Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomaterials ; 312: 122719, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39088912

RESUMEN

Acute myeloid leukemia (AML) is a deadly form of leukemia with ineffective traditional treatment and frequent chemoresistance-associated relapse. Personalized drug screening holds promise in identifying optimal regimen, nevertheless, primary AML cells undergo spontaneous apoptosis during cultures, invalidating the drug screening results. Here, we reconstitute a 3D osteogenic niche (3DON) mimicking that in bone marrow to support primary AML cell survival and phenotype maintenance in cultures. Specifically, 3DON derived from osteogenically differentiated mesenchymal stem cells (MSC) from healthy and AML donors are co-cultured with primary AML cells. The AML cells under the AML_3DON niche showed enhanced viability, reduced apoptosis and maintained CD33+ CD34-phenotype, associating with elevated secretion of anti-apoptotic cytokines in the AML_3DON niche. Moreover, AML cells under the AML_3DON niche exhibited low sensitivity to two FDA-approved chemotherapeutic drugs, further suggesting the physiological resemblance of the AML_3DON niche. Most interestingly, AML cells co-cultured with the healthy_3DON niche are highly sensitive to the same sample drugs. This study demonstrates the differential responses of AML cells towards leukemic and healthy bone marrow niches, suggesting the impact of native cancer cell niche in drug screening, and the potential of re-engineering healthy bone marrow niche in AML patients as chemotherapeutic adjuvants overcoming chemoresistance, respectively.


Asunto(s)
Supervivencia Celular , Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Fenotipo , Microambiente Tumoral , Humanos , Leucemia Mieloide Aguda/patología , Microambiente Tumoral/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo/métodos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Médula Ósea/patología , Médula Ósea/efectos de los fármacos , Nicho de Células Madre/efectos de los fármacos , Células de la Médula Ósea/citología , Masculino , Diferenciación Celular/efectos de los fármacos , Femenino
2.
Comput Biol Med ; 180: 108970, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096606

RESUMEN

Huntington's disease (HD) is a complex neurodegenerative disorder with considerable heterogeneity in clinical manifestations. While CAG repeat length is a known predictor of disease severity, this heterogeneity suggests the involvement of additional genetic and environmental factors. Previously we revealed that HD primary fibroblasts exhibit unique features, including distinct nuclear morphology and perturbed actin cap, resembling characteristics seen in Hutchinson-Gilford Progeria Syndrome (HGPS). This study establishes a link between actin cap deficiency and cell motility in HD, which correlates with the HD patient disease severity. Here, we examined single-cell motility imaging features in HD primary fibroblasts to explore in depth the relationship between cell migration patterns and their respective HD patients' clinical severity status (premanifest, mild and severe). The single-cell analysis revealed a decline in overall cell motility in correlation with HD severity, being most prominent in severe HD subgroup and HGPS. Moreover, we identified seven distinct spatial clusters of cell migration in all groups, which their proportion varies within each group becoming a significant HD severity classifier between HD subgroups. Next, we investigated the relationship between Lamin B1 expression, serving as nuclear envelope morphology marker, and cell motility finding that changes in Lamin B1 levels are associated with specific motility patterns within HD subgroups. Based on these data we present an accurate machine learning classifier offering comprehensive exploration of cellular migration patterns and disease severity markers for future accurate drug evaluation opening new opportunities for personalized treatment approaches in this challenging disorder.


Asunto(s)
Movimiento Celular , Fibroblastos , Enfermedad de Huntington , Aprendizaje Automático , Humanos , Fibroblastos/metabolismo , Fibroblastos/patología , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/genética , Masculino , Femenino , Piel/diagnóstico por imagen , Piel/patología , Piel/metabolismo , Progresión de la Enfermedad , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Células Cultivadas , Adulto , Persona de Mediana Edad
3.
Cell Rep Med ; 5(7): 101627, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38964315

RESUMEN

The efficacy of chemotherapy varies significantly among patients with gastric cancer (GC), and there is currently no effective strategy to predict chemotherapeutic outcomes. In this study, we successfully establish 57 GC patient-derived organoids (PDOs) from 73 patients with GC (78%). These organoids retain histological characteristics of their corresponding primary GC tissues. GC PDOs show varied responses to different chemotherapeutics. Through RNA sequencing, the upregulation of tumor suppression genes/pathways is identified in 5-fluorouracil (FU)- or oxaliplatin-sensitive organoids, whereas genes/pathways associated with proliferation and invasion are enriched in chemotherapy-resistant organoids. Gene expression biomarker panels, which could distinguish sensitive and resistant patients to 5-FU and oxaliplatin (area under the dose-response curve [AUC] >0.8), are identified. Moreover, the drug-response results in PDOs are validated in patient-derived organoids-based xenograft (PDOX) mice and are consistent with the actual clinical response in 91.7% (11/12) of patients with GC. Assessing chemosensitivity in PDOs can be utilized as a valuable tool for screening chemotherapeutic drugs in patients with GC.


Asunto(s)
Fluorouracilo , Organoides , Medicina de Precisión , Neoplasias Gástricas , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Humanos , Organoides/efectos de los fármacos , Organoides/patología , Organoides/metabolismo , Animales , Medicina de Precisión/métodos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Masculino , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Ensayos de Selección de Medicamentos Antitumorales/métodos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Anciano , Relevancia Clínica
4.
Cell Rep Med ; 4(11): 101277, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37944531

RESUMEN

Patients with biliary tract cancer (BTC) show different responses to chemotherapy, and there is no effective way to predict chemotherapeutic response. We have generated 61 BTC patient-derived organoids (PDOs) from 82 tumors (74.4%) that show similar histological and genetic characteristics to the corresponding primary BTC tissues. BTC tumor tissues with enhanced stemness- and proliferation-related gene expression by RNA sequencing can more easily form organoids. As expected, BTC PDOs show different responses to the chemotherapies of gemcitabine, cisplatin, 5-fluoruracil, oxaliplatin, etc. The drug screening results in PDOs are further validated in PDO-based xenografts and confirmed in 92.3% (12/13) of BTC patients with actual clinical response. Moreover, we have identified gene expression signatures of BTC PDOs with different drug responses and established gene expression panels to predict chemotherapy response in BTC patients. In conclusion, BTC PDO is a promising precision medicine tool for anti-cancer therapy in BTC patients.


Asunto(s)
Neoplasias del Sistema Biliar , Detección Precoz del Cáncer , Humanos , Evaluación Preclínica de Medicamentos , Gemcitabina , Neoplasias del Sistema Biliar/tratamiento farmacológico , Neoplasias del Sistema Biliar/genética , Neoplasias del Sistema Biliar/patología , Organoides/patología
5.
Front Cell Dev Biol ; 11: 1013721, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743412

RESUMEN

Primary fibroblasts from patient's skin biopsies are directly isolated without any alteration in the genome, retaining in culture conditions their endogenous cellular characteristics and biochemical properties. The aim of this study was to identify a distinctive cell phenotype for potential drug evaluation in fibroblasts from Huntington's Disease (HD) patients, using image-based high content analysis. We show that HD fibroblasts have a distinctive nuclear morphology associated with a nuclear actin cap deficiency. This in turn affects cell motility in a similar manner to fibroblasts from Hutchinson-Gilford progeria syndrome (HGPS) patients used as known actin cap deficient cells. Moreover, treatment of the HD cells with either Latrunculin B, used to disrupt actin cap formation, or the antioxidant agent Mitoquinone, used to improve mitochondrial activity, show expected opposite effects on actin cap associated morphological features and cell motility. Deep data analysis allows strong cluster classification within HD cells according to patients' disease severity score which is distinct from HGPS and matching controls supporting that actin cap is a biomarker in HD patients' cells correlated with HD severity status that could be modulated by pharmacological agents as tool for personalized drug evaluation.

6.
Cancer Manag Res ; 13: 2849-2867, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833569

RESUMEN

PURPOSE: With this study, we intended to construct a personalized drug-screening system for platinum-resistant ovarian cancer patients by consulting a patient's medical history, data derived from gene mutation detection, and drug screening results derived from mini-PDX (patient-derived xenograft) models. We also aimed to evaluate the efficacy and safety of our system. PATIENTS AND METHODS: We selected 12 patients with platinum-resistant ovarian cancer who were treated at our hospital from January 2018 to December 2019 to design a single-arm clinical trial. The subsequent chemotherapeutic plans were selected according to a personalized drug-screening system that circulating tumor DNA (ctDNA) testing and the establishment of mini-PDX models. We then analyzed the patients for clinical benefits side-effects in response to chemotherapy in order to evaluate the clinical effects and safety of our new personalized drug-selection system. RESULTS: We successfully established an individualized and sensitive drug-screening system for the 12 patients. Mini-PDX models verified that potentially effective drugs were identified for 11 of the patients. Treatment resulted in complete remission (one patient), partial remission (five patients), and stable disease (three patients). The remaining three patients experienced disease progression. The overall clinical-benefit rate was 75.0%. Following treatment, the levels of CA125 levels decreased significantly in seven of the 12 patients. Severe side effects, arising from chemotherapy, were only observed in one case. CONCLUSION: Constructing a personalized drug-screening system for platinum-resistant ovarian cancer patients can be used to guide clinical drug selection and improve the clinical-benefit rate for patients. TRIAL REGISTRATION NUMBER: ChiCTR1800016766 (Chinese Clinical Trial Registry Center).

7.
SLAS Technol ; 26(3): 287-299, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33292045

RESUMEN

Derivation and differentiation of human induced pluripotent stem cells (hiPSCs) provide the opportunity to generate medically important cell types from individual patients and patient populations for research and the development of potential cell therapies. This technology allows disease modeling and drug screening to be carried out using diverse population cohorts and with more relevant cell phenotypes than can be accommodated using traditional immortalized cell lines. However, technical complexities in the culture and differentiation of hiPSCs, including lack of scale and standardization and prolonged experimental timelines, limit the adoption of this technology for many large-scale studies, including personalized drug screening. The entry of reproducible end-to-end automated workflows for hiPSC culture and differentiation, demonstrated on commercially available platforms, provides enhanced accessibility of this technology for both research laboratories and commercial pharmaceutical testing. Here we have utilized TECAN Fluent automated cell culture workstations to perform hiPSC culture and differentiation in a reproducible and scalable process to generate patient-derived retinal pigment epithelial cells for downstream use, including drug testing. hiPSCs derived from multiple donors with age-related macular degeneration (AMD) were introduced into our automated workflow, and cell lines were cultured and differentiated into retinal pigment epithelium (RPE). Donor hiPSC-RPE lines were subsequently entered in an automated drug testing workflow to measure mitochondrial function after exposure to "mitoactive" compounds. This work demonstrates scalable, reproducible culture and differentiation of hiPSC lines from individuals on the TECAN Fluent platform and illustrates the potential for end-to-end automation of hiPSC-based personalized drug testing.


Asunto(s)
Células Madre Pluripotentes Inducidas , Preparaciones Farmacéuticas , Diferenciación Celular , Línea Celular , Humanos , Epitelio Pigmentado de la Retina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA