Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Molecules ; 29(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675653

RESUMEN

Leishmaniasis, an infectious disease caused by pathogenic Leishmania parasites, affects millions of people in developing countries, and its re-emergence in developed countries, particularly in Europe, poses a growing public health concern. The limitations of current treatments and the absence of effective vaccines necessitate the development of novel therapeutics. In this study, we focused on identifying small molecule inhibitors which prevents the interaction between peroxin 5 (PEX5) and peroxisomal targeting signal 1 (PTS1), pivotal for kinetoplastid parasite survival. The Leishmania donovani PEX5, containing a C-terminal tetratricopeptide repeat (TPR) domain, was expressed and purified, followed by the quantification of kinetic parameters of PEX5-PTS1 interactions. A fluorescence polarization-based high-throughput screening assay was developed and small molecules inhibiting the LdPEX5-PTS1 interaction were discovered through the screening of a library of 51,406 compounds. Based on the confirmatory assay, nine compounds showed half maximal inhibitory concentration (IC50) values ranging from 3.89 to 24.50 µM. In silico docking using a homology model of LdPEX5 elucidated that the molecular interactions between LdPEX5 and the inhibitors share amino acids critical for PTS1 binding. Notably, compound P20 showed potent activity against the growth of L. donovani promastigotes, L. major promastigotes, and Trypanosoma brucei blood stream form, with IC50 values of 12.16, 19.21, and 3.06 µM, respectively. The findings underscore the potential of targeting LdPEX5-PTS1 interactions with small molecule inhibitors as a promising strategy for the discovery of new anti-parasitic compounds.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Leishmania donovani , Simulación del Acoplamiento Molecular , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Proteínas Protozoarias , Leishmania donovani/efectos de los fármacos , Leishmania donovani/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/química , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Polarización de Fluorescencia/métodos , Unión Proteica , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Antiprotozoarios/farmacología , Antiprotozoarios/química , Humanos
2.
Front Cell Infect Microbiol ; 14: 1274506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510966

RESUMEN

Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle. In this study, we functionally characterized a putative Trypanosoma PEX1 orthologue by bioinformatic and experimental approaches and show that it is a true PEX1 orthologue. Using yeast two-hybrid analysis, we demonstrate that TbPEX1 can bind to TbPEX6. Endogenously tagged TbPEX1 localizes to glycosomes in the T. brucei parasites. Depletion of PEX1 gene expression by RNA interference causes lethality to the bloodstream form trypanosomes, due to a partial mislocalization of glycosomal enzymes to the cytosol and ATP depletion. TbPEX1 RNAi leads to a selective proteasomal degradation of both matrix protein import receptors TbPEX5 and TbPEX7. Unlike in yeast, PEX1 depletion did not result in an accumulation of ubiquitinated TbPEX5 in trypanosomes. As PEX1 turned out to be essential for trypanosomatid parasites, it could provide a suitable drug target for parasitic diseases. The results also suggest that these parasites possess a highly efficient quality control mechanism that exports the import receptors from glycosomes to the cytosol in the absence of a functional TbPEX1-TbPEX6 complex.


Asunto(s)
Parásitos , Proteínas de Saccharomyces cerevisiae , Trypanosoma , Animales , Parásitos/metabolismo , Saccharomyces cerevisiae/metabolismo , Peroxisomas/genética , Peroxisomas/metabolismo , Microcuerpos , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Biomolecules ; 14(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38540734

RESUMEN

Gliomas, the most prevalent and lethal form of brain cancer, are known to exhibit metabolic alterations that facilitate tumor growth, invasion, and resistance to therapies. Peroxisomes, essential organelles responsible for fatty acid oxidation and reactive oxygen species (ROS) homeostasis, rely on the receptor PEX5 for the import of metabolic enzymes into their matrix. However, the prognostic significance of peroxisomal enzymes for glioma patients remains unclear. In this study, we elucidate that PEX5 is indispensable for the cell growth, migration, and invasion of glioma cells. We establish a robust prognosis model based on the expression of peroxisomal enzymes, whose localization relies on PEX5. This PEX5-dependent signature not only serves as a robust prognosis model capable of accurately predicting outcomes for glioma patients, but also effectively distinguishes several clinicopathological features, including the grade, isocitrate dehydrogenase (IDH) mutation, and 1p19q codeletion status. Furthermore, we developed a nomogram that integrates the prognostic model with other clinicopathological factors, demonstrating highly accurate performance in estimating patient survival. Patients classified into the high-risk group based on our prognostic model exhibited an immunosuppressive microenvironment. Finally, our validation reveals that the elevated expression of GSTK1, an antioxidant enzyme within the signature, promotes the cell growth and migration of glioma cells, with this effect dependent on the peroxisomal targeting signal recognized by PEX5. These findings identify the PEX5-dependent signature as a promising prognostic tool for gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioma/diagnóstico , Glioma/genética , Mutación , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Pronóstico , Microambiente Tumoral
4.
Trends Cell Biol ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37743160

RESUMEN

Peroxisomes are vital metabolic organelles that import their lumenal (matrix) enzymes from the cytosol using mobile receptors. Surprisingly, the receptors can even import folded proteins, but the underlying mechanism has been a mystery. Recent results reveal how import receptors shuttle cargo into peroxisomes. The cargo-bound receptors move from the cytosol across the peroxisomal membrane completely into the matrix by a mechanism that resembles transport through the nuclear pore. The receptors then return to the cytosol through a separate retrotranslocation channel, leaving the cargo inside the organelle. This cycle concentrates imported proteins within peroxisomes, and the energy for cargo import is supplied by receptor export. Peroxisomal protein import thus fundamentally differs from other previously known mechanisms for translocating proteins across membranes.

5.
Adv Sci (Weinh) ; 10(20): e2300402, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37171794

RESUMEN

The peroxisome is a ubiquitous organelle in rodent cells and plays important roles in a variety of cell types and tissues. It is previously indicated that peroxisomes are associated with auditory function, and patients with peroxisome biogenesis disorders (PBDs) are found to have hearing dysfunction, but the specific role of peroxisomes in hearing remains unclear. In this study, two peroxisome-deficient mouse models (Atoh1-Pex5-/- and Pax2-Pex5-/- ) are established and it is found that peroxisomes mainly function in the hair cells of cochleae. Furthermore, peroxisome deficiency-mediated negative effects on hearing do not involve mitochondrial dysfunction and oxidative damage. Although the mammalian target of rapamycin complex 1 (mTORC1) signaling is shown to function through peroxisomes, no changes are observed in the mTORC1 signaling in Atoh1-Pex5-/- mice when compared to wild-type (WT) mice. However, the expression of large-conductance, voltage-, and Ca2+ -activated K+ (BK) channels is less in Atoh1-Pex5-/- mice as compared to the WT mice, and the administration of activators of BK channels (NS-1619 and NS-11021) restores the auditory function in knockout mice. These results suggest that peroxisomes play an essential role in cochlear hair cells by regulating BK channels. Hence, BK channels appear as the probable target for treating peroxisome-related hearing diseases such as PBDs.


Asunto(s)
Pérdida Auditiva , Canales de Potasio de Gran Conductancia Activados por el Calcio , Ratones , Animales , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Peroxisomas/metabolismo , Células Ciliadas Auditivas/metabolismo , Ratones Noqueados , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mamíferos/metabolismo
6.
Redox Biol ; 62: 102652, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36906951

RESUMEN

The present study identified a novel mechanism underlying the protective effect of Sirtuin 3 (SIRT3) against pathological cardiac hypertrophy, beyond its well-accepted role as a deacetylase in mitochondria. SIRT3 modulates the peroxisomes-mitochondria interplay by preserving the expression of peroxisomal biogenesis factor 5 (PEX5), thereby improving mitochondrial function. Downregulation of PEX5 was observed in the hearts of Sirt3-/- mice and angiotensin II-induced cardiac hypertrophic mice, as well as in cardiomyocytes with SIRT3 silencing. PEX5 knockdown abolished the protective effect of SIRT3 against cardiomyocyte hypertrophy, whereas PEX5 overexpression alleviated the hypertrophic response induced by SIRT3 inhibition. PEX5 was involved in the regulation of SIRT3 in mitochondrial homeostasis, including mitochondrial membrane potential, mitochondrial dynamic balance, mitochondrial morphology and ultrastructure, as well as ATP production. In addition, SIRT3 alleviated peroxisomal abnormalities in hypertrophic cardiomyocytes via PEX5, as implied by improvement of peroxisomal biogenesis and ultrastructure, as well as increase of peroxisomal catalase and repression of oxidative stress. Finally, the role of PEX5 as a key regulator of the peroxisomes-mitochondria interplay was confirmed, since peroxisomal defects caused by PEX5 deficiency led to mitochondrial impairment. Taken together, these observations indicate that SIRT3 could maintain mitochondrial homeostasis by preserving the peroxisomes-mitochondria interplay via PEX5. Our findings provide a new understanding of the role of SIRT3 in mitochondrial regulation via interorganelle communication in cardiomyocytes.


Asunto(s)
Mitocondrias , Sirtuina 3 , Animales , Ratones , Cardiomegalia/genética , Cardiomegalia/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Peroxisomas/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo
7.
Methods Mol Biol ; 2643: 333-343, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36952196

RESUMEN

Cell-free in vitro systems are invaluable tools to study the molecular mechanisms of protein translocation across biological membranes. We have been using such a strategy to dissect the mechanism of the mammalian peroxisomal matrix protein import machinery. Here, we provide a detailed protocol to import proteins containing a peroxisomal targeting signal type 2 (PTS2) into the organelle. The in vitro system consists of incubating a 35S-labeled reporter protein with a post-nuclear supernatant from rat/mouse liver. At the end of the incubation, the organelle suspensions are generally treated with an aggressive protease to degrade reporter proteins that did not enter peroxisomes, and the organelles are isolated by centrifugation and analyzed by SDS-PAGE and autoradiography. This in vitro system is particularly suited to characterize the functional consequences of PEX5 and PEX7 mutations found in patients affected with a peroxisomal biogenesis disorder.


Asunto(s)
Trastorno Peroxisomal , Señales de Direccionamiento al Peroxisoma , Ratas , Ratones , Animales , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Transporte de Proteínas , Peroxisomas/metabolismo , Trastorno Peroxisomal/metabolismo , Mamíferos/metabolismo
8.
Methods Mol Biol ; 2643: 373-382, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36952199

RESUMEN

For a long time, the isolation of native protein complexes from human cells was accomplished by immunoprecipitation experiments. However, success depends on the quality of the antibodies and the method consumes valuable antibodies, which can hinder subsequent analysis of the isolated complexes. Here, we demonstrate an alternative approach based on affinity purification. It utilizes human Flp-InTM cells, which genomically express a Protein A-tagged version of the human peroxisomal import receptor PEX5L. Native soluble and membrane-bound complexes containing PEX5L can thereby be isolated via a well-known affinity-based strategy.


Asunto(s)
Proteínas Portadoras , Peroxisomas , Humanos , Proteínas Portadoras/metabolismo , Peroxisomas/metabolismo , Transporte de Proteínas
9.
Methods Mol Biol ; 2643: 413-434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36952203

RESUMEN

The import of many peroxisomal matrix proteins is initiated by the interaction of type-1 peroxisomal targeting signals (PTS1) residing at the extreme C-terminus of cargo proteins and their receptor protein PEX5. This interaction has been amply investigated by biophysical methods using isolated proteins and peptides or heterologous systems such as two-hybrid assays. However, a recently developed novel application of Fluorescence resonance energy transfer (FRET) allows a quantifying measurement of this interaction in living cells. This method combines the systematic measurement of FRET-efficiency in a high number of cells with a well-suited normalization protocol and a fitting algorithm, which together allow the estimation of numerical values for the apparent interaction strength that correlates with other measures of binding strength but can be obtained under rather physiological conditions.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Señales de Direccionamiento al Peroxisoma , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Proteínas Portadoras/metabolismo , Peroxisomas/metabolismo , Péptidos/metabolismo , Transporte de Proteínas/fisiología
10.
Cell Mol Life Sci ; 80(3): 69, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36821008

RESUMEN

Animal models have been utilized to understand the pathogenesis of Zellweger spectrum disorders (ZSDs); however, the link between clinical manifestations and molecular pathways has not yet been clearly established. We generated peroxin 5 homozygous mutant zebrafish (pex5-/-) to gain insight into the molecular pathogenesis of peroxisome dysfunction. pex5-/- display hallmarks of ZSD in humans and die within one month after birth. Fasting rapidly depletes lipids and glycogen in pex5-/- livers and expedites their mortality. Mechanistically, deregulated mitochondria and mechanistic target of rapamycin (mTOR) signaling act together to induce metabolic alterations that deplete hepatic nutrients and accumulate damaged mitochondria. Accordingly, chemical interventions blocking either the mitochondrial function or mTOR complex 1 (mTORC1) or a combination of both improve the metabolic imbalance shown in the fasted pex5-/- livers and extend the survival of animals. In addition, the suppression of oxidative stress by N-acetyl L-cysteine (NAC) treatment rescued the apoptotic cell death and early mortality observed in pex5-/-. Furthermore, an autophagy activator effectively ameliorated the early mortality of fasted pex5-/-. These results suggest that fasting may be detrimental to patients with peroxisome dysfunction, and that modulating the mitochondria, mTORC1, autophagy activities, or oxidative stress may provide a therapeutic option to alleviate the symptoms of peroxisomal diseases associated with metabolic dysfunction.


Asunto(s)
Ayuno , Mitocondrias , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Pez Cebra , Animales , Humanos , Autofagia/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo
11.
Biol Chem ; 404(2-3): 135-155, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36122347

RESUMEN

Peroxisomes are organelles with vital functions in metabolism and their dysfunction is associated with human diseases. To fulfill their multiple roles, peroxisomes import nuclear-encoded matrix proteins, most carrying a peroxisomal targeting signal (PTS) 1. The receptor Pex5p recruits PTS1-proteins for import into peroxisomes; whether and how this process is posttranslationally regulated is unknown. Here, we identify 22 phosphorylation sites of Pex5p. Yeast cells expressing phospho-mimicking Pex5p-S507/523D (Pex5p2D) show decreased import of GFP with a PTS1. We show that the binding affinity between a PTS1-protein and Pex5p2D is reduced. An in vivo analysis of the effect of the phospho-mimicking mutant on PTS1-proteins revealed that import of most, but not all, cargos is affected. The physiological effect of the phosphomimetic mutations correlates with the binding affinity of the corresponding extended PTS1-sequences. Thus, we report a novel Pex5p phosphorylation-dependent mechanism for regulating PTS1-protein import into peroxisomes. In a broader view, this suggests that posttranslational modifications can function in fine-tuning the peroxisomal protein composition and, thus, cellular metabolism.


Asunto(s)
Peroxisomas , Receptores Citoplasmáticos y Nucleares , Humanos , Fosforilación , Peroxisomas/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Portadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte de Proteínas
12.
Biol Chem ; 404(2-3): 121-133, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36279206

RESUMEN

Accurate and regulated protein targeting is crucial for cellular function and proteostasis. In the yeast Saccharomyces cerevisiae, peroxisomal matrix proteins, which harboring a Peroxisomal Targeting Signal 1 (PTS1), can utilize two paralog targeting factors, Pex5 and Pex9, to target correctly. While both proteins are similar and recognize PTS1 signals, Pex9 targets only a subset of Pex5 cargo proteins. However, what defines this substrate selectivity remains uncovered. Here, we used unbiased screens alongside directed experiments to identify the properties underlying Pex9 targeting specificity. We find that the specificity of Pex9 is largely determined by the hydrophobic nature of the amino acid preceding the PTS1 tripeptide of its cargos. This is explained by structural modeling of the PTS1-binding cavities of the two factors showing differences in their surface hydrophobicity. Our work outlines the mechanism by which targeting specificity is achieved, enabling dynamic rewiring of the peroxisomal proteome in changing metabolic needs.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Peroxisomas/metabolismo
13.
Biol Chem ; 404(2-3): 157-167, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36260915

RESUMEN

The assembly of the peroxisomal translocon involves the transition of a soluble form of the peroxisomal targeting receptor PEX5 into a membrane-bound form, which becomes an integral membrane component of the import pore for peroxisomal matrix proteins. How this transition occurs is still a mystery. We addressed this question using a artificial horizontal bilayer in combination with fluorescence time-correlated single photon counting (TCSPC) and electrophysiological channel recording. Purified human isoform PEX5L and truncated PEX5L(1-335) lacking the cargo binding domain were selectively labeled with thiol-reactive Atto-dyes. Diffusion coefficients of labeled protein in solution show that PEX5L is monomeric with a rather compact spherical conformation, while the truncated protein appeared in a more extended conformation. Labeled PEX5L and the truncated PEX5L(1-335) bind stably to horizontal bilayer thereby accumulating around 100-fold. The diffusion coefficients of the membrane-bound PEX5L forms are 3-4 times lower than in solution, indicating the formation of larger complexes. Electrophysiological single channel recording shows that membrane-bound labeled and non-labeled PEX5L, but not the truncated PEX5L(1-335), can form ion conducting membrane channels. The data suggest that PEX5L is the pore-forming component of the oligomeric peroxisomal translocon and that spontaneous PEX5L membrane surface binding might be an important step in its assembly.


Asunto(s)
Membrana Dobles de Lípidos , Peroxisomas , Humanos , Membrana Dobles de Lípidos/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/metabolismo , Isoformas de Proteínas/metabolismo , Canales Iónicos/metabolismo , Transporte de Proteínas
14.
Autophagy ; 19(6): 1781-1802, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36541703

RESUMEN

Peroxisomes are rapidly degraded during amino acid and oxygen deprivation by a type of selective autophagy called pexophagy. However, how damaged peroxisomes are detected and removed from the cell is poorly understood. Recent studies suggest that the peroxisomal matrix protein import machinery may serve double duty as a quality control machinery, where they are directly involved in activating pexophagy. Here, we explored whether any matrix import factors are required to prevent pexophagy, such that their loss designates peroxisomes for degradation. Using gene editing and quantitative fluorescence microscopy on culture cells and a zebrafish model system, we found that PEX13, a component of the peroxisomal matrix import system, is required to prevent the degradation of otherwise healthy peroxisomes. The loss of PEX13 caused an accumulation of ubiquitinated PEX5 on peroxisomes and an increase in peroxisome-dependent reactive oxygen species that coalesce to induce pexophagy. We also found that PEX13 protein level is downregulated to aid in the induction of pexophagy during amino acid starvation. Together, our study points to PEX13 as a novel pexophagy regulator that is modulated to maintain peroxisome homeostasis.Abbreviations: AAA ATPases: ATPases associated with diverse cellular activities; ABCD3: ATP binding cassette subfamily D member; 3ACOX1: acyl-CoA oxidase; 1ACTA1: actin alpha 1, skeletal muscle; ACTB: actin beta; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; CAT: catalase; CQ: chloroquine; Dpf: days post fertilization: FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; H2O2: hydrogen peroxide; HA - human influenza hemagglutinin; HBSS: Hanks' Balanced Salt Solution; HCQ; hydroxychloroquine; KANL: lysine alanine asparagine leucine; KO: knockout; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; MYC: MYC proto-oncogene, bHLH transcription factor; MZ: maternal and zygotic; NAC: N-acetyl cysteine; NBR1 - NBR1 autophagy cargo receptor; PBD: peroxisome biogenesis disorder; PBS: phosphate-buffered saline; PEX: peroxisomal biogenesis factor; PTS1: peroxisome targeting sequence 1; RFP: red fluorescent protein; ROS: reactive oxygen speciess; iRNA: short interfering RNA; SKL: serine lysine leucine; SLC25A17/PMP34: solute carrier family 25 member 17; Ub: ubiquitin; USP30: ubiquitin specific peptidase 30.


Asunto(s)
Autofagia , Macroautofagia , Animales , Humanos , Ratones , Autofagia/fisiología , Especies Reactivas de Oxígeno/metabolismo , Leucina/metabolismo , Lisina/metabolismo , Actinas/metabolismo , Pez Cebra/metabolismo , Fibroblastos/metabolismo , Ubiquitina/metabolismo , Peroxisomas/metabolismo , Aminoácidos/metabolismo , Oxígeno/metabolismo , Sirolimus , Proteínas de la Membrana/metabolismo
15.
Front Cell Dev Biol ; 10: 1026388, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407094

RESUMEN

The import of the majority of soluble peroxisomal proteins is initiated by the interaction between type-1 peroxisomal targeting signals (PTS1) and their receptor PEX5. PTS1 motifs reside at the extreme C-terminus of proteins and consist of a characteristic tripeptide and a modulatory upstream region. Various PTS1-PEX5 interactions have been studied by biophysical methods using isolated proteins or in heterologous systems such as two-hybrid assays, but a recently established approach based on Försters resonance energy transfer (FRET) allows a quantifying investigation in living cells. FRET is the radiation-free energy transfer between two fluorophores in close proximity and can be used to estimate the fraction of acceptor molecules bound to a donor molecule. For PTS1-PEX5 this method relies on the measurement of FRET-efficiency between the PTS1-binding TPR-domain of PEX5 tagged with mCherry and EGFP fused to a PTS1 peptide. However, this method is less suitable for binding partners with low affinity and protein complexes involving large proteins such as the interaction between full-length PTS1-carrying cargo proteins and PEX5. To overcome this limitation, we introduce a life-cell competition assay based on the same FRET approach but including a fusion protein of Cerulean with the protein of interest as a competitor. After implementing the mathematical description of competitive binding experiments into a fitting algorithm, we demonstrate the functionality of this approach using known interaction partners, its ability to circumvent previous limitations of FRET-measurements and its ability to study the interaction between PEX5 and its full-length cargo proteins. We find that some proteins (SCP2 and AGXT) bind PEX5 with higher affinity than their PTS1-peptides alone, but other proteins (ACOX3, DAO, PerCR-SRL) bind with lower but reasonable affinity, whereas GSTK1 binds with very low affinity. This binding strength was not increased upon elongating the PEX5 TPR-domain at its N-terminus, PEX5(N-TPR), although it interacts specifically with the N-terminal domain of PEX14. Finally, we demonstrate that the latter reduces the interaction strength between PEX5(N-TPR) and PTS1 by a dose-dependent but apparently non-competitive mechanism. Altogether, this demonstrates the power of this novel FRET-based competition approach for studying cargo recognition by PEX5 and protein complexes including large proteins in general.

16.
Mol Cell ; 82(17): 3209-3225.e7, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35931083

RESUMEN

Peroxisomes are ubiquitous organelles whose dysfunction causes fatal human diseases. Most peroxisomal enzymes are imported from the cytosol by the receptor PEX5, which interacts with a docking complex in the peroxisomal membrane and then returns to the cytosol after monoubiquitination by a membrane-embedded ubiquitin ligase. The mechanism by which PEX5 shuttles between cytosol and peroxisomes and releases cargo inside the lumen is unclear. Here, we use Xenopus egg extract to demonstrate that PEX5 accompanies cargo completely into the lumen, utilizing WxxxF/Y motifs near its N terminus that bind a lumenal domain of the docking complex. PEX5 recycling is initiated by an amphipathic helix that binds to the lumenal side of the ubiquitin ligase. The N terminus then emerges in the cytosol for monoubiquitination. Finally, PEX5 is extracted from the lumen, resulting in the unfolding of the receptor and cargo release. Our results reveal the unique mechanism by which PEX5 ferries proteins into peroxisomes.


Asunto(s)
Peroxisomas , Receptores Citoplasmáticos y Nucleares , Proteínas Portadoras/metabolismo , Humanos , Ligasas/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/química , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/análisis , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Ubiquitina/metabolismo
17.
Front Cell Dev Biol ; 10: 858084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646929

RESUMEN

Peroxisomes are dynamic multipurpose organelles with a major function in fatty acid oxidation and breakdown of hydrogen peroxide. Many proteins destined for the peroxisomal matrix contain a C-terminal peroxisomal targeting signal type 1 (PTS1), which is recognized by tetratricopeptide repeat (TPR) proteins of the Pex5 family. Various species express at least two different Pex5 proteins, but how this contributes to protein import and organelle function is not fully understood. Here, we analyzed truncated and chimeric variants of two Pex5 proteins, Pex5a and Pex5b, from the fungus Ustilago maydis. Both proteins are required for optimal growth on oleic acid-containing medium. The N-terminal domain (NTD) of Pex5b is critical for import of all investigated peroxisomal matrix proteins including PTS2 proteins and at least one protein without a canonical PTS. In contrast, the NTD of Pex5a is not sufficient for translocation of peroxisomal matrix proteins. In the presence of Pex5b, however, specific cargo can be imported via this domain of Pex5a. The TPR domains of Pex5a and Pex5b differ in their affinity to variations of the PTS1 motif and thus can mediate import of different subsets of matrix proteins. Together, our data reveal that U. maydis employs versatile targeting modules to control peroxisome function. These findings will promote our understanding of peroxisomal protein import also in other biological systems.

18.
Cells ; 11(9)2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35563734

RESUMEN

Peroxisomes host essential metabolic enzymes and are crucial for human health and survival. Although peroxisomes were first described over 60 years ago, their entire proteome has not yet been identified. As a basis for understanding the variety of peroxisomal functions, we used a high-throughput screen to discover peroxisomal proteins in yeast. To visualize low abundance proteins, we utilized a collection of strains containing a peroxisomal marker in which each protein is expressed from the constitutive and strong TEF2 promoter. Using this approach, we uncovered 18 proteins that were not observed in peroxisomes before and could show their metabolic and targeting factor dependence for peroxisomal localization. We focus on one newly identified and uncharacterized matrix protein, Ynl097c-b, and show that it localizes to peroxisomes upon lysine deprivation and that its localization to peroxisomes depends on the lysine biosynthesis enzyme, Lys1. We demonstrate that Ynl097c-b affects the abundance of Lys1 and the lysine biosynthesis pathway. We have therefore renamed this protein Pls1 for Peroxisomal Lys1 Stabilizing 1. Our work uncovers an additional layer of regulation on the central lysine biosynthesis pathway. More generally it highlights how the discovery of peroxisomal proteins can expand our understanding of cellular metabolism.


Asunto(s)
Peroxisomas , Proteínas de Saccharomyces cerevisiae , Humanos , Lisina/metabolismo , Peroxisomas/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Acta Pharm Sin B ; 12(1): 33-49, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127371

RESUMEN

Metabolic homeostasis requires dynamic catabolic and anabolic processes. Autophagy, an intracellular lysosomal degradative pathway, can rewire cellular metabolism linking catabolic to anabolic processes and thus sustain homeostasis. This is especially relevant in the liver, a key metabolic organ that governs body energy metabolism. Autophagy's role in hepatic energy regulation has just begun to emerge and autophagy seems to have a much broader impact than what has been appreciated in the field. Though classically known for selective or bulk degradation of cellular components or energy-dense macromolecules, emerging evidence indicates autophagy selectively regulates various signaling proteins to directly impact the expression levels of metabolic enzymes or their upstream regulators. Hence, we review three specific mechanisms by which autophagy can regulate metabolism: A) nutrient regeneration, B) quality control of organelles, and C) signaling protein regulation. The plasticity of the autophagic function is unraveling a new therapeutic approach. Thus, we will also discuss the potential translation of promising preclinical data on autophagy modulation into therapeutic strategies that can be used in the clinic to treat common metabolic disorders.

20.
Cells ; 11(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011723

RESUMEN

Retinal degeneration is a common feature in peroxisomal disorders leading to blindness. Peroxisomes are present in the different cell types of the retina; however, their precise contribution to retinal integrity is still unclear. We previously showed that mice lacking the central peroxisomal ß-oxidation enzyme, multifunctional protein 2 (MFP2), develop an early onset retinal decay including photoreceptor cell death. To decipher the function of peroxisomal ß-oxidation in photoreceptors, we generated cell type selective Mfp2 knockout mice, using the Crx promotor targeting photoreceptors and bipolar cells. Surprisingly, Crx-Mfp2-/- mice maintained photoreceptor length and number until the age of 1 year. A negative electroretinogram was indicative of preserved photoreceptor phototransduction, but impaired downstream bipolar cell signaling from the age of 6 months. The photoreceptor ribbon synapse was affected, containing free-floating ribbons and vesicles with altered size and density. The bipolar cell interneurons sprouted into the ONL and died. Whereas docosahexaenoic acid levels were normal in the neural retina, levels of lipids containing very long chain polyunsaturated fatty acids were highly increased. Crx-Pex5-/- mice, in which all peroxisomal functions are inactivated in photoreceptors and bipolar cells, developed the same phenotype as Crx-Mfp2-/- mice. In conclusion, the early photoreceptor death in global Mfp2-/- mice is not driven cell autonomously. However, peroxisomal ß-oxidation is essential for the integrity of photoreceptor ribbon synapses and of bipolar cells.


Asunto(s)
Peroxisomas/metabolismo , Células Fotorreceptoras/metabolismo , Células Bipolares de la Retina/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA