyros kaki L. cv. Mopan.), an important commercial crop belonging to the genus of Diospyros in the Ebenaceae family, is rich in bioactive phenolic compounds. In this study, the phenolic compounds from fruits, leaves, and calyces of persimmon were qualitatively and quantitatively determined by UPLC-Q-Exactive-Orbitrap/MS and UPLC-QqQ-MS/MS, respectively. Furthermore, the role of phenolic extract from different parts of persimmon on neuroprotective activity in vitro, through against oxidative stress and anti-neuroinflammation effect was firstly evaluated. The results showed that 75 phenolic compounds, and 3 other kinds of compounds were identified, among which 44 of phenolic compounds were quantified from different parts of persimmon. It is the first time that epicatechin-epigallocatechin, catechin-epigallocatechin, catechin-epigallocatechin (A-type), and glycoside derivatives of laricitrin were identified in persimmon extract. The dominated phenolic compounds in three parts of persimmon were significantly different. All phenolic extracts from each part of persimmon showed strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells and LPS-induced BV2 cells. The fruit extract presented the strongest activity, followed by calyx and leaf extract. The systematic knowledge on the phytochemical composition along with activity evaluation of different parts of persimmon could contribute to their targeted selection and development.


Asunto(s)
Catequina , Diospyros , Enfermedades Neurodegenerativas , Cromatografía Líquida de Alta Presión , Peróxido de Hidrógeno , Espectrometría de Masas en Tándem , Extractos Vegetales/farmacología
14.
Int J Biol Macromol ; 266(Pt 1): 131083, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531519

RESUMEN

Owing to the powerful affinity of tannin toward heavy metal ions, it is frequently immobilized on adsorbents to enhance their adsorption properties. However, natural adsorbents containing tannin have been overlooked owing to its water solubility. Herein, a novel natural adsorbent based on the immature persimmon residue (IPR) with soluble tannin removed was fabricated to eliminate Pb(II) and Cr(VI) in aquatic environments. The insoluble tannin in IPR endowed it with prosperous properties for eliminating Pb(II) and Cr(VI), and the IPR achieved maximum Pb(II) and Cr(VI) adsorption quantities of 68.79 mg/g and 139.40 mg/g, respectively. Kinetics and isothermal adsorption analysis demonstrated that the removal behavior was controlled by monolayer chemical adsorption. Moreover, the IPR exhibited satisfactory Pb(II) and Cr(VI) removal efficiencies even in the presence of multiple coexisting ions and showed promising regeneration potential after undergoing five consecutive cycles. Additionally, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analysis unveiled that the elimination mechanisms were primarily electrostatic attraction, chelation and reduction. Overall, the IPR, as a tannin-containing biosorbent, was verified to possess substantial potential for heavy metal removal, which can provide new insights into the development of novel natural adsorbents from the perspective of waste resource utilization.


Asunto(s)
Cromo , Diospyros , Plomo , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Cromo/química , Cromo/aislamiento & purificación , Aguas Residuales/química , Plomo/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Diospyros/química , Purificación del Agua/métodos , Cinética , Taninos/química , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno
15.
Cureus ; 16(2): e54420, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38510864

RESUMEN

Introduction Bezoars, masses of indigestible foreign bodies formed in the gastrointestinal tract, pose challenges in their management. Phytobezoars are particularly problematic due to their difficult diagnosis and resilience towards treatment. Recently, Coca-Cola has emerged as a potential solution due to its acidic composition and mucolytic properties. However, existing evidence is limited, highlighting the need for comprehensive studies. This research explores the efficacy of Coca-Cola in dissolving persimmon-related phytobezoars, aiming to contribute valuable insights to non-invasive treatment options. Material and methods Conducted as a descriptive case series, this study employed gastric cola lavage using non-probability purposive sampling. Patients aged 18-70 with persimmon-related phytobezoars were included. Two nasogastric tubes were inserted for cola lavage over 12 hours, utilizing three liters of cola until the disappearance of symptoms. When the bezoar disappeared, it was considered as complete success to the treatment. Results Out of 31 patients, 45.2% were male and 54.8% were female, with a mean age of 56.77 ± 9.01 years. Efficacy was noted in 54.8% of cases. Age less than 50 and no history of diabetes mellitus were associated with higher chances of treatment success (p-value ≤0.05). Conclusion Ingestion of Coca-Cola was highly effective, safe, and reliable for the dissolution of persimmon-related phytobezoars, as the frequency of efficacy was high in our study. Coca-Cola ingestion is a non-invasive and cost-effective mode of phytobezoar dissolution that should be taken as a first-line initial treatment option to attain desired outcomes.

16.
BMC Genomics ; 25(1): 285, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500026

RESUMEN

BACKGROUND: 'Taishuu' has a crisp texture, abundant juice, and sweet flavor with hints of cantaloupe. The availability of mitochondrial genome data of Diospyros species is far from the known number of species. RESULTS: The sequencing data were assembled into a closed circular mitochondrial chromosome with a 421,308 bp length and a 45.79% GC content. The mitochondrial genome comprised 40 protein-coding, 24 tRNA, and three rRNA genes. The most common codons for arginine (Arg), proline (Pro), glycine (Gly), tryptophan (Trp), valine (Val), alanine (Ala), and leucine (Leu) were AGA, CCA, GGA, UGG, GUA, GCA, and CUA, respectively. The start codon for cox1 and nad4L protein-coding genes was ACG (ATG), whereas the remaining protein-coding genes started with ATG. There are four types of stop codons: CGA, TAA, TAG, and TGA, with TAA being the most frequently used stop codon (45.24%). In the D. kaki Thunb. 'Taishuu' mitochondrial genome, a total of 645 repeat sequences were identified, including 125 SSRs, 7 tandem repeats, and 513 dispersed repeats. Collinearity analysis revealed a close relationship between D. kaki Thunb. 'Taishuu' and Diospyros oleifera, with conserved homologous gene fragments shared among these species in large regions of the mitochondrial genome. The protein-coding genes ccmB and nad4L were observed to undergo positive selection. Analysis of homologous sequences between chloroplasts and mitochondria identified 28 homologous segments, with a total length of 24,075 bp, accounting for 5.71% of the mitochondrial genome. These homologous segments contain 8 annotated genes, including 6 tRNA genes and 2 protein-coding genes (rrn18 and ccmC). There are 23 homologous genes between chloroplasts and nuclei. Mitochondria, chloroplasts, and nuclei share two homologous genes, which are trnV-GAC and trnW-CCA. CONCLUSION: In conclusion, a high-quality chromosome-level draft genome for D. kaki was generated in this study, which will contribute to further studies of major economic traits in the genus Diospyros.


Asunto(s)
Diospyros , Genoma Mitocondrial , Diospyros/genética , Secuencias Repetitivas de Ácidos Nucleicos , Codón de Terminación , ARN de Transferencia/genética , Filogenia
17.
Foods ; 13(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38472861

RESUMEN

Persimmon wine has various nutritional elements and high commercial potential. However, the high content of methanol, which is derived from the fruit's pectin, always hinders persimmon wine production. To reduce the methanol level in the wine, the effects of persimmon cultivar, starter, pectinase, and pretreatment methods were investigated via single-factor and orthogonal experiments. The persimmon cultivar 'MaoKui' was finally used throughout the study owing to its lowest pectin concentration (24.5 g/kg). The best treatment conditions against the persimmon pulp were pectinase (0.04 g/kg) at 30 °C for 4 h, then boiled at 115 °C for 15 min before fermentation started. The optimized fermentation conditions for wine production were pectinase (0.03 g/kg), 250 mg/kg starter (BO213 and SPARK with equal amounts), at 28 °C for 6 d. The obtained wine had 77.7 mg/L methanol and a 68.4% raw juice yield. The fruit wine had 111.4 mg/L methanol and a 90.6 sensory evaluation score. Forty-nine volatile aromas were identified. Ethyl acetate content was the highest, followed by 3-methyl-1-butanol, 2,3-butanediol, and lactate ethyl ester. The persimmon wine had a unique style with transparent color, elegant aroma, and pure taste.

18.
J Sci Food Agric ; 104(10): 6118-6126, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38445539

RESUMEN

BACKGROUND: Saccharomyces cerevisiae plays a pivotal role in various industrial processes, including bioethanol production and alcoholic beverage fermentation. However, during these fermentations, yeasts are subjected to various environmental stresses, such as ethanol stress, which hinder cell growth and ethanol production. Genetic manipulations and the addition of natural ingredients rich in antioxidants to the culture have been shown to overcome this. Here, we investigated the potential of persimmon tannins, known for their antioxidative properties, to enhance the ethanol stress tolerance of yeast. RESULTS: Assessment of the effects of 6.25 mg mL-1 persimmon tannins after 48 h incubation revealed cell viability to be increased by 8.9- and 6.5-fold compared to the control treatment with and without 12.5% ethanol, respectively. Furthermore, persimmon tannins reduced ethanol-induced oxidative stress, including the production of cellular reactive oxygen species and acceleration of lipid peroxidation. However, persimmon tannins could hardly overcome ethanol-induced cell membrane damage. CONCLUSION: The findings herein indicate the potential of persimmon tannin as a protective agent for increasing yeast tolerance to ethanol stress by restricting oxidative damage but not membrane damage. Overall, this study unveils the implications of persimmon tannins for industries relying on yeast. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Diospyros , Etanol , Fermentación , Estrés Oxidativo , Saccharomyces cerevisiae , Taninos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Etanol/metabolismo , Etanol/farmacología , Diospyros/química , Taninos/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Frutas/química , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Peroxidación de Lípido/efectos de los fármacos
19.
Stress Biol ; 4(1): 17, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407659

RESUMEN

Persimmon anthracnose, a severe disease caused by the hemibiotrophic fungus Colletotrichum horii, poses a substantial threat to China's persimmon industry. Previous research showed that 'Kangbing Jianshi' cultivar exhibits strong resistance to anthracnose. Notably, 'Kangbing Jianshi' branches exhibit greater lignification compared with the susceptible 'Fuping Jianshi' cultivar. In this study, higher lignin content was observed in 'Kangbing Jianshi' compared with 'Fuping Jianshi', and this difference was associated with disease resistance. Transcriptome and metabolome analyses revealed that the majority of differentially expressed genes and differentially accumulated metabolites were primarily enriched in the phenylpropanoid biosynthesis and lignin synthesis pathways. Furthermore, significant upregulation of DkCAD1, a pivotal gene involved in lignin metabolism, was observed in the resistant cultivar when inoculated with C. horii. Transient overexpression of DkCAD1 substantially increased lignin content and improved resistance to C. horii in a susceptible cultivar. Furthermore, through yeast one-hybrid (Y1H) assays, we identified two WRKY transcription factors, DkWRKY8 and DkWRKY10, which interacts with the DkCAD1 promoter and induces its activity. Overexpression of DkWRKY8 and DkWRKY10 not only increased leaf lignin content but also enhanced persimmon tolerance to C. horii. Moreover, the expression levels of DkCAD1, DkWRKY8, and DkWRKY10 were significantly increased in response to salicylic acid and jasmonic acid in the resistant cultivar. These findings enhance our understanding of the molecular functions of DkWRKY8, DkWRKY10, and DkCAD1 in persimmons, as well as their involvement in molecular breeding processes in persimmons.

20.
J Food Sci ; 89(4): 2332-2346, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38380681

RESUMEN

Persimmons contribute positively to human health. Although off-season utilization typically presents a challenge due to permissions' perishable nature, it may become feasible through the implementation of appropriate drying methods. In this study, round sliced samples were dried to assess drying kinetics, modeling potential, color attributes, rehydration capacity, energy consumption (EC), cost index, and thermal properties. The fruits were subjected to distinct drying methodologies including freeze-drying, continuous infrared drying (300, 400, and 500 W), and intermittent infrared drying (PR = 1 [continuous], PR = 2 [30 s on-30 s off], and PR = 3 [20 s on-40 s off]). The duration of the drying process ranged from 40 to 390 min. It was determined that the most suitable models for depicting continuous and infrared drying kinetics of persimmon fruit were the Midilli et al. and Page models, whereas the Logarithmic model was identified as the optimal choice for characterization of freeze-drying kinetics. Assessment of EC revealed that both intermittent and continuous infrared drying methods incurred lower energy expenditure in comparison to the freeze-drying technique. Remarkably, throughout the course of the infrared drying processes, product surface temperatures varied between 106.33 and 22.65°C across different treatments. Despite its high EC, it has been found that high-quality products are produced by freeze-drying. However, infrared and intermittent infrared applications can be a low energy cost and feasible method for drying persimmon with a shorter duration. PRACTICAL APPLICATION: Persimmon is an important fruit with high nutritional value. However, as with many fresh products, they have a short shelf life. Within the scope of this research, three different drying methodologies were employed in the desiccation of persimmon specimens, and the impact of these methodologies on the overall qualitative attributes of the persimmon product was investigated. Despite its elevated energy consumption, the freeze-drying approach was found to yield high-quality products. Moreover, it was discerned that infrared drying represented a viable and expeditious alternative for drying the fruit, particularly when executed intermittently.


Asunto(s)
Desecación , Diospyros , Humanos , Desecación/métodos , Frutas , Liofilización/métodos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...