Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
ACS Appl Mater Interfaces ; 16(33): 43451-43461, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39121384

RESUMEN

We present a nonlinear spectroelectrochemical technique to investigate photosynthetic protein complexes. The PEC2DES setup combines photoelectrochemical detection (PEC) that selectively probes the protein photogenerated charges output with two-dimensional electronic spectroscopy (2DES) excitation that spreads the nonlinear optical response of the system in an excitation-detection map. PEC allows us to distinguish the contribution of charge separation (CS) from other de-excitation pathways, whereas 2DES allows us to disentangle congested spectral bands and evaluate the exciton dynamics (decays and coherences) of the photosystem complex. We have developed in operando phase-modulated 2DES by measuring the photoelectrochemical reaction rate in a biohybrid electrode functionalized with a plant photosystem complex I-light harvesting complex I (PSI-LHCI) layer. Optimizing the photoelectrochemical current signal yields reliable linear spectra unequivocally associated with PSI-LHCI. The 2DES signal is validated by nonlinear features like the characteristic vibrational coherence at 750 cm-1. However, no energy transfer dynamics is observed within the 450 fs experimental window. These intriguing results are discussed in the context of incoherent mixing resulting in reduced nonlinear contrast for multichromophoric complexes, such as the 160 chlorophyll PSI. The presented PEC2DES method identifies generated charges unlike purely optical 2DES and opens the way to probe the CS channel in multichromophoric complexes.

2.
Mikrochim Acta ; 191(9): 509, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101972

RESUMEN

A BiVO4/Fe2O3 heterojunction for non-enzymatic photoelectrochemical (PEC) determination of hydrogen sulfide (H2S) is reported. The BiVO4/Fe2O3 heterojunction promoted the separation of photo-generated carriers, reduced electron-hole recombination, and thus improved electron collection and photocurrent. The proposed BiVO4/Fe2O3/FTO sensor exhibited a linear range of 1-500 µM and a detection limit of 0.51 nM H2S. In addition, high selectivity, good reproducibility, and stability were obtained for H2S sensing. The detection of H2S in water and serum samples demonstrated its feasibility. This work provides a new strategy to detect and understand the bio-function of H2S in the biological environment.

3.
Anal Chim Acta ; 1318: 342921, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39067913

RESUMEN

BACKGROUND: This study presents a novel photoelectrochemical (PEC) conversion method for ion-selective electrodes (ISEs) based on CdS semiconductor film. The motivation stems from the need to enhance the sensitivity and precision of ISEs for various analytical applications. RESULTS: We synthesized CdS film on FTO conductive glass via a hydrothermal method and utilized this electrode as the working electrode. Under visible light irradiation, CdS generated photocurrent that is proportional to its applied voltage within a large potential window of ∼0.80 V. Ascorbic acid (AA) effectively inhibited electron-hole complexation, enhancing photocurrent stability. Potential modulation from ISEs acting as the reference electrode further regulated photocurrent generation, demonstrating excellent sensitivity and linearity for a wide range of ion concentrations. The method was validated by detecting serum calcium levels, showing agreement with traditional ISEs potentiometry and ICP-OES methods. SIGNIFICANCE: This photoelectrochemical conversion strategy offers a promising approach for sensitive and accurate ion detection, with potential applications in clinical diagnostics and environmental monitoring.

4.
Talanta ; 278: 126464, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38936106

RESUMEN

Deoxynivalenol (DON), a mycotoxin produced by Fusarium, poses a significant risk to human health and the environment. Therefore, the development of a highly sensitive and accurate detection method is essential to monitor the pollution situation. In response to this imperative, we have devised an advanced split-type photoelectrochemical (PEC) sensor for DON analysis, which leverages self-shedding MOF-nanocarriers to modulate the photoelectric response ability of PEC substrate. The PEC sensing interface was constructed using CdS/MoSe2 heterostructures, while the self-shedding copper peroxide nanodots@ZIF-8 (CPNs@ZIF-8) served as the Cu2+ source for the in-situ ion exchange reaction, which generated a target-related signal reduction. The constructed PEC sensor exhibited a broad linear range of 0.1 pg mL-1 to 500 ng mL-1 with a low detection limit of 0.038 pg mL-1, demonstrating high stability, selectivity, and proactivity. This work not only introduces innovative ideas for the design of photosensitive materials, but also presents novel sensing strategies for detecting various environmental pollutants.


Asunto(s)
Compuestos de Cadmio , Técnicas Electroquímicas , Estructuras Metalorgánicas , Tricotecenos , Tricotecenos/análisis , Tricotecenos/química , Técnicas Electroquímicas/métodos , Compuestos de Cadmio/química , Estructuras Metalorgánicas/química , Sulfuros/química , Límite de Detección , Procesos Fotoquímicos , Intercambio Iónico
5.
Mikrochim Acta ; 191(7): 383, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861005

RESUMEN

A competitive-type photoelectrochemical (PEC) aptasensor coupled with a novel Au@Cd:SnO2/SnS2 nanocomposite was designed for the detection of 17ß-estradiol (E2) in microfluidic devices. The designed Au@Cd:SnO2/SnS2 nanocomposites exhibit high photoelectrochemical activity owing to the good matching of cascade band-edge and the efficient separation of photo-generated e-/h+ pairs derived from the Cd-doped defects in the energy level. The Au@Cd:SnO2/SnS2 nanocomposites were loaded into carbon paste electrodes (CPEs) to immobilize complementary DNA (cDNA) and estradiol aptamer probe DNA (E2-Apt), forming a double-strand DNA structure on the CPE surface. As the target E2 interacts with the double-strand DNA, E2-Apt is sensitively released from the CPE, subsequently increasing the photocurrent intensity due to the reduced steric hindrance of the electrode surface. The competitive-type sensing mechanism, combined with high PEC activity of the Au@Cd:SnO2/SnS2 nanocomposites, contributed to the rapid and sensitive detection of E2 in a "signal on" manner. Under the optimized conditions, the PEC aptasensor exhibited a linear range from 1.0 × 10-13 mol L-1 to 3.2 × 10-6 mol L-1 and a detection limit of 1.2 × 10-14 mol L-1 (S/N = 3). Moreover, the integration of microfluidic device with smartphone controlled portable electrochemical workstation enables the on-site detection of E2. The small sample volume (10 µL) and short analysis time (40 min) demonstrated the great potential of this strategy for E2 detection in rat serum and river water. With these advantages, the PEC aptasensor can be utilized for point-of-care testing (POCT) in both clinical and environmental applications.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Estradiol , Oro , Límite de Detección , Nanocompuestos , Sulfuros , Compuestos de Estaño , Compuestos de Estaño/química , Aptámeros de Nucleótidos/química , Nanocompuestos/química , Oro/química , Estradiol/análisis , Estradiol/sangre , Estradiol/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Sulfuros/química , Cadmio/química , Cadmio/análisis , Procesos Fotoquímicos , Dispositivos Laboratorio en un Chip
6.
Mikrochim Acta ; 191(7): 389, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871997

RESUMEN

A novel photoelectrochemical sensor, employing an S-scheme heterojunction of phthalocyanine and TiO2 nanoparticles, has been developed to enable highly sensitive determination of glutathione. By integrating the favorable stability, environmental benignity, and electronic properties of the TiO2 matrix with the unique photoactivity of phthalocyanine species, the designed sensor presents a substantial linear dynamic range and a low detection limit for the quantification of glutathione. The sensitivity is attributed to efficient charge transfer and separation across the staggered heterojunction energy levels, which generates measurable photocurrent signals. Systematic variation of phthalocyanine content reveals an optimal composition that balances light harvesting capacity and electron-hole recombination rates. The incorporation of phosphotungstic acid (PTA) in sample preparation effectively minimizes interference from compounds like L-cysteine and others. Consequently, this leads to an improvement in accuracy through the reduction of impurity levels. Appreciable photocurrent enhancements are observed upon introduction of both oxidized and reduced glutathione at the optimized composite photoanode. Coupled with advantageous features of photoelectrochemical transduction such as simplicity, cost-effectiveness, and resistance to fouling, this sensor holds great promise for practical applications in complex biological media.


Asunto(s)
Técnicas Electroquímicas , Glutatión , Indoles , Isoindoles , Titanio , Titanio/química , Glutatión/química , Glutatión/análisis , Indoles/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Límite de Detección , Procesos Fotoquímicos , Electrodos
7.
ACS Sens ; 9(5): 2684-2694, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38693685

RESUMEN

Semiconductor-based photoelectrochemical (PEC) test protocols offer a viable solution for developing efficient individual health monitoring by converting light and chemical energy into electrical signals. However, slow reaction kinetics and electron-hole complexation at the interface limit their practical application. Here, we reported a triple-engineered CdS nanohierarchical structures (CdS NHs) modification scheme including morphology, defective states, and heterogeneous structure to achieve precise monitoring of the neurotransmitter dopamine (DA) in plasma and noninvasive body fluids. By precisely manipulating the Cd-S precursor, we achieved precise control over ternary CdS NHs and obtained well-defined layered self-assembled CdS NHs through a surface carbon treatment. The integration of defect states and the thin carbon layer effectively established carrier directional transfer pathways, thereby enhancing interface reaction sites and improving the conversion efficiency. The CdS NHs microelectrode fabricated demonstrated a remarkable negative response toward DA, thereby enabling the development of a miniature self-powered PEC device for precise quantification in human saliva. Additionally, the utilization of density functional theory calculations elucidated the structural characteristics of DA and the defect state of CdS, thus establishing crucial theoretical groundwork for optimizing the polymerization process of DA. The present study offers a potential engineering approach for developing high energy conversion efficiency PEC semiconductors as well as proposing a novel concept for designing sensitive testing strategies.


Asunto(s)
Compuestos de Cadmio , Dopamina , Técnicas Electroquímicas , Nanoestructuras , Neurotransmisores , Sulfuros , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Dopamina/análisis , Dopamina/sangre , Nanoestructuras/química , Neurotransmisores/análisis , Neurotransmisores/sangre , Humanos , Sulfuros/química , Procesos Fotoquímicos , Saliva/química , Teoría Funcional de la Densidad , Técnicas Biosensibles/métodos , Semiconductores , Microelectrodos
8.
Talanta ; 276: 126206, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749163

RESUMEN

As an essential chemical intermediate, catechol (CC) residues may have adverse effects on human health. Herein, an effective and facile photoelectrochemical sensor platform based on MgIn2S4/CdWO4 composite is constructed for monitoring CC. MgIn2S4 increases light absorption range and activity, while CdWO4 enhances photoelectronic stability, and the type-II heterojunction formed can significantly enhance photocurrent response. Due to the autoxidation process, CC is converted into oligomeric products, which increase the spatial site resistance and attenuate the overall photocurrent response. It is worth noting that the cauliflower-like structure of MgIn2S4 can provide a large specific surface area, and the presence of Mg2+ promotes autoxidation, thus providing a suitable condition for detecting CC. Under optimal conditions, the MgIn2S4/CdWO4/GCE photoelectrochemical sensor has a prominent linear relationship in the range of CC concentration from 2 nM to 7 µM, with a limit of detection of 0.27 nM. With satisfactory selectivity, excellent stability, and remarkable reproducibility, this sensor provides a crucial reference value for effectively and rapidly detecting pollutants in environmental water samples.

9.
Nanomicro Lett ; 16(1): 192, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743197

RESUMEN

Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications. In particular, emerging photoelectrochemical (PEC)-type devices have recently attracted extensive interest in liquid-based biosensing applications due to their natural electrolyte-assisted operating characteristics. Herein, a PEC-type photosensor was carefully designed and constructed by employing gallium nitride (GaN) p-n homojunction semiconductor nanowires on silicon, with the p-GaN segment strategically doped and then decorated with cobalt-nickel oxide (CoNiOx). Essentially, the p-n homojunction configuration with facile p-doping engineering improves carrier separation efficiency and facilitates carrier transfer to the nanowire surface, while CoNiOx decoration further boosts PEC reaction activity and carrier dynamics at the nanowire/electrolyte interface. Consequently, the constructed photosensor achieves a high responsivity of 247.8 mA W-1 while simultaneously exhibiting excellent operating stability. Strikingly, based on the remarkable stability and high responsivity of the device, a glucose sensing system was established with a demonstration of glucose level determination in real human serum. This work offers a feasible and universal approach in the pursuit of high-performance bio-related sensing applications via a rational design of PEC devices in the form of nanostructured architecture with strategic doping engineering.

10.
Mikrochim Acta ; 191(5): 277, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647714

RESUMEN

Widely used organophosphorus pesticide triazophos (TAP) can easily cumulate in aquatic system due to its high stability chemically and photochemically and thus posing significant threat to aquatic creatures and humans' health. Urging demand for rapid determining TAP in water has risen. Photoelectrochemical (PEC) sensing turns out to be a good candidate for its simplicity in fabrication and swiftness in detection. Nevertheless, traditional PEC sensors often lack selectivity as their signal generation primarily relies on the oxidation of organic compounds in the electrolyte by photo-induced holes. To address this limitation, molecularly imprinted polymers (MIPs) can be in combined with PEC sensors to significantly enhance the selectivity. Here, we present a novel approach utilizing a PEC sensor enhanced by carbon-modified titanium dioxide molecularly imprinted polymers (MIP/C/TiO2 NTs). Carbon quantum dot (CQD) modification of titanium dioxide nanotube arrays (C/TiO2 NTs) was achieved through a one-step anodization process, effectively enhancing visible light absorption by narrowing the band gap of TiO2, and CQDs also function as sensitizer accelerating charge transfer for improved and stable photocurrent signals during detection. Our method further incorporates MIPs to heighten the selectivity of the PEC sensor. Electro-polymerization using cyclic voltammetry was employed to polymerize MIPs with pyrrole as the functional monomer and triazophos as the target molecule. The resultant MIP/C/TiO2 NT sensor exhibited remarkable sensitivity, with a detection limit of 0.03 nM (S/N = 3), alongside exceptional selectivity and stability for triazophos detection in water. This offers a promising avenue for efficient, cost-effective, and rapid monitoring of pesticide contaminants in aquatic environments, contributing to the broader goals of environmental preservation and public health.

11.
J Hazard Mater ; 470: 134216, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581877

RESUMEN

In vivo monitoring of multiple pesticide contamination is of great significance for evaluating the health risks of different pesticides, agricultural production safety, and ecological and environmental assessment. Here, we report a hydrogel microneedle array coupled light-addressable photoelectrochemical sensor for tracking multiple pesticide uptake and elimination in living animals and plants, holding three prominent merits: i) enables in-situ detection of in vivo pesticides, avoiding cumbersome and complex sample transportation and handling processes; ii) allows repeated in vivo sampling of the same organism, improving tracking test controllability and accuracy; iii) avoids lethal sampling, providing a better understanding of the pesticides fate in living organisms. The coupled sensor is mechanically robust for withstanding more than 0.35 N per needle and highly swellable (800 %) for timely extraction of sufficient in vivo solution for analysis. For proof-of-concept, it achieves in-situ detection of atrazine, acetamiprid, and carbendazim efficiently and quantitatively in artificial agarose skin models, mouse skin interstitial fluids, and plant leaves with little inflammatory reaction. This simple, highly integrated, minimally invasive, and high-throughput in vivo monitoring method is ideal for future field environmental monitoring and plant and animal disease diagnosis.


Asunto(s)
Bencimidazoles , Carbamatos , Agujas , Neonicotinoides , Plaguicidas , Animales , Neonicotinoides/análisis , Plaguicidas/análisis , Atrazina/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Monitoreo del Ambiente/métodos , Ratones , Hojas de la Planta/química , Luz , Hidrogeles/química , Piel/química
12.
Mikrochim Acta ; 191(5): 232, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38565740

RESUMEN

A novel ternary heterojunction material In2O3/In2S3/ZnIn2S4 was synthesized, and a photoelectrochemical sensor was fabricated for the non-invasive test of dopamine (DA) in sweat. In2O3 multihollow microtubules were synthesized and then In2S3 was formed on their surface to construct a type-I heterojunction between In2S3 and In2O3. ZnIn2S4 was further introduced to form a Z-scheme heterojunction between In2S3/ZnIn2S4. Under photoexcitation, the photogenerated holes of In2O3 transferred to the valence band of In2S3, superimposed with the holes produced by In2S3, leads to a significantly higher photocatalytic oxidation capacity of In2O3/In2S3/ZnIn2S4 ternary composites than that of In2O3/In2S3. The Z-scheme heterojunction accelerates the transfer of photogenerated electrons accumulated on the type-I heterojunction. In the presence of DA, it is rapidly oxidized into polydopamine (PDA) by In2O3/In2S3, and the benzoquinone groups of PDA compete for the photogenerated electrons to reduce the current in the external circuit, whereby DA determination is achieved. Owing to the combination of type-I and Z-scheme heterojunction, the sensor showed extremely high sensitivity, with a detection limit of 3.94 × 10-12 mol/L. It is one of the most sensitive methods for DA detection reported and has been applied to the determination of DA in human sweat.


Asunto(s)
Dopamina , Sudor , Humanos , Electrones
13.
Food Chem ; 450: 139261, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657344

RESUMEN

This study employed an innovative copper oxide/cuprous oxide (CuO/Cu2O) polyhedron­cadmium sulphide quantum dots (CdS QDs) double Z-scheme heterostructure as a matrix for the cathodic PEC determination of mercury ions (Hg2+). First, the CuO/Cu2O polyhedral composite was prepared by calcining a copper-based metal organic framework (Cu-MOF). Subsequently, the amino-modified CuO/Cu2O was integrated with mercaptopropionic acid (MPA)-capped CdS QDs to form a CuO/Cu2O polyhedron-CdS QDs double Z-scheme heterostructure, producing a strong cathodic photocurrent. Importantly, this heterostructure exhibited a specifically reduced photocurrent for Hg2+ when using CdS QDs as Hg2+-recognition probe. This was attributed to the extreme destruction of the double Z-scheme heterostructure and the in situ formation of the CuO/Cu2O-CdS/HgS heterostructure. Besides, p-type HgS competed with the matrix for electron acceptors, further decreasing the photocurrent. Consequently, Hg2+ was sensitively assayed, with a low detection limit (0.11 pM). The as-prepared PEC sensor was also used to analyse Hg2+ in food and the environment.


Asunto(s)
Compuestos de Cadmio , Cobre , Técnicas Electroquímicas , Mercurio , Estructuras Metalorgánicas , Puntos Cuánticos , Sulfuros , Puntos Cuánticos/química , Cobre/química , Mercurio/análisis , Mercurio/química , Sulfuros/química , Compuestos de Cadmio/química , Técnicas Electroquímicas/instrumentación , Estructuras Metalorgánicas/química , Contaminación de Alimentos/análisis , Electrodos , Límite de Detección
14.
Molecules ; 29(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338358

RESUMEN

This paper presents the development of a photoelectrochemical sensor for hypochlorous acid (HOCl) detection, employing a phenothiazine-based organic photosensitizer (Dye-PZ). The designed probe, Dye-PZ, follows a D-π-A structure with phenothiazine as the electron-donating group and a cyano-substituted pyridine unit as the electron-accepting group. A specific reaction of the phenothiazine sulfur atom with HOCl enables selective recognition. The covalent immobilization of Dye-PZ onto a titanium dioxide nanorod-coated fluorine-doped tin oxide electrode (FTO/TiO2) using bromo-silane coupling agent (BrPTMS) resulted in the fabrication of the photoanode FTO/TiO2/BrPTMS/Dye-PZ. The photoanode exhibited a significant photoresponse under visible-light irradiation, with a subsequent reduction in photocurrent upon reaction with HOCl. The oxidation of the phenothiazine sulfur atom to a sulfoxide diminished the internal charge transfer (ICT) effect. Leveraging this principle, the successful photoelectrochemical sensing of HOCl was achieved. The sensor showed high stability, excellent reproducibility, and selective sensitivity for HOCl detection. Our study provides a novel approach for the development of efficient photoelectrochemical sensors based on organic photosensitizers, with promising applications in water quality monitoring and biosensing.

15.
ACS Sens ; 9(2): 577-588, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38254273

RESUMEN

Revolutionary developments in analytical chemistry have led to the rapid development of self-powered photoelectrochemical (PEC) sensors. Different from conventional PEC sensors, self-powered PEC sensors do not require an external power source or complex devices for the sensitive detection of targets. As a result, these sensors have enormous application potential for the development of novel portable sensors. An increasing body of work is making excellent progress toward the implementation of self-powered PEC sensors for detection, but there have been no reviews to date. The present review first introduces the state of the art in the development of self-powered PEC sensors. Then, different types of self-powered PEC sensors are summarized and discussed in detail, including their current, power, and potential. Additionally, single- and dual-photoelectrode systems are classified and systematically compared. Finally, the current developments and major challenges that need to be addressed are also summarized. This review provides valuable insights into the current state of self-powered PEC sensors to promote further progress in this field.


Asunto(s)
Técnicas Biosensibles , Suministros de Energía Eléctrica
16.
Anal Chim Acta ; 1289: 342210, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38245201

RESUMEN

Alkaline phosphatase (ALP) is a major biomarker for clinical diagnosis, but detection methods of ALP are limited in sensitivity and selectivity. In this paper, a novel method for ALP determination is proposed. A photoelectrochemical (PEC) sensor was prepared by growing UiO-tetratopic tetrakis (4-carbox-yphenyl) porphyrin (TCPP) in situ between layered Ti3C2 through a one-pot hydrothermal method. The obtained Schottky heterojunction photoelectric material Ti3C2@UiO-TCPP not only has a large light absorption range but also greatly improves the efficiency of photogenerated electron hole separation and thereby enhances sensitivity for PEC detection. The phosphate group on the phosphorylated polypeptide was utilized to form a Zr-O-P bond with the zirconium ion on UiO-66, and then photocurrent decreases due to the steric hindrance effect of phosphorylated polypeptides, that is, the hindrance of electron transfer between the photoelectric material and a solution. The specific interaction between ALP and phosphorylated polypeptides shears the bond between phosphate and zirconium ion on UiO-66 in the peptides then weakens the hindrance effect and increases the photocurrent, thus realizing ALP detection. The linear range of ALP is 0.03-10,000 U·L-1, and the detection limit is 0.012 U·L-1. The method is highly sensitive and selective, and has been applied in detection of ALP in serum samples.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Fosfopéptidos , Ácidos Ftálicos , Fosfatasa Alcalina/química , Titanio/química , Circonio/química , Colorantes , Fosfatos , Técnicas Biosensibles/métodos , Límite de Detección , Técnicas Electroquímicas/métodos
17.
Talanta ; 270: 125640, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211357

RESUMEN

Herein, the excitation wavelength-dependent responses of the molecularly imprinted polymer (MIP) photoelectrochemical (PEC) sensors were investigated, using acetaminophen (AP), rutin (RT) and perfluorooctanoate (PFOA) as the model templates, pyrrole as functional monomer, CuInS2@ZnS/TiO2 NTs as the basic photoelectrode. With wavelength λ > 240 nm, the photocurrent of MIPPFOA enhanced at higher concentrations of PFOA. With increasing AP concentration, the photocurrents of MIPAP could decline with λ < 271 nm, not change at λ = 270 nm, or increase with λ > 270 nm. As RT concentration increased, the photocurrents of MIPRT could decrease (λ < 431 nm), not change (λ = 431 nm) or increase (λ > 431 nm). The PEC responses depend on the comprehensive interaction of two contrary mechanisms from the template molecules within the MIP membrane. The photocurrent is enhanced by the role of the electron donor for photo-generated holes but attenuated due to the steric hindrance effect and the excitation light intensity loss via absorption or scattering. The apparent molar absorption coefficient of AP and RT within MIP membranes are 9.1-19.4 folds of those measured from dilute solutions. By using a routine UV lamp as the light source, the photocurrents of MIPRT at 254 nm and MIPAP at 365 nm were used to determine RT and AP, with the detection limits of 5.3 and 16 nM, respectively. The interference from the non-specific adsorption of interferents on the surfaces of MIPAP and MIPRT was reduced by one order of magnitude via a differential strategy.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Acetaminofén , Polímeros/química , Rutina , Luz , Límite de Detección , Técnicas Electroquímicas
18.
Biosens Bioelectron ; 249: 116037, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237214

RESUMEN

The environmental hazards of microplastics have received widespread attention. However, the in-situ detection of microplastics, particularly in aquatic environments, has been challenged by the limitations of detection methods, the large-scale instruments, and small size. Herein, a photoelectrochemical sensor based on the protein corona-induced aggregation effect is designed for the detection of polystyrene microplastics. The sensor has advantages of high sensitivity, reproducibility, and detection capability. A linear detection range of 0.5-500 µg mL-1, a method detection limit of 0.06 µg mL-1, and a limit of quantification of 0.14 µg mL-1 are achieved. Furthermore, the relative standard deviations of intra-day and inter-day precision, ranging from 0.56% to 4.63% and 0.84%-3.36% are obtained. A digital multimeter was employed to construct a platform for the real-time detection in real water samples, streamlining the detection process and yielding clear results. We believe this sensor provides new insight for the in-situ real-time detection of microplastics and has broad applications for the analysis of microplastic pollution in aquatic environments.


Asunto(s)
Técnicas Biosensibles , Corona de Proteínas , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Plásticos , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Ecosistema
19.
Food Chem ; 443: 138499, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277929

RESUMEN

As an emerging porous material, hydrogen-bonded organic framework materials (HOFs) still pose application challenges. In this work, the designed type "I + II" heterojunction extracted hot electrons from HOFs using quantum dots (QDs) and polypyrrole (Ppy), improving the stability and photoelectrochemical performance of materials. In addition to serving as a potential well, electropolymerized Ppy was used as a recognition element for bisphenol A (BPA), and a novel self-powered molecularly imprinted photoelectrochemical (MIP-PEC) sensor was designed. The sensing platform showed a linear relationship from 1 × 10-10 to 1 × 10-7 mol∙L-1 and from 1 × 10-7 to 1 mol∙L-1 with an acceptable detection limit of 4.2 × 10-11 mol∙L-1. This is the first application of HOFs in constructing MIP-PEC sensors and a new attempt to improve the stability of HOFs for the application of porous crystal materials in the sensing field.


Asunto(s)
Compuestos de Bencidrilo , Impresión Molecular , Fenoles , Polímeros , Polímeros/química , Técnicas Electroquímicas , Límite de Detección , Pirroles/química
20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1017650

RESUMEN

In this work,zinc oxide-reduced graphene oxide(ZnO-rGO)nanocomposites were fabricated using hydrothermal method,and the chemical and physical properties of the synthesized ZnO-rGO were characterized by several techniques,including X-ray diffraction and Fourier transform infrared(FT-IR)spectroscopy.A molecularly imprinted photoelectrochemical sensor based on ZnO-rGO was designed for sensitive detection of oxytetracycline(OTC).Polypyrrole(PPy)film was electropolymerized onto ZnO-rGO nanocomposites and OTC molecules were imprinted on the polymer film through hydrogen bonding.After OTC molecules were eluted,the recognition sites for OTC were left on the polymer membrane,enabling the specific detection of OTC.Linear detection of OTC was achieved in the range of 0.1-200 nmol/L with the detection limit of 0.05 nmol/L(S/N=3).The sensor was successfully applied to determination of OTC in milk and honey samples,with recoveries ranging from 95%to 107%.The developed method would provide significant reference value for effective and rapid detection of other antibiotics in the foods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA