Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39168605

RESUMEN

BACKGROUND: Plastic additives have adverse effects on human health. Children frequently use toys that contain various substances found in paints, plasticizers, and other materials, which heighten the risk of specific chemical exposure. Infants are particularly prone to chemical exposure through the "mouthing" behavior because of the possibility of placing toys in their mouths. Thus, this vulnerability should be considered during risk assessments of chemical exposure. METHODS: This study performed a comprehensive analysis of the chemical components in various 84 plastic toys including "designated toys" (toys that may be harmful to infant health if in contact with their mouths: Article 78 of the Enforcement Regulations of the Food Sanitation Law by the Minister of Health, Labor and Welfare) such as dolls, balls, blocks, bathing toys, toy vehicles, pacifiers, and household items, purchased in the Japanese market by nontargeted and targeted analysis. RESULTS: Plasticizers, flame retardants, and fragrances were the main compounds in almost all the toy products. The results showed that plastic products made in China tended to contain high levels of phthalate esters. In particular, hazardous plasticizers, such as diisodecyl, di-n-octyl, and diisononyl phthalates were detected above the regulatory limit (0.1%) in used products manufactured before regulations were passed in Japan. Furthermore, we detected alternative plasticizers, such as acetyl tributyl citrate (ATBC; 52%), diisononyl adipate (DINA; 50%), and di(2-ethylhexyl) terephthalate (DEHT; 40%). ATBC was detected at high concentrations in numerous toy products. Thus, infants with free access to indoor plastic toys might be exposed to these chemicals. CONCLUSIONS: This study observed that the chemical profiles of toy products were dependent on the year of manufacture. Furthermore, the detection of currently regulated plasticizers in secondhand products manufactured before regulations were enforced, along with the increasing trend of using alternative substances to regulated phthalate esters in products, suggests the potential exposure of infants to these plasticizers through the use of toys. Therefore, regular fact-finding surveys should continue to be conducted for the risk assessment and safety management of domestic toy products.


Asunto(s)
Plastificantes , Plásticos , Juego e Implementos de Juego , Japón , Plastificantes/análisis , Humanos , Plásticos/análisis , Lactante , Retardadores de Llama/análisis , Ácidos Ftálicos/análisis
2.
Environ Sci Pollut Res Int ; 31(38): 50942-50951, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39107639

RESUMEN

Phthalates or phthalate esters (PAEs) have become a serious concern due to their toxicity and risks of migration from contact materials to food matrices and the environment. The aim of this study is to monitor the possible migration potential of PAEs in pelagic fish stored in vacuum packaging depending on the storage time and to determine the polyethylene polymers. In order to achieve this goal, sea bass (Dicentrarchus labrax) and anchovy fish (Engraulis encrasicolus) were randomly packaged in vacuum bags and then stored for 90 days. Phthalate content was determined by GC/MS technique in the muscle tissue of each fish species at certain periods (0, 30, and 90 days) of storage, and on the first day in the packaging material and fish meat. As a result of the analysis performed in µ-Raman spectroscopy, no microplastics were detected in both fish species' meats. FTIR spectroscopy results of the packaging material determined nylon in the chemical content of the packaging material before processing. It has been determined that the chemical composition of the packaging used in the vacuum packaging process is affected by the temperature, depending on the storage period, and different polymer types are formed in the processed package material. It was determined that the dominant PAE homologues were Di-n-pentyl phthalate (DPENP) in both fish meat and Di-(2-ethylhexyl)-phthalate (DEHP) in the package. However, during storage, Dibutylphthalate (DBP) became dominant in anchovies and DPENP became dominant in sea bass, differing according to fish species and storage time.


Asunto(s)
Peces , Embalaje de Alimentos , Ácidos Ftálicos , Animales , Vacio , Lubina
3.
J Hazard Mater ; 476: 135191, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39013318

RESUMEN

Phthalate esters (PAEs) are emerging hazardous and toxic chemicals that are extensively used as plasticizers or additives. Diethyl phthalate (DEP) and dimethyl phthalate (DMP), two kinds of PAEs, have been listed as the priority pollutants by many countries. PAE hydrolases are the most effective enzymes in PAE degradation, among which family IV esterases are predominate. However, only a few PAE hydrolases have been characterized, and as far as we know, no crystal structure of any PAE hydrolases of the family IV esterases is available to date. HylD1 is a PAE hydrolase of the family IV esterases, which can degrade DMP and DEP. Here, the recombinant HylD1 was characterized. HylD1 maintained a dimer in solution, and functioned under a relatively wide pH range. The crystal structures of HylD1 and its complex with monoethyl phthalate were solved. Residues involved in substrate binding were identified. The catalytic mechanism of HylD1 mediated by the catalytic triad Ser140-Asp231-His261 was further proposed. The hylD1 gene is widely distributed in different environments, suggesting its important role in PAEs degradation. This study provides a better understanding of PAEs hydrolysis, and lays out favorable bases for the rational design of highly-efficient PAEs degradation enzymes for industrial applications in future.


Asunto(s)
Ácidos Ftálicos , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Ésteres/química , Hidrólisis , Cristalografía por Rayos X , Catálisis , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética
4.
Sci Total Environ ; 931: 172903, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38697526

RESUMEN

Biodegradable plastics have gained popularity as environmentally friendly alternatives to conventional petroleum-based plastics, which face recycling and degradation challenges. Although the biodegradability of these plastics has been established, research on their ecotoxicity remains limited. Biodegradable plastics may still contain conventional additives, including toxic and non-degradable substances, to maintain their functionality during production and processing. Despite degrading the polymer matrix, these additives can persist in the environment and potentially harm ecosystems and humans. Therefore, this study aimed to assess the potential ecotoxicity of biodegradable plastics by analyzing the phthalate esters (PAEs) leaching out from biodegradable plastics through soil leachate. Sixteen commercial biodegradable plastic products were qualitatively and quantitatively analyzed using gas chromatography-mass spectrometry to determine the types and amounts of PAE used in the products and evaluate their ecotoxicity. Among the various PAEs analyzed, non-regulated dioctyl isophthalate (DOIP) was the most frequently detected (ranging from 40 to 212 µg g-1). Although the DOIP is considered one of PAE alternatives, the detected amount of it revealed evident ecotoxicity, especially in the aquatic environment. Other additives, including antioxidants, lubricants, surfactants, slip agents, and adhesives, were also qualitatively detected in commercial products. This is the first study to quantify the amounts of PAEs leached from biodegradable plastics through water mimicking PAE leaching out from biodegradable plastics to soil leachate when landfilled and evaluate their potential ecotoxicity. Despite their potential toxicity, commercial biodegradable plastics are currently marketed and promoted as environmentally friendly materials, which could lead to indiscriminate public consumption. Therefore, in addition to improving biodegradable plastics, developing eco-friendly additives is significant. Future studies should investigate the leaching kinetics in soil leachate over time and toxicity of biodegradable plastics after landfill disposal.


Asunto(s)
Plásticos Biodegradables , Ácidos Ftálicos , Ácidos Ftálicos/análisis , Medición de Riesgo , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
5.
J Hazard Mater ; 472: 134557, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735188

RESUMEN

Di (2-ethylhexyl) phthalate (DEHP), a toxic phthalate ester (PAE) plasticizer, is often detected in marine sediment and biota. Our understanding of DEHP-degrading marine bacteria and the associated genetic mechanisms is limited. This study established a synthetic bacterial consortium (A02) consisting of three marine bacteria (OR05, OR16, and OR21). Consortium A02 outperformed the individual strains in DEHP degradation. Investigations into the degradation of DEHP intermediates revealed that OR05 and OR16 likely contributed to enhanced DEHP degradation by Consortium A02 via the utilization of DEHP intermediates, such as protocatechuic acid and mono (ethylhexyl) phthalate, with OR21 as the key DEHP degrader. A pathway of DEHP degradation by Consortium A02 was predicted based on genome analysis and experimental degradation. Bioaugmentation with Consortium A02 led to 80% DEHP degradation in 26 days in saline sediment (100 mg/kg), surpassing the 53% degradation by indigenous microbes, indicating the potential of A02 for treating DEHP-contaminated sediments. Meanwhile, bioaugmentation notably changed the bacterial community, with the exclusive presence of certain bacterial genera in the A02 bioaugmented microcosms, and was predicted to result in a more dynamic and active sediment bacterial community. This study contributes to the limited literature on DEHP degradation by marine bacteria and their associated genes.


Asunto(s)
Bacterias , Biodegradación Ambiental , Dietilhexil Ftalato , Sedimentos Geológicos , Consorcios Microbianos , Contaminantes Químicos del Agua , Sedimentos Geológicos/microbiología , Dietilhexil Ftalato/metabolismo , Bacterias/metabolismo , Bacterias/genética , Consorcios Microbianos/genética , Contaminantes Químicos del Agua/metabolismo , Plastificantes/metabolismo , Genoma Bacteriano
6.
Environ Pollut ; 354: 124170, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38759748

RESUMEN

A total of 138 samples including urban soil, surface dust, atmospheric dustfall, and commercial food were collected from the semi-arid industrial city of Lanzhou in Northwest China, and 22 phthalate esters (PAEs) were analyzed in these samples by gas chromatography-mass spectrometry for the pollution characteristics, potential sources, and combined exposure risks of PAEs. The results showed that the total concentration of 22 PAEs (Æ©22PAEs) presented surface dust (4.94 × 104 ng/g) â‰« dustfall (1.56 × 104 ng/g) â‰« food (2.14 × 103 ng/g) â‰« urban soil (533 ng/g). Di-n-butyl phthalate (DNBP), di-isobutyl phthalate, di(2-ethylhexyl) phthalate (DEHP), and di-isononyl phthalate/di-isodecyl phthalate were predominant in the environmental media and commercial food, being controlled by priority (52.1%-65.5%) and non-priority (62.1%) PAEs, respectively. Elevated Æ©22PAEs in the urban soil and surface dust was found in the west, middle, and east of Lanzhou. Principal component analysis indicated that PAEs the urban soil and surface dust were related with the emissions of products containing PAEs, atmosphere depositions, and traffic and industrial emissions. PAEs in the foods were associated with the growth and processing environment. The health risk assessment of United States Environmental Protection Agency based on the Chinese population exposure parameters indicated that the total exposure dose of 22 PAEs was from 0.111 to 0.226 mg/kg/day, which were above the reference dose (0.02 mg/kg/day) and tolerable daily intake (TDI, 0.05 mg/kg/day) for DEHP (0.0333-0.0631 mg/kg/day), and TDI (0.01 mg/kg/day) for DNBP (0.0213-0.0405 mg/kg/day), implying that the exposure of PAEs via multi-media should not be ignored; the total non-carcinogenic risk of six priority PAEs was below 1 for the three environmental media (1.21 × 10-5-2.90 × 10-3), while close to 1 for food (4.74 × 10-1-8.76 × 10-1), suggesting a potential non-carcinogenic risk of human exposure to PAEs in food; the total carcinogenic risk of BBP and DEHP was below 1 × 10-6 for the three environmental media (9.13 × 10-10-5.72 × 10-7), while above 1 × 10-4 for DEHP in food (1.02 × 10-4), suggesting a significantly carcinogenic risk of human exposure to DEHP in food. The current research results can provide certain supports for pollution and risk prevention of PAEs.


Asunto(s)
Polvo , Monitoreo del Ambiente , Ésteres , Ácidos Ftálicos , Contaminantes del Suelo , Suelo , Ácidos Ftálicos/análisis , China , Polvo/análisis , Suelo/química , Contaminantes del Suelo/análisis , Ésteres/análisis , Ciudades , Humanos , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Contaminación de Alimentos/análisis , Contaminación de Alimentos/estadística & datos numéricos
7.
Waste Manag ; 183: 21-31, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38714119

RESUMEN

Poly(vinyl chloride) (PVC) is one of the most widely used plastics. However, a major challenge in recycling PVC is that there is no economical method to separate and remove its toxic phthalate plasticizers. This research made a breakthrough by extracting PVC with liquefied dimethyl ether (DME) and successfully separating the plasticizer components. Nearly all (97.1 %) of the di(2-ethylhexyl) phthalate plasticizer was extracted within 30 min by passing liquefied DME (285 g) through PVC at 25 °C. The compatibility of PVC with organic solvents, including liquefied DME, was derived theoretically from their Hansen solubility parameters (HSP), and actual dissolution experiments were conducted to determine the optimal PVC solvents. A liquefied DME mixture was used to dissolve PVC, and the extract was diluted with ethanol to precipitate the dissolved PVC. We demonstrated that liquefied DME is a promising method for producing high quality recycled products and that the process retains the fundamental properties of plasticizers and PVC without inducing degradation or depolymerization. Because of its low boiling point, DME can be easily separated from the solute after extraction, allowing for efficient reuse of the solvent, extracted plasticizer, and PVC. DME does not require heat and produces little harmful wastewater, which significantly reduces the energy consumption of the plasticizer additive separation process.


Asunto(s)
Dietilhexil Ftalato , Éteres Metílicos , Plastificantes , Cloruro de Polivinilo , Reciclaje , Cloruro de Polivinilo/química , Dietilhexil Ftalato/química , Reciclaje/métodos , Éteres Metílicos/química , Éteres Metílicos/análisis , Solventes/química , Ácidos Ftálicos/química
8.
Sci Rep ; 14(1): 7944, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575598

RESUMEN

In recent years, the presence and migration of PAEs in packaging materials and consumer products has become a serious concern. Based on this concern, the aim of our study is to determine the possible migration potential and speed of PAEs in benthic fish stored in vacuum packaging, as well as to monitor the storage time and type as well as polyethylene (PE) polymer detection.As a result of the analysis performed by µ-Raman spectroscopy, 1 microplastic (MP) of 6 µm in size was determined on the 30th day of storage in whiting fish muscle and the polymer type was found to be Polyethylene (PE) (low density polyethylene: LDPE). Depending on the storage time of the packaging used in the vacuum packaging process, it has been determined that its chemical composition is affected by temperature and different types of polymers are formed. 10 types of PAEs were identified in the packaging material and stored flesh fish: DIBP, DBP, DPENP, DHEXP, BBP, DEHP, DCHP, DNOP, DINP and DDP. While the most dominant PAEs in the packaging material were determined as DEHP, the most dominant PAEs in fish meat were recorded as BBP and the lowest as DMP. The findings provide a motivating model for monitoring the presence and migration of PAEs in foods, while filling an important gap in maintaining a safe food chain.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Animales , Dietilhexil Ftalato/análisis , Plásticos , Vacio , Ácidos Ftálicos/química , Polietileno/análisis , Polímeros , Dibutil Ftalato , Ésteres/análisis , China
9.
Environ Res ; 248: 118234, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272296

RESUMEN

This investigation aimed to scrutinize the level of phthalate esters (PEs) in the landfill leachate of a coastal city in the north of the Persian Gulf and the sensitive ecosystem (soil and water) around it. Soil (two depths) and water samples were prepared from 5 stations in wet and dry seasons. The studied landfill leachate contained 114-303 µg/L of phthalates. The highest concentration of phthalates was related to bis (2-ethylhexyl) phthalate (3257 ng/g) in the wet season at surface soil (0-5 cm) in the landfill site, while the lowest one (6 ng/g) belonged to dimethyl phthalate at sub-surface soil at 700 m from the landfill in the dry season. A significant change in the level of Σ6PEs in the dry (303 µg/L) and wet (114 µg/L) seasons (P ≤ 0.05) was observed for water samples. The PE concentrations in wet times were higher in all soil depths than in dry times. With increasing depth, the content of phthalates decreased in all studied environments. A direct relationship was observed between the phthalates concentration and the pH value of leachate/water and soil. The PEs concentration was linked to electrical conductivity (leachate: R2 = 0.65, P < 0.01 and surface soil: R2 = 0.77, P < 0.05) and the soil organic content. The ecological risk of di-n-butyl phthalate, benzyl butyl phthalate, bis (2-ethylhexyl) phthalate, and di-n-octyl phthalate in the wet season was greater than one. The results showed that significant levels of phthalate esters are released from landfills to the surrounding environment, which requires adequate measures to maintain the health of the ecosystem and nearby residents.


Asunto(s)
Ácidos Ftálicos , Contaminantes Químicos del Agua , Agua , Contaminantes Químicos del Agua/análisis , Ésteres , Suelo/química , Irán , Ecosistema , Ácidos Ftálicos/química , Instalaciones de Eliminación de Residuos
10.
J Hazard Mater ; 465: 133186, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38086300

RESUMEN

A sensitive, robust, and highly efficient analytical methodology involving solid phase extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry was successfully established to detect 13 monoalkyl phthalate esters (MPAEs) in aquatic organisms and seawater. After the organisms were preprocessed using enzymatic deconjugation with ß-glucuronidase, extraction, purification, and qualitative and quantitative optimization procedures were performed. Under optimal conditions, the limits of detection varied from 0.07 to 0.88 µg/kg (wet weight) and 0.04-1.96 ng/L in organisms and seawater, respectively. Collectively, MPAEs achieved acceptable recovery values (91.0-102.7%) with relative standard deviations less than 10.4% and matrix effects ranging from 0.93 to 1.07 in the above matrix. Furthermore, MPAEs and phthalate esters were detected by the developed methodology and gas chromatography-triple quadrupole tandem mass spectrometer in practical samples, respectively. Mono-n-butyl phthalate and mono-iso-butyl phthalate were the most predominant congeners, accounting for 24.8-35.2% in aquatic organisms and seawater. Comprehensive health and ecological risks were higher after the MPAEs were incorporated than when phthalate esters were considered separately, and greater than their risk threshold. Therefore, the risks caused by substances and their metabolites in multiple media, with analogous structure-activity relationships, should be considered to ensure the safety of aquatic organisms and consumers.


Asunto(s)
Ésteres , Ácidos Ftálicos , Cromatografía de Gases y Espectrometría de Masas , Ésteres/análisis , Organismos Acuáticos , Ácidos Ftálicos/análisis , Agua de Mar/química , Extracción en Fase Sólida , Medición de Riesgo
11.
Environ Sci Technol ; 57(37): 13744-13756, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37677100

RESUMEN

Although previous studies have confirmed the association between phthalate esters (PAEs) exposure and endocrine disorders in humans, few studies to date have systematically assessed the threats of new PAE alternatives to endocrine disruptions. Herein, zebrafish embryos were continuously exposed to two PAEs [di-n-butyl phthalate (DBP) and diisobutyl phthalate (DiBP)], two structurally related alternatives [diiononyl phthalate (DINP) and diisononyl hexahydrophthalate (DINCH)], and two non-PAE substitutes [dipropylene glycol dibenzoate (DGD) and glyceryl triacetate (GTA)], and the endocrine-disrupting effects were investigated during the early stages (8-48 hpf). For five endogenous hormones, including progesterone, testosterone, 17ß-estradiol, triiodothyronine (T3), and cortisol, the tested chemicals disturbed the contents of at least one hormone at environmentally relevant concentrations (≤3.9 µM), except DINCH and GTA. Then, the concentration-dependent reduced zebrafish transcriptome analysis was performed. Thyroid hormone (TH)- and androgen/estrogen-regulated adverse outcome pathways (AOPs) were the two types of biological pathways most sensitive to PAE exposure. Notably, six compounds disrupted four TH-mediated AOPs, from the inhibition of deiodinases (molecular initiating event, MIE), a decrease in T3 levels (key event, KE), to mortality (adverse outcome, AO) with the quantitatively linear relationships between MIE-KE (|r| = 0.96, p = 0.002), KE-AO (|r| = 0.88, p = 0.02), and MIE-AO (|r| = 0.89, p = 0.02). Multiple structural analyses showed that benzoic acid is the critical toxicogenic fragment. Our data will facilitate the screening and development of green alternatives.


Asunto(s)
Dibutil Ftalato , Transcriptoma , Humanos , Animales , Pez Cebra , Ésteres
12.
Environ Sci Technol ; 57(30): 11195-11205, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37459505

RESUMEN

Phthalate esters (PAEs) have been investigated in paired air and seawater samples collected onboard the research vessel SONNE in the South China Sea in the summer of 2019. The concentrations of ∑7PAEs ranged from 2.84 to 24.3 ng/m3 with a mean of 9.67 ± 5.86 ng/m3 in air and from 0.96 to 8.35 ng/L with a mean of 3.05 ng/L in seawater. Net air-to-seawater deposition dominated air-sea exchange fluxes of DiBP, DnBP, DMP, and DEP, while strong water-to-air volatilization was estimated for bis(2-ethylhexyl) phthalate (DEHP). The estimated net atmospheric depositions were 3740 t/y for the sum of DMP, DEP, DiBP, and DnBP, but DEHP volatilized from seawater to air with an average of 900 t/y. The seasonally changing monsoon circulation, currents, and cyclones occurring in the Pacific can significantly influence the concentration of PAEs, and alter the direction and magnitude of air-sea exchange and particle deposition fluxes. Consequently, the dynamic air-sea exchange process may drive the transport of PAEs from marginal seas and estuaries toward remote marine environments, which can play an important role in the environmental transport and cycling of PAEs in the global ocean.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Dibutil Ftalato , Ésteres , China
13.
Chemosphere ; 330: 138695, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37080474

RESUMEN

Along with bisphenol-A (BPA), conventional phthalate esters (PAEs) have been reported as environmental hormones, despite their functional usefulness as plasticizers. Nevertheless, they are frequently found in various products, including children's utensils and toys made of poly (vinyl chloride). This is tremendously important because PAEs are harmful to infants. In addition, gel/slime-type toys made of poly (vinyl alcohol) are currently popular for developing infant' tactile senses. In this study, we developed a method to qualitatively and quantitatively detect PAEs in gel/slime-type toys mimicking, infants playing with them in a bathtub. As a result, 1,2-cyclohexanedicarboxylic acid diisononyl ester (DINCH), one of the PAE alternatives, transferred into the water from the toys and was detected most commonly (108-719 µg g-1; 0.01-0.07 wt%) among PAEs. The detected DINCH levels were below the universally accepted levels for PAEs (0.1 wt%). However, the amount of DINCH detected could still be toxic, in accordance with toxicity tests using water fleas. Furthermore, unpleasant odors were emitted when the toys containing toxic volatile organic compounds were unpacked. This is the first study to develop a method to analyze PAE in gel/slime-type toys and determine that alternatives to conventional PAEs cannot be unconditionally regarded as safe chemicals. Therefore, the revised standards for regulating PAEs and their alternatives must be reconsidered.


Asunto(s)
Ácidos Ftálicos , Niño , Humanos , Lactante , Plastificantes , Juego e Implementos de Juego , Productos Domésticos , Ésteres , Dibutil Ftalato , China
14.
Toxicol Rep ; 10: 348-356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923442

RESUMEN

One route of human exposure to environmental chemicals is oral uptake. This is primarily true for chemicals that may leach from food packaging materials, such as bisphenols and phthalate esters. Upon ingestion, these compounds are transported along the intestinal tract, from where they can be taken up into the blood stream or distributed to mucosal sites. At mucosal sites, mucosal immune cells and in the blood stream peripheral immune cells may be exposed to these chemicals potentially modulating immune cell functions. In the present study, we investigated the impact of three common bisphenols and two phthalate esters on mucosal-associated invariant T (MAIT) cells in vitro, a frequent immune cell type in the intestinal mucosae and peripheral blood of humans. All compounds were non-cytotoxic at the chosen concentrations. MAIT cell activation was only slightly affected as seen by flow cytometric analysis. Phthalate esters did not affect MAIT cell gene expression, while bisphenol-exposure induced significant changes. Transcriptional changes occurred in ∼ 25 % of genes for BPA, ∼ 22 % for BPF and ∼ 8 % for BPS. All bisphenols down-modulated expression of CCND2, CCL20, GZMB and IRF4, indicating an effect on MAIT cell effector function. Further, BPA and BPF showed a high overlap in modulated genes involved in cellular stress response, activation signaling and effector function suggesting that BPF may not be safe substitute for BPA.

15.
Water Res ; 232: 119715, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796154

RESUMEN

In order to describe spatio-temporal distribution of chemicals in flowing lake systems, a dynamic multimedia fate model of chemicals with spatial differentiation was constructed by coupling the level IV fugacity model with lake hydrodynamics. It was successfully applied to four phthalates (PAEs) in a lake recharged by reclaimed water and its accuracy was verified. Results show that under the long-term influence of flow field, the distributions of PAEs in both lake water and sediment have significant spatial heterogeneity of 2∼5 orders of magnitude, but present different distribution rules, which was explained by analysis of PAE transfer fluxes. The spatial distribution of PAEs in the water column depends on hydrodynamic conditions and whether the primary source is reclaimed water or atmospheric input. Slow water exchange and flow speed promote the migration of PAEs from water to sediment, causing them to always accumulate in sediments far away from the recharging inlet. Uncertainty and sensitivity analysis show that the PAE concentrations in water phase are mainly affected by emission and physicochemical parameters, while those in sediment phase are also sensitive to environmental parameters. The model can provide important information and accurate data support for the scientific management of chemicals in flowing lake systems.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , Monitoreo del Ambiente/métodos , Agua/análisis , China
16.
Food Chem ; 409: 135363, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36592598

RESUMEN

As a widely used industrial additive of plastic products, phthalate ester (PAE) plasticizers can easily migrate into food, threatening human health. In this work, we proposed a rapid, precise, and reliable method to detect PAE plasticizers in edible oils by using surface-enhanced Raman spectroscopy (SERS) technology. A two-dimensional (2D) silver plate synergizing with a nanosilver sol was prepared as a substrate for SERS to detect potassium hydrogen phthalate (PHP), a hydrolysate of a PAE plasticizer. Detection conditions, such as pH values, drying times, and hydrolysate interference, were optimized. The working curve was well fitted with a linear parameter R2 of 0.9994, and the minimum detection limit was evaluated as 10-9 mol/L. Furthermore, the detection accuracy was supported by five edible oil samples. Therefore, using SERS technology to detect PHP is expected to provide an avenue for PAE plasticizer detection in oils and fats, and it features promising potential applications in food safety.


Asunto(s)
Nanopartículas del Metal , Ácidos Ftálicos , Humanos , Plastificantes/química , Espectrometría Raman/métodos , Aceites , Nanopartículas del Metal/química
17.
Chemosphere ; 310: 136730, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36209845

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP) is an extensively used and toxic phthalate plasticizer that is widely reported in marine environments. Degradation of DEHP by bacteria from several environments have been studied, but little is known about marine sediment bacteria that can degrade DEHP and other phthalate plasticizers. Therefore, in this study, we enriched a bacterial consortium C10 that can degrade four phthalate plasticizers of varying alkyl chain lengths (DEHP, dibutyl phthalate, diethyl phthalate, and dimethyl phthalate) from marine sediment. The major bacterial genera in C10 during degradation of the phthalate plasticizers were Glutamicibacter, Ochrobactrum, Pseudomonas, Bacillus, Stenotrophomonas, and Methylophaga. Growth of C10 on DEHP intermediates (mono-ethylhexyl phthalate, 2-ethylhexanol, phthalic acid, and protocatechuic acid) was studied and these intermediates enhanced the Brevibacterium, Ochrobactrum, Achromobacter, Bacillus, Sporosarcina, and Microbacterium populations. Using a network-based approach, we predicted that Bacillus, Stenotrophomonas, and Microbacterium interacted cooperatively and were the main degraders of phthalate plasticizers. Through selective isolation techniques, we obtained twenty isolates belonging to Bacillus, Microbacterium, Sporosarcina, Micrococcus, Ochrobactrum, Stenotrophomonas, Alcaligenes, and Cytobacillus. The best DEHP-degraders were Stenotrophomonas acidaminiphila OR13, Microbacterium esteraromaticum OR16, Sporosarcina sp. OR19, and Cytobacillus firmus OR20 (83.68%, 59.1%, 43.4%, and 40.6% degradation of 100 mg/L DEHP in 8 d), which agrees with the prediction of key degraders. This is the first report of DEHP degradation by all four bacteria and, thus, our findings reveal as yet unknown PAE-degradation capabilities of marine sediment bacteria. This study provides insights into how bacterial communities adapt to degrade or resist the toxicities of different PAEs and demonstrates a simple approach for the prediction and isolation of potential pollutant degraders from complex and dynamic bacterial communities.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Plastificantes , Dietilhexil Ftalato/metabolismo , Ácidos Ftálicos/metabolismo , Dibutil Ftalato/metabolismo , Bacterias/metabolismo
18.
Bioresour Technol ; 367: 128310, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36370946

RESUMEN

Porous carbons are excellent sorbents for removing organic pollutants. Green conversion of biowaste into advanced porous carbons is crucial for industrialized production and practical applications, which, however, have rarely been investigated. This study develops a coassisted carbonization method for the preparation of porous carbons with the environmentally friendly agents HCOOK and (HCOO)2Ca for the first time. The bamboo waste-derived hydrochar was transformed into oxygen-doped porous carbons, which displayed a large surface area and pore volume, abundant oxygen content, graphene structure and many surface functional groups. These properties contributed to the extremely high sorption of large quantities of diethyl phthalate, which reached 761 mg g-1. Surface adsorption, including pore filling, hydrogen bonding, and π-π stacking, rather than partitioning, was the main sorption process. Therefore, this study provides a sustainable and promising route for the preparation of porous carbons that can be applied in the efficient removal of organic pollutants.


Asunto(s)
Contaminantes Ambientales , Oxígeno , Porosidad , Carbono/química , Adsorción , Agua/química
19.
Toxics ; 12(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276720

RESUMEN

Poly(vinyl chloride) (PVC) is widely used to produce various consumer goods, including food packaging, toys for children, building materials, and cosmetic products. However, despite their widespread use, phthalate plasticizers have been identified as endocrine disruptors, which cause adverse health effects, thus leading to increasing concerns regarding their migration from PVC products to the environment. This study proposed a method for rapidly measuring the migration of phthalates, particularly di(2-ethylhexyl) phthalate (DEHP), from PVC products to commonly encountered liquids. The release of DEHP under various conditions, including exposure to aqueous and organic solvents, different temperatures, and household microwaves, was investigated. The amount of DEHP released from both laboratory-produced PVC films and commercially available PVC products was measured to elucidate the potential risks associated with its real-world applications. Furthermore, tests were performed to evaluate cytotoxicity using estrogen-dependent and -independent cancer cell lines. The results revealed a dose-dependent impact on estrogen-dependent cells, thus emphasizing the potential health implications of phthalate release. This comprehensive study provides valuable insights into the migration patterns of DEHP from PVC products and forms a basis for further research on the safety of PVC and plasticizers.

20.
World J Microbiol Biotechnol ; 39(2): 44, 2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36526923

RESUMEN

Burkholderia sp. SP4, isolated from agricultural soils, has a high capability of degrading di-2-ethylhexyl-phthalate (DEHP). It degrades up to 99% of DEHP (300 mg l-1) in minimal salt (MS) media within 48 h without adding additionally auxiliary carbon source. The optimal conditions for SP4 to degrade DEHP are determined to be at 35 °C and pH 6.0. Supplementation of glucose (3.0 g l-1), sodium dodecyl sulfate (SDS) (0.2%), peptone (0.5 g l-1), or non-ionic surfactant Brij 35 (0.2%, 0.5% or 1%) in MS-DEHP media increases the DEHP degradation activity. Furthermore, kinetic analyses for DEHP degradation by SP4 reveals that it is a first-order reaction, and the half-life analyses also demonstrates that SP4 has a better degradative activity compared to other previously identified microbes. By means of HPLC-ESI-QTOF-MS, the metabolic intermediates of DEHP are identified for SP4, which include mono-2-ethylhexylphthalate (MEHP), mono-butyl phthalate (MBP), phthalic acid (PA), salicylic acid (SA), and 4-oxo-hexanoic acid. The presence of SA indicates that SP4 can consume DEHP using a dual biodegradation pathway diverged from the isomeric products of benzoate. Taken together, our study identifies a resilient DEHP-degradable bacterium and characterizes a novel degradation pathway for DEHP biodegradation. We plan to build on this finding in the context of removing DEHP from various environments.


Asunto(s)
Burkholderia , Dietilhexil Ftalato , Ácidos Ftálicos , Dietilhexil Ftalato/metabolismo , Burkholderia/metabolismo , Ácidos Ftálicos/metabolismo , Biodegradación Ambiental , Cloruro de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA