Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 111(10): e16415, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39375908

RESUMEN

This essay discusses how the ultrastructural changes in chloroplasts, particularly the mechanisms of thylakoid membrane unstacking, help maintain the photosynthetic performance of photosystem II (PSII) under stress conditions. This phenomenon may facilitate the repair of damaged PSII by providing access to the repair machinery. It is argued that this PSII repair mechanism accelerates PSII recovery, optimizing photosynthetic processes in stressed plants. Although some studies demonstrate the relationship between thylakoid membrane unstacking in stress conditions, these studies were developed with model species under controlled conditions. Thus, this essay serves as a validation tool for these previous studies, because it demonstrates that the relationships between ultrastructural changes in chloroplasts and the functioning of PSII are essential acclimative strategies for nonmodel plants to survive the constant edaphoclimatic changes of natural environments. Understanding these subcellular dynamics can significantly inform biologists about the plastic potential of plants, especially in heterogeneous environments. An integrated approach in future studies is necessary, highlighting the importance of exploring plant functional traits at multiple scales, because subcellular characteristics have great potential to understand plant acclimatization.


Asunto(s)
Cloroplastos , Complejo de Proteína del Fotosistema II , Cloroplastos/ultraestructura , Cloroplastos/metabolismo , Cloroplastos/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Fotosíntesis , Tilacoides/ultraestructura , Tilacoides/metabolismo , Aclimatación
2.
Methods Appl Fluoresc ; 11(3)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37257457

RESUMEN

This work describes the relationship between the complex of photosystem I and photosystem II in the senescence process of rice leaves observed through changes in the optical response. We studied three varieties of rice plants at different aging times using time-resolved photoluminescence to measure the time decay of the emission, and stationary photoluminescence, to measure the emission wavelength. The spectra obtained with the former technique were fitted with decreasing exponential functions. Two relaxation times were obtained, one ranging between 1.0 and 1.7 ns, and the other, from 5.0 to 10.5 ns. They are associated with the electron's deexcitation of PSI and PSII, respectively, and these decay times increase as the leaf senescence process takes place. The spectra obtained with stationary photoluminescence were fitted with Voigt functions. These spectra exhibit two main peaks around 683 and 730 nm, which could be associated mainly with PSII and PSI emissions, respectively. The PSI de-excitation exhibits higher dispersive processes because chlorophyll-a molecules in it move away from each other, decreasing their concentration. Therefore, it takes longer for electrons to recombine during photosynthesis, as seen in the time-resolve response. Articulating the results of both photoluminescence techniques, the changes in the response of the photosystems of the living rice leaves during senescence are evidenced.


Asunto(s)
Oryza , Oryza/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Hojas de la Planta
3.
Photosynth Res ; 140(3): 321-335, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30694432

RESUMEN

Mechanisms involving ammonium toxicity, excess light, and photosynthesis are scarcely known in plants. We tested the hypothesis that high NH4+ supply in presence of high light decreases photosynthetic efficiency of rice plants, an allegedly tolerant species. Mature rice plants were previously supplied with 10 mM NH4+ or 10 mM NO3- and subsequently exposed to 400 µmol m-2 s-1 (moderate light-ML) or 2000 µmol m-2 s-1 (high light-HL) for 8 h. HL greatly stimulated NH4+ accumulation in roots and in a minor extent in leaves. These plants displayed significant delay in D1 protein recovery in the dark, compared to nitrate-supplied plants. These responses were related to reduction of both PSII and PSI quantum efficiencies and induction of non-photochemical quenching. These changes were also associated with higher limitation in the donor side and lower restriction in the acceptor side of PSI. This later response was closely related to prominent decrease in stomatal conductance and net CO2 assimilation that could have strongly affected the energy balance in chloroplast, favoring ATP accumulation and NPQ induction. In parallel, NH4+ induced a strong increase in the electron flux to photorespiration and, inversely, it decreased the flux to Rubisco carboxylation. Overall, ammonium supply negatively interacts with excess light, possibly by enhancing ammonium transport towards leaves, causing negative effects on some photosynthetic steps. We propose that high ammonium supply to rice combined with excess light is capable to induce strong delay in D1 protein turnover and restriction in stomatal conductance, which might have contributed to generalized disturbances on photosynthetic efficiency.


Asunto(s)
Compuestos de Amonio/toxicidad , Oryza/fisiología , Cloroplastos/metabolismo , Metabolismo Energético , Luz , Oryza/efectos de la radiación , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Ribulosa-Bifosfato Carboxilasa/metabolismo
4.
Plant Physiol Biochem ; 130: 408-417, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30064097

RESUMEN

The applications of nanoparticles continue to expand into areas as diverse as medicine, bioremediation, cosmetics, pharmacology and various industries, including agri-food production. The widespread use of nanoparticles has generated concerns given the impact these nanoparticles - mostly metal-based such as CuO, Ag, Au, CeO2, TiO2, ZnO, Co, and Pt - could be having on plants. Some of the most studied variables are plant growth, development, production of biomass, and ultimately oxidative stress and photosynthesis. A systematic appraisal of information about the impact of nanoparticles on these processes is needed to enhance our understanding of the effects of metallic nanoparticles and oxides on the structure and function on the plant photosynthetic apparatus. Most nanoparticles studied, especially CuO and Ag, had a detrimental impact on the structure and function of the photosynthetic apparatus. Nanoparticles led to a decrease in concentration of photosynthetic pigments, especially chlorophyll, and disruption of grana and other malformations in chloroplasts. Regarding the functions of the photosynthetic apparatus, nanoparticles were associated with a decrease in the photosynthetic efficiency of photosystem II and decreased net photosynthesis. However, CeO2 and TiO2 nanoparticles may have a positive effect on photosynthetic efficiency, mainly due to an increase in electron flow between the photosystems II and I in the Hill reaction, as well as an increase in Rubisco activity in the Calvin and Benson cycle. Nevertheless, the underlying mechanisms are poorly understood. The future mechanistic work needs to be aimed at characterizing the enhancing effect of nanoparticles on the active generation of ATP and NADPH, carbon fixation and its incorporation into primary molecules such as photo-assimilates.


Asunto(s)
Nanopartículas del Metal/efectos adversos , Fotosíntesis/efectos de los fármacos , Clorofila/metabolismo , Cloroplastos/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Transpiración de Plantas/efectos de los fármacos , Titanio/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA