Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
IUCrdata ; 9(Pt 9): x240859, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39371675

RESUMEN

The title compound, [Ir(C15H10N)2(C19H12N4)]PF6·CH3OH, crystallizes in the C2/c space group with one monocationic iridium complex, one hexa-fluorido-phosphate anion, and one methanol solvent mol-ecule of crystallization in the asymmetric unit, all in general positions. The anion and solvent are linked to the iridium complex cation via hydrogen bonding. All bond lengths and angles fall into expected ranges compared to similar compounds.

2.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 10): 1039-1043, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39372187

RESUMEN

The title compound, [Sn(C6H5)Cl3(C12H8N2)], which was obtained by the reaction between 1,10-phenanthroline and phenyl-tin trichloride in methanol, exhibits intra-molecular hydrogen-bonding inter-actions involving the chlorine and hydrogen atoms. Crystal cohesion is ensured by inter-molecular C-H⋯Cl hydrogen bonds, as well as Y-X⋯π and π-stacking inter-actions involving three different aromatic rings with centroid-centroid distances of 3.6605 (13), 3.9327 (14) and 3.6938 (12) Å]. Hirshfeld surface analysis and the associated two-dimensional fingerprint plots reveal significant contributions from H⋯H (30.7%), Cl⋯H/H⋯Cl (32.4%), and C⋯H/H⋯C (24.0%) contacts to the crystal packing while the C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%), and N⋯H/H⋯N (1.7%) inter-actions make smaller contributions.

3.
ACS Appl Mater Interfaces ; 16(39): 52727-52738, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39302827

RESUMEN

Perovskite solar cells (PSCs) have recently emerged as highly efficient and cutting-edge photovoltaic technology. In inverted PSCs, challenges are focused on the insufficient interface contact and energy level misalignment between the electron transport layer (ETL) and the metal electrode. Hence, the cathode interfacial layer (CIL) plays a crucial role in regulating energy levels and enabling charge extraction in PSCs. In this study, a low-cost phenanthroline derivative, 4,7-dimethoxy-1,10-phenanthroline (Phen-OMe), is developed as an efficient CIL between the PCBM and Ag electrodes. The incorporation of Phen-OMe not only improves the interfacial contact but also effectively reduces the work function (WF) of the Ag electrode, thus promoting charge dissociation and transport at the interface. Through utilizing a wide-band-gap perovskite with the band gap of 1.77 eV as the active layer by a simple, high-throughput, and low-cost doctor-blade coating process, the power conversion efficiency (PCE) is enhanced significantly from 16.11% of the control device to 18.61% of the device with Phen-OMe as the CIL. Interestingly, Phen-OMe shows a broad application as the CIL in PSCs and tandem solar cells (TSCs), resulting in a boosted efficiency of 22.29% in intermediate-band-gap PSCs and a PCE of 22.05% with a high open-circuit voltage (VOC) of 2.12 V in the perovskite/organic TSC. This achievement shows that Phen-OMe would be a potential candidate as low-cost and efficient CILs for PSCs.

4.
Front Cell Dev Biol ; 12: 1460061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39324068

RESUMEN

Mitochondrial quality control is finely tuned by mitophagy, the selective degradation of mitochondria through autophagy, and mitochondrial biogenesis. Removal of damaged mitochondria is essential to preserve cellular bioenergetics and prevent detrimental events such as sustained mitoROS production, pro-apoptotic cytochrome c release or mtDNA leakage. The array of tools available to study mitophagy is very limited but in constant development. Almost a decade ago, we developed a method to assess mitophagy flux using MitoTracker Deep Red in combination with lysosomal inhibitors. Now, using the novel tandem-fluorescence reporter mito-QC (mCherry-GFP-FIS1101-152) that allows to differentiate between healthy mitochondria (mCherry+GFP+) and mitolysosomes (mCherry+GFP-), we have developed a robust and quantitative method to assess mitophagy by flow cytometry. This approach has been validated in ARPE-19 cells using PINK1/Parkin-dependent (CCCP) and PINK1/Parkin-independent (DFP) positive controls and complementary techniques. Furthermore, we show that the mito-QC reporter can be multiplexed, especially if using spectral flow cytometry, to simultaneously study other cellular parameters such as viability or ROS production. Using this technique, we evaluated and characterized two prospective mitophagy inducers and further dissected their mechanism of action. Finally, using mito-QC reporter mice, we developed a protocol to measure mitophagy levels in the retina ex vivo. This novel methodology will propel mitophagy research forward and accelerate the discovery of novel mitophagy modulators.

5.
DNA Repair (Amst) ; 143: 103756, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39243487

RESUMEN

Free radicals produce in DNA a large variety of base and deoxyribose lesions that are corrected by the base excision DNA repair (BER) system. However, the C1'-oxidized abasic residue 2-deoxyribonolactone (dL) traps DNA repair lyases in covalent DNA-protein crosslinks (DPC), including the core BER enzyme DNA polymerase beta (Polß). Polß-DPC are rapidly processed in mammalian cells by proteasome-dependent digestion. Blocking the proteasome causes oxidative Polß-DPC to accumulate in a ubiquitylated form, and this accumulation is toxic to human cells. In the current study, we investigated the mechanism of Polß-DPC processing in cells exposed to the dL-inducing oxidant 1,10-copper-ortho-phenanthroline. Alanine substitution of either or both of two Polß C-terminal residues, lysine-206 and lysine-244, enhanced the accumulation of mutant Polß-DPC relative to the wild-type protein, and removal of the mutant DPC was diminished. Substitution of the N-terminal lysines 41, 61, and 81 did not affect Polß-DPC processing. For Polß with the C-terminal lysine substitutions, the amount of ubiquitin in the stabilized DPC was lowered by ∼40 % relative to wild-type Polß. Suppression of the HECT domain-containing E3 ubiquitin ligase TRIP12 augmented the formation of oxidative Polß-DPC and prevented Polß-DPC removal in oxidant-treated cells. Consistent with the toxicity of accumulated oxidative Polß-DPC, TRIP12 knockdown increased oxidant-mediated cytotoxicity. Thus, ubiquitylation of lysine-206 and lysine-244 by TRIP12 is necessary for digestion of Polß-DPC by the proteasome as the rapid first steps of DPC repair to prevent their cytotoxic accumulation. Understanding how DPC formed with Polß or other AP lyases are repaired in vivo is an important step in revealing how cells cope with the toxic potential of such adducts.

6.
Chemistry ; : e202401720, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269736

RESUMEN

We have introduced Re(I) tricarbonyl complexes (ReL1 - ReL6) [Re(CO)3(N^N)Cl] where N^N = extensive π conjugated imidazo-[4,5-f]1,10-phenanthroline derivatives that helps in strong DNA intercalation, enhanced photophysical behavior, increase the 3π-π* character of T1 state for PDT and high value of lipophilicity for cell membrane penetration. These complexes exhibited prominent intraligand/ligand-centered (π - π*/ 1LC) absorption bands at λ 260 - 350 nm and relatively weak metal-to-ligand charge-transfer (1MLCT) bands within the λ 350 - 550 nm range. Among the six synthesized complexes, [(CO)3ReICl(K2-N,N-2-(4-(1-benzyl-1H-tetrazol-5-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline] (ReL6) exhibited outstanding potency (IC50 ~ 6 µM, PI > 9) under yellow light irradiation compared to dark conditions. Importantly, extremely lipophilic complex ReL6 showed effective penetration through the cell membrane and localized primarily in mitochondria (Pearson's correlation coefficient, PCC = 0.918) of MDA-MB-231 cells. Complex ReL6 exhibited more than 9 times higher photo-toxicity in normoxic and hypoxic environment of tumor by inducing 1O2 generation (type II PDT), radical generation triggered by NADH oxidation (type I PDT). This complex is a promising candidate for TNBC treatment in hypoxic tumors, with efficacy comparable to photofrin and have demonstrated CO release ability under UV light irradiation.

7.
J Colloid Interface Sci ; 678(Pt B): 955-969, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39270395

RESUMEN

Constructing photocatalysts for the stable and efficient production of NH3 is of excellent research significance and challenging. In this paper, the electron acceptor 5-amino-1,10-phenanthroline (AP) is introduced into the electron-donor graphitic carbon nitride (CN) framework by a simple heated copolymerization method to construct a donor-acceptor (D-A) structure. Subsequently, the phenanthroline unit is coordinated with transition metal Fe3+ ions to obtain the photocatalyst Fe(III)-0.5-AP-CN with better nitrogen fixation performance, and the average NH3 yield can reach 825.3 µmol g-1 h-1. Comprehensive experimental results and theoretical calculations show that the presence of the D-A structure can induce intramolecular charge transfer, effectively separating photogenerated electrons and holes. The Fe active sites can improve the chemisorption energy for N2, enhance the N-Fe bonding, and better activate the N2 molecule. Therefore, the synergistic effect between the construction of the D-A structure and the stably dispersed Fe active sites can enable CN to achieve high-performance N2 reduction to produce NH3.

8.
Adv Sci (Weinh) ; : e2405981, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269288

RESUMEN

Hydrogen boride (HB) nanosheets are recognized as a safe and lightweight hydrogen carrier, yet their hydrogen (H2) generation technique has been limited. In the present study, nitrogen-containing organic heterocycles are mixed with HB nanosheets in acetonitrile solution for visible-light-driven H2 generation. After exploring various nitrogen-containing heterocycles, the mixture of 1,10-phenanthroline molecules (Phens) and HB nanosheets exhibited significant H2 generation even under visible light irradiation. The quantum efficiency for H2 generation of the mixture of HB nanosheets and Phens is 0.6%. Based on spectroscopic and electrochemical analyses and density functional theory (DFT) calculations, it is determined that radical species generated from Phens with electrons and protons donated by HB nanosheets are responsive to visible light for H2 generation. The HB nanosheets/Phens mixture presented in this study can generate H2 using renewable energy sources such as sunlight without the need for complex electrochemical systems or heating mechanisms and is expected to serve as a lightweight hydrogen storage/release system.

9.
Acta Crystallogr C Struct Chem ; 80(Pt 9): 505-513, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39177772

RESUMEN

The crystal structures of two coordination compounds, (acetato-κO)(2,2'-bipyridine-κ2N,N')(1,10-phenanthroline-κ2N,N')copper(II) acetate hexahydrate, [Cu(C2H3O2)(C10H8N2)(C12H8N2)](C2H3O2)·6H2O or [Cu(bipy)(phen)Ac]Ac·6H2O, and (acetato-κO)bis(2,2'-bipyridine-κ2N,N')copper(II) acetate-acetic acid-water (1/1/3), [Cu(C2H3O2)(C10H8N2)2](C2H3O2)·C2H4O2·3H2O or [Cu(bipy)2Ac]Ac·HAc·3H2O, are reported and compared with the previously published structure of [Cu(phen)2Ac]Ac·7H2O (phen is 1,10-phenanthroline, bipy for 2,2'-bipyridine, ac is acetate and Hac is acetic acid). The geometry around the metal centre is pentacoordinated, but highly distorted in all three cases. The coordination number and the geometric distortion are both discussed in detail, and all complexes belong to the space group P-1. The analysis of the geometric parameters and the Hirshfeld surface properties dnorm and curvedness provide information about the metal-ligand interactions in these complexes and allow comparison with similar systems.

10.
J Inorg Biochem ; 260: 112700, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39163715

RESUMEN

The success of a classic inorganic coordination compound, Cisplatin, cis-[Pt(NH3)2Cl2], as the first anticancer metallodrug started a field of research dedicated to discovering coordination compounds with antitumor activity, encompassing various metals. Among these, copper complexes have emerged as interesting candidates to develop drugs to treat cancer. In this work, mixed ligand complexes of Cu(II) with diimines (phenanthroline or 4-methylphenanthroline) and 3-(4-hydroxyphenyl)propanoate, phenylcarboxylate or phenylacetate were synthesized. They were characterized in the solid state, including a new crystal structure of [Cu2(3-(4-hydroxyphenyl)propanoate)3(phenanthroline)2]Cl·H2O. The obtained complexes presented a variety of stoichiometries. In solution, complexes were partially dissociated in the corresponding Cu-diimine complex. The complexes bound to the DNA by partial intercalation and groove binding, as assessed by Circular Dichroism, relative viscosity change and UV-Vis titration. The cytotoxicity of the complexes was determined in vitro on MDA-MB-231, MCF-7 (human metastatic breast adenocarcinomas, the first triple negative), MCF-10A (breast nontumoral), A549 (human lung epithelial carcinoma), and MRC-5 (human nontumoral lung epithelial cells), finding an activity higher than that of Cisplatin, although with less selectivity.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Cobre , Fenantrolinas , Humanos , Cobre/química , Fenantrolinas/química , Fenantrolinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Línea Celular Tumoral , Ligandos , ADN/química , ADN/metabolismo , Células A549 , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células MCF-7
11.
Eur J Med Chem ; 277: 116775, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39153333

RESUMEN

This study reports a new series of 1,10-phenanthroline-substituted imidazolium salts (1a-f), examining their design, synthesis, structure and anticancer activities. The structures of these salts (1a-f) were characterized using 1H, 13C NMR, elemental analysis, mass spectrometry and Fourier transform infrared (FT-IR) spectroscopies. The salts' cytotoxic activities were tested against cancer cell lines, specifically MCF-7, MDA-MB-231 and non-tumorigenic MCF-10A mammary cells. The study compared the impact of aliphatic and benzylic groups in the salts' structure on their anticancer activity. Screening results revealed that compound 1c, in particular, showed promising inhibitory activity against the growth of MDA-MB-231 breast cancer cells, with an IC50 value of 12.8 ± 1.2 µM, indicating its potential as a chemotherapeutic agent. Cell apoptosis analysis demonstrated a tendency for compound 1c to induce early apoptosis in breast cancer cells. The stability/aquation of compound 1c was investigated using 1H NMR spectroscopy and its binding modes with DNA were explored via UV-Vis spectroscopy. Additionally, the study investigated the interaction residues and docking scores of compound 1c and the reference drug doxorubicin against Bax and Bcl-2 proteins using molecular docking.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Imidazoles , Fenantrolinas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Imidazoles/farmacología , Imidazoles/química , Imidazoles/síntesis química , Simulación del Acoplamiento Molecular , Estructura Molecular , Fenantrolinas/química , Fenantrolinas/farmacología , Fenantrolinas/síntesis química , Sales (Química)/química , Sales (Química)/farmacología , Sales (Química)/síntesis química , Relación Estructura-Actividad , Compuestos Heterocíclicos con 3 Anillos/síntesis química , Compuestos Heterocíclicos con 3 Anillos/química , Compuestos Heterocíclicos con 3 Anillos/farmacología
12.
J Colloid Interface Sci ; 675: 560-568, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38986329

RESUMEN

Artificial photosynthesis of hydrogen peroxide (H2O2) is a hopeful alternative to the industrial anthraquinone process. However, rational fabrication of the photocatalysts for the production of H2O2 without any sacrificial agents is still a formidable challenge. Herein, two kinds of linear conjugated polymers (LCPs) including pyridinic N functionalized polymer (DEB-N2) and pyridinic N non-contained polymer (DEB-N0) were successfully synthesized. DEB-N2 displays enhanced light capturing ability and good dispersion in water, leading to a substantial initial H2O2 generation rate of 3492µmol g-1h-1 as well as remarkable photocatalytic stability in pure water. Furthermore, the temperature programmed desorption (TPD) and density functional theory (DFT) analysis reveal that highly electronegative pyridine-N atoms in DEB-N2 boost the adsorption affinity of oxygen molecules, which facilitates the occurrence of the oxygen reduction reaction, therefore enhancing the performance of photocatalytic H2O2 production. This study unveils that the presence of pyridinic N in DEB-N2 has a significant impact on photocatalytic H2O2 production, suggesting the precise manipulation of the chemical structure of polymer photocatalysts is essential to achieve efficient solar-to-chemical energy conversion.

13.
Acta Crystallogr C Struct Chem ; 80(Pt 7): 319-330, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38934274

RESUMEN

Three new ruthenium(II) polypyridyl complexes containing α-diimine ligands, namely, carbonylhydrido(1,10-phenanthroline-κ2N,N)bis(triphenylphosphine-κP)ruthenium(II) hexafluorophosphate, [RuH(C12H8N2)(C18H15P)2(CO)]PF6, carbonylhydrido(2,9-dimethyl-1,10-phenanthroline-κ2N,N)bis(triphenylphosphine-κP)ruthenium(II) hexafluorophosphate, and carbonylhydrido(4,7-dimethyl-1,10-phenanthroline-κ2N,N)bis(triphenylphosphine-κP)ruthenium(II) hexafluorophosphate, both [RuH(C14H12N2)(C18H15P)2(CO)]PF6, were synthesized and characterized by spectroscopic and X-ray diffraction methods. In these complexes, the ruthenium(II) ion adopts a distorted octahedral geometry. There are no intermolecular hydrogen bonds in the crystal structures of the analysed complexes and Hirshfeld surface analysis showed that the H...H contacts constitute a high percentage, close to 50%, of the intermolecular interactions.

14.
Pharmaceutics ; 16(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38931869

RESUMEN

Citrulline (C6H13N3O3) is an amino acid found in the body as a zwitterion. This means its carboxylic and amine groups can act as Lewis donors to chelate metal cations. In addition, citrulline possesses a terminal ureido group on its aliphatic chain, which also appears to coordinate. Here, two new mixed complexes of citrulline were made with 1,10-phenanthroline and 2,2'-bipyridine. These compounds, once dissolved in water, gave aquo-complexes that were subject to DFT studies and in vitro toxicity studies on cancer cell lines (HeLa, MDA-MB-231, HCT 15, and MCF7) showed promising results. Docking studies with DNA were also conducted, indicating potential anticancer properties.

15.
Angew Chem Int Ed Engl ; 63(36): e202407920, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38877853

RESUMEN

Axially chiral biaryl δ-amino acids possess significantly different conformational properties and chiral environment from centrally chiral amino acids, therefore, have drawn considerable attention in the fields of synthetic and medicinal chemistry. Herein, a novel chiral phenanthroline-potassium catalyst has been developed by constructing a well-organized axially chiral ligand composed of one 1,10-phenanthroline unit and two axially chiral 1,1'-bi-2-naphthol (BINOL) units. In the presence of this catalyst, good to excellent yields and enantioselectivities (up to 99 % yield, 98 : 2 er) have been achieved in the ring-opening alcoholytic dynamic kinetic resolution of a variety of biaryl lactams, thereby providing an efficient protocol for catalytic asymmetric synthesis of unnatural axially chiral biaryl δ-amino acid derivatives.

16.
J Inorg Biochem ; 257: 112612, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761579

RESUMEN

Considerable attention has been devoted to the exploration of organometallic iridium(III) (IrIII) complexes for their potential as metallic anticancer drugs. In this study, twelve half-sandwich IrIII imidazole-phenanthroline/phenanthrene complexes were prepared and characterized. Complexes exhibited promising in-vitro anti-proliferative activity, and some are obviously superior to cisplatin towards A549 cells. These complexes possessed suitable fluorescence, and a non-energy-dependent uptake pathway was identified, subsequently leading to their accumulation in the lysosome and the lysosomal damage. Additionally, complexes could inhibit the cell cycle (G1-phase) and catalyze intracellular NADH oxidation, thus substantiating the elevation of intracellular reactive oxygen species (ROS) level, which confirming the oxidative mechanism. Western blotting further confirmed that complexes could induce A549 cell apoptosis through the lysosomal-mitochondrial anticancer pathway, which was inconsistent with cisplatin. In summary, these complexes offer fresh concepts for the development of organometallic non­platinum anticancer drugs.


Asunto(s)
Antineoplásicos , Apoptosis , Complejos de Coordinación , Imidazoles , Iridio , Fenantrolinas , Humanos , Iridio/química , Iridio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Fenantrolinas/química , Fenantrolinas/farmacología , Imidazoles/química , Imidazoles/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Apoptosis/efectos de los fármacos , Células A549 , Especies Reactivas de Oxígeno/metabolismo , Fenantrenos/química , Fenantrenos/farmacología , Proliferación Celular/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos
17.
Nanomaterials (Basel) ; 14(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38786838

RESUMEN

The development of fluorescent materials that can act as sensors for the determination of metal ions in biological fluids is important since they show, among others, high sensitivity and specificity. However, most of the molecules that are used for these purposes possess a very low solubility in aqueous media, and, thus, it is necessary to adopt some derivation strategies. Clay minerals, for example, hectorite, as natural materials, are biocompatible and available in large amounts at a very low cost that have been extensively used as carrier systems for the delivery of different hydrophobic species. In the present work, we report the synthesis and characterization of a hectorite/phenanthroline nanomaterial as a potential fluorescent sensor for Zn ion detection in water. The interaction of phenanthroline with the Ht interlaminar space was thoroughly investigated, via both theoretical and experimental studies (i.e., thermogravimetry, FT-IR, UV-vis and fluorescence spectroscopies and XRD measurements), while its morphology was imaged by scanning electron microscopy. Afterwards, the possibility to use it as sensor for the detection of Zn2+ ions, in comparison to other metal ions, was investigated through fluorescent measurements, and the stability of the solid Ht/Phe/Zn complex was assessed by different experimental and theoretical measurements.

18.
Mitochondrion ; 78: 101889, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38692382

RESUMEN

Iron is a trace element that is critical for most living organisms and plays a key role in a wide variety of metabolic processes. In the mitochondrion, iron is involved in producing iron-sulfur clusters and synthesis of heme and kept within physiological ranges by concerted activity of multiple molecules. Mitochondrial iron uptake is mediated by the solute carrier transporters Mitoferrin-1 (SLC25A37) and Mitoferrin-2 (SLC25A28). While Mitoferrin-1 is mainly involved in erythropoiesis, the cellular function of the ubiquitously expressed Mitoferrin-2 remains less well defined. Furthermore, Mitoferrin-2 is associated with several human diseases, including cancer, cardiovascular and metabolic diseases, hence representing a potential therapeutic target. Here, we developed a robust approach to quantify mitochondrial iron uptake mediated by Mitoferrin-2 in living cells. We utilize HEK293 cells with inducible expression of Mitoferrin-2 and measure iron-induced quenching of rhodamine B[(1,10-phenanthroline-5-yl)-aminocarbonyl]benzyl ester (RPA) fluorescence and validate this assay for medium-throughput screening. This assay may allow identification and characterization of Mitoferrin-2 modulators and could enable drug discovery for this target.


Asunto(s)
Hierro , Mitocondrias , Humanos , Hierro/metabolismo , Mitocondrias/metabolismo , Células HEK293 , Proteínas de Transporte de Catión/metabolismo , Transporte Biológico , Rodaminas/metabolismo , Proteínas Mitocondriales/metabolismo
19.
Sci Rep ; 14(1): 8464, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605215

RESUMEN

Here, for the first time, we report synthesis of 1,10-phenanthroline-5,6-diimine (Phendiimine) based on an acid catalysed SN2 reaction of 1,10-phenanthroline-5,6-dione and 2-picolylamine in EtOH as a solvent. The synthesized Phendiimine molecule showed excellent photo-sensitivity against visible light, together with photoluminescence in both water and ethanol and also, it showed electrochemical activity with Fe electrode in ethanol and H2SO4 solution. Tauc plot also showed Phendiimine is a direct band-gap semiconductor. The hot-point probe test also showed that it is a n-type semiconductor. The UV-vis. absorption maximum shift in two solvents (water and ethanol) demonstrates the solvatochromism behavior of the molecule. The practical significance of this work and its guiding implication for future related research can be outlined as follows. Based on the results obtained, it appears that the Phendiimine molecule could revolutionize the medical field, potentially in the design of artificial eyes, increasing the yield of photovoltaic cells through enhanced heat transfer, improving computers and industrial photo-cooling systems, serving as photo-controller in place of piezoelectric devices, functioning as electronic opt couplers, controlling remote lasers, changing convection in photothermal heaters, designing miniaturized real photo-stimulated motors, creating photo or thermal switches through spin crossover complexes, developing electronic light-dependent resistance (LDR) devices, constructing X-ray and gamma-ray detectors, designing intelligent clothing, creating photo dynamic tumour therapy (PDT) complexes, singlet fission materials in solar cells and more.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124307, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38653075

RESUMEN

Europium complexes exhibiting red luminescence were prepared by employing ß-diketone as main ligand and 1,10-phenanthroline as an additional ligand. Various methods, including 1H NMR, IR spectroscopy and analysis of optical band gap were employed to examine these complexes. The luminescent photophysical properties were investigated using PL spectroscopy and theoretical calculations were conducted to explore radiative transitions probabilities and Judd-Ofelt (J-O) parameters for transitions of type 5D0 → 7F2, 4. J-O parameters were determined using the JOES computer program and results were in good agreement with the outcomes obtained experimentally. The luminescence analysis results have verified the vibrant, single-color red emission of the prepared complexes. The band gap of ternary europium complexes, determined optically, electronically, and theoretically, falls within the range of 3-4 eV. This similarity indicates that these complexes are potentially suitable as semiconductor materials. The results from absorption, electrochemical and photophysical analyses indicate the potential use of synthesized complexes in lighting and display applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA