Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(14): e202303805, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38064536

RESUMEN

Radioimmunotherapy (RIT) is a promising alternative to conventional treatment options. Here, we present experimental work on the synthesis, radiochemistry, and in vivo performance of a lanthanoid-selective nonadentate bispidine ligand suitable for 177 Lu3+ ion complexation. The ligand (bisp,1) was derivatised with a photoactivatable aryl azide (ArN3 ) group as a bioconjugation handle for light-induced labelling of proteins. Quantitative radiosynthesis of [177 Lu]Lu-1+ was accomplished in 10 minutes at 40 °C. Subsequent incubation of [177 Lu]Lu-1+ with trastuzumab, followed by irradiation with light at 365 nm for 15 min, at room temperature and pH 8.0-8.3, gave the radiolabelled mAb, [177 Lu]Lu-1-azepin-trastuzumab ([177 Lu]Lu-1-mAb) in a decay-corrected radiochemical yield of 14 %, and radiochemical purity (RCP)>90 %. Stability studies and cellular binding assays in vitro using the SK-OV-3 human ovarian cancer cells confirmed that [177 Lu]Lu-1-mAb remained biological active and displayed specific binding to HER2/neu. Experiments in immunocompromised female athymic nude mice bearing subcutaneous xenograft models of SK-OV-3 tumours revealed significantly higher tumour uptake in the normal group compared with the control block group (29.8±11.4 %ID g-1 vs. 14.8±6.1 %ID g-1 , respectively; P-value=0.037). The data indicate that bispidine-based ligand systems are suitable starting points for constructing novel, high-denticity chelators for specific complexation of larger radiotheranostic metal ion nuclides.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Neoplasias , Radioisótopos , Receptor ErbB-2 , Animales , Ratones , Humanos , Femenino , Trastuzumab , Ratones Desnudos , Ligandos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Lutecio
2.
Biotechnol Bioeng ; 119(1): 187-198, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34676884

RESUMEN

Cellular quiescence is a reversible state of cell cycle arrest whereby cells are temporarily maintained in the nondividing phase. Inducing quiescence in cancer cells by targeting growth receptors is a treatment strategy to slow cell growth in certain aggressive tumors, which in turn increases the efficacy of treatments such as surgery or systemic chemotherapy. However, ligand interactions with cell receptors induce receptor-mediated endocytosis followed by proteolytic degradation, which limits the duration of cellular quiescence. Here, we report the effects of targeted covalent affibody photoconjugation to epidermal growth factor receptors (EGFR) on EGFR-positive MDA-MB-468 breast cancer cells. First, covalently conjugating affibodies to cells increased doubling time two-fold and reduced ERK activity by 30% as compared to cells treated with an FDA-approved anti-EGFR antibody Cetuximab, which binds to EGFR noncovalently. The distribution of cells in each phase of the cell cycle was determined, and cells conjugated with the affibody demonstrated an accumulation in the G1 phase, indicative of G1 cell cycle arrest. Finally, the proliferative capacity of the cells was determined by the incorporation of 5-ethynyl-2-deoxyuridine and Ki67 Elisa assay, which showed that the percentage of proliferative cells with photoconjugated affibody was half of that found for the untreated control.


Asunto(s)
Muerte Celular/efectos de los fármacos , Receptores ErbB , Procesos Fotoquímicos , Proteínas Recombinantes de Fusión , Neoplasias de la Mama/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Receptores ErbB/química , Receptores ErbB/metabolismo , Femenino , Humanos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología
3.
Anal Chim Acta ; 1184: 339054, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34625272

RESUMEN

Immobilized antibodies with site-specific, oriented, and covalent pattern are of great significance to improve the sensitivity of solid-phase immunoassay. Here, we developed a novel antibody conjugation strategy that can immobilize antibodies in a directional and covalent manner. In this study, an IgG-Fc binding protein (Z domain) carrying a site-specific photo-crosslinker, p-benzoyl-L-phenylalanine, and a single C-terminal cysteine (Cys) handle was genetically engineered. Upon UV irradiation, the chimeric protein enables the Cys handle to couple with the native antibody in Fc-specific and covalent conjugation pattern, resulting in a novel thiolated antibody. Thus, an approach for the covalent, directional immobilization of antibodies to maleimide-modified magnetic nanoparticles (MNPs) was developed on the basis of the crosslinking between sulfhydryl and maleimide groups. The antibody-conjugated MNPs were applied in MNP-based enzyme-linked immunosorbent assay (ELISA) for the detection of carcinoembryonic antigen. The MNP-based ELISA presented a quantification linear range of 0.1-100 ng mL-1 and detection limit of 0.02 ng mL-1, which was approximately 100 times more sensitive than the traditional microplate ELISA (2.0 ng mL-1). Thus, the proposed antibody immobilization approach can be used in surface functionalization for the sensitive detection of various biomarkers.


Asunto(s)
Proteínas Portadoras , Nanopartículas de Magnetita , Anticuerpos , Antígenos , Magnetismo
4.
Colloids Surf B Biointerfaces ; 197: 111433, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33171436

RESUMEN

A new photoconjugation approach was developed to prepare nanoparticle-supported boronic acid polymer for effective separation and enrichment of bacteria. The photo-activated polymer immobilization was demonstrated by coupling an azide-modified copolymer of N-isopropylacrylamide and glycidyl methacrylate to a perfluorophenyl azide-modified silica surface. The thermoresponsive polymer was synthesized using reversible addition fragmentation chain transfer polymerization followed by conversion of the pendant epoxides into azide groups. The perfluorophenyl azide-modified silica nanoparticles were synthesized by an amidation reaction between amino-functionalized silica and pentafluorobenzoyl chloride, and a subsequent treatment with sodium azide. Bacteria-capturing boronic acid was conjugated to the silica-supported polymer chains via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. The particle size, morphology and organic content of the composite nanoparticles were characterized systematically. The capability of the nanocomposite to bind Gram-positive and Gram-negative bacteria was investigated. The nanocomposite exhibited high binding capacities for E. coli (13.4 × 107 CFU/mg) and S. epidermidis (7.66 × 107 CFU/mg) in phosphate buffered saline. The new photoconjugation strategy enables fast and straightforward grafting of functional polymers on surface, which opens many new opportunities for designing functional materials for bioseparation and biosensing.


Asunto(s)
Nanopartículas , Polímeros , Antibacterianos , Bacterias , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas , Concentración de Iones de Hidrógeno , Dióxido de Silicio , Temperatura
5.
Anal Bioanal Chem ; 413(3): 945-953, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33210177

RESUMEN

Fluorophore-antibody conjugates with high photobleaching resistance, high chemical stability, and Fc-specific attachment is a great advantage for immunofluorescence imaging. Here, an Fc-binding protein (Z-domain) carrying a photo-cross-linker (p-benzoylphenylalanine, Bpa) fused with enhanced green fluorescent protein (EGFP), namely photoactivatable ZBpa-EGFP recombinant, was directly generated using the aminoacyl-tRNA synthetase/suppressor tRNA technique without any further modification. By employing the photoactivatable ZBpa-EGFP, an optimal approach was successfully developed which enabled EGFP to site-selectively and covalently attach to native antibody (IgG) with approximately 90% conjugation efficiency. After characterizing the Fc-specific and covalent manner of the EGFP-photoconjugated antibody, its excellent photobleaching resistance for immunofluorescence imaging was demonstrated in a model study by monitoring the toll-like receptor 4 (TLR4) expression in HepG2 cells. The proposed approach here for the preparation of a novel fluorescent antibody is available and reliable, which would play an important role in fluorescence immunoassay, and is expected to be extended to the generation of other biomolecule-photoconjugated antibodies, such as other fluorescent proteins for multiplex immunofluorescence imaging or reporter enzymes for highly sensitive enzyme immunoassays.Graphical abstract.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Fragmentos Fc de Inmunoglobulinas/química , Microscopía Fluorescente/métodos , Anticuerpos Monoclonales/química , Citometría de Flujo , Células Hep G2 , Humanos , Proteínas Recombinantes de Fusión/química
6.
Biomaterials ; 203: 73-85, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30877838

RESUMEN

Pretargeting is a promising strategy to reach high imaging contrast in a shorter time than by targeting with directly radiolabeled monoclonal antibodies (mAbs). One of problems in pretargeting is a site-specific, reproducible and uniform conjugation of recognition tags to mAbs. To solve this issue we propose a photoconjugation to covalently couple a recognition tag to a mAb via a photoactivatable Z domain. The Z-domain, a 58-amino acid protein derived from the IgG-binding B-domain of Staphylococcus aureus protein A, has a well-characterized binding site in the Fc portion of IgG. We tested the feasibility of this approach using pretargeting based on hybridization between peptide nucleic acids (PNAs). We have used photoconjugation to couple trastuzumab with the PNA-based hybridization probe, HP1. A complementary [57Co]Co-labeled PNA hybridization probe ([57Co]Co-HP2) was used as the secondary targeting probe. In vitro studies demonstrated that trastuzumab-ZHP1 bound specifically to human epidermal growth factor receptor 2 (HER2)-expressing cells with nanomolar affinity. The binding of the secondary [57Co]Co-HP2 probe to trastuzumab-PNA-pretreated cells was in the picomolar affinity range. A two-fold increase in SKOV-3 tumor targeting was achieved when [57Co]Co-HP2 (0.7 nmol) was injected 48 h after injection of trastuzumab-ZHP1 (0.5 nmol) compared with trastuzumab-ZHP1 alone (0.8 ±â€¯0.2 vs. 0.33 ±â€¯0.06 %ID/g). Tumor accumulation of [57Co]Co-HP2 was significantly reduced by pre-saturation with trastuzumab or when no trastuzumab-ZHP1 was preinjected. A tumor-to-blood uptake ratio of 1.5 ±â€¯0.3 was achieved resulting in a clear visualization of HER2-expressing xenografts as confirmed by SPECT imaging. In conclusion, the feasibility of stable site-specific coupling of a PNA-based recognition tag to trastuzumab and successful pretargeting has been demonstrated. This approach can hopefully be used for a broad range of mAbs and recognition tags.


Asunto(s)
Imagen Molecular/métodos , Ácidos Nucleicos de Péptidos/química , Trastuzumab/química , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Electroforesis en Gel de Poliacrilamida , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Plásmidos/genética , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie
7.
Biotechnol J ; 13(7): e1700688, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29485240

RESUMEN

Protein fragment complementation assays (PCA) rely on a proximity-driven reconstitution of a split reporter protein activity, typically via interaction between bait and prey units separately fused to the reporter protein halves. The PCA principle can also be formatted for use in immunossays for analyte detection, e.g., via the use of small immunoglobulin binding proteins (IgBp) as fusion partners to split-reporter protein fragments for conversion of pairs of antibodies into split-protein half-probes. However, the non-covalent binding between IgBp and antibodies is not ideal for development of robust assays. Here, the authors describe how split-enzyme reporter halves can be both site-specifically and covalently photoconjugated at antibody Fc-parts for use in homogeneous dual-antibody in vitro immunoassays based on analyte-dependent split-enzyme fragment complementation. The half-probes consist of parts of a beta-lactamase split-protein reporter fused to an immunoglobulin Fc binding domain equipped with a unique cysteine residue at which a photoactivable maleimide benzophenone group (MBP) is attached. Using such antibody conjugates the authors obtain an analyte-driven complementation of the reporter enzyme fragments monitored via conversion of a chromogenic substrate. Results from detection of human interferon-gamma and the extracellular domain of HER2 is shown. The described principles for site-specific conjugation of proteins to antibodies should be broadly applicable.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , beta-Lactamasas/metabolismo , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Disulfuros , Pruebas de Enzimas , Escherichia coli/genética , Prueba de Complementación Genética , Humanos , Interferón gamma , Ratones , Procesos Fotoquímicos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , beta-Lactamasas/química , beta-Lactamasas/genética
8.
Chemistry ; 21(38): 13186-90, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26235994

RESUMEN

A light induced strategy for the design of ß-cyclodextrin (CD) based supramolecular devices is introduced, presenting a novel tool to fabricate multifunctional biointerfaces. Precision photolithography of a modified ß-CD was established on a light sensitive tetrazole surface immobilized on a bioinspired polydopamine (PDA) anchor layer via various shadow masks, as well as via direct laser writing (DLW), in order to craft any desired printboard design. Interfacial molecular recognition provided by light generated cavitate domains was demonstrated via spatially resolved encoding, erasing, and recoding of distinct supramolecular guest patterns. Thus, the light directed shaping of receptor monolayers introduces a powerful path to control supramolecular assemblies on various surfaces.

9.
Macromol Rapid Commun ; 35(12): 1121-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24706565

RESUMEN

In the present contribution, two novel ambient temperature avenues are introduced to functionalize solid cellulose substrates in a modular fashion with synthetic polymer strands (poly(trifluoro ethyl methacrylate), PTFEMA, Mn = 4400 g mol(-1) , D = 1.18) and an Arg-Gly-Asp (RGD) containing peptide sequence. Both protocols rely on a hetero Diels-Alder reaction between an activated thiocarbonyl functionality and a diene species. In the first-thermally activated-protocol, the cellulose features surface-expressed thiocarbonylthio compounds, which readily react with diene terminal macromolecules at ambient temperature. In the second protocol, the reactive ene species are photochemically generated based on a phenacyl sulfide-decorated cellulose surface, which upon irradiation expresses highly reactive thioaldehyde species. The generated functional hybrid surfaces are characterized in-depth via ToF-SIMS and XPS analysis, revealing the successful covalent attachment of the grafted materials, including the spatially resolved patterning of both synthetic polymers and peptide strands using the photochemical protocol. The study thus provides a versatile platform technology for solid cellulose substrate modification via efficient thermal and photochemical ligation strategies.


Asunto(s)
Alcadienos/química , Celulosa/química , Oligopéptidos/química , Polimetil Metacrilato/química , Temperatura , Estructura Molecular , Procesos Fotoquímicos , Polimetil Metacrilato/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA