Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 8(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36354626

RESUMEN

Hydrogel biomaterials have found use in various biomedical applications partly due to their biocompatibility and tuneable viscoelastic properties. The ideal rheological properties of hydrogels depend highly on the application and should be considered early in the design process. Rheometry is the most common method to study the viscoelastic properties of hydrogels. However, rheometers occupy much space and are costly instruments. On the other hand, quartz crystal resonators (QCRs) are devices that can be used as low-cost, small, and accurate sensors to measure the viscoelastic properties of fluids. For this reason, we explore the capabilities of a low-cost and compact QCR sensor to sense and characterise the gelation process of hydrogels while using a low sample amount and by sensing two different crosslink reactions: covalent bonds and divalent ions. The gelation of covalently crosslinked mucin hydrogels and physically crosslinked alginate hydrogels could be monitored using the sensor, clearly distinguishing the effect of several parameters affecting the viscoelastic properties of hydrogels, including crosslinking chemistry, polymer concentrations, and crosslinker concentrations. QCR sensors offer an economical and portable alternative method to characterise changes in a hydrogel material's viscous properties to contribute to this type of material design, thus providing a novel approach.

2.
Int J Biol Macromol ; 213: 791-803, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35679959

RESUMEN

Flexible wearable sensors based on conductive hydrogels are attracting increasing interest. To meet the urgent demands of sustainability and eco-friendliness, biopolymer-based physically crosslinked hydrogels have drawn great attention. Starch has a great potential due to its renewability, biocompatibility, nontoxicity and low cost. However, poor mechanical property, low conductivity and lack of versatility are seriously limiting the applications of starch-based hydrogels in wearable sensors. Moreover, the development of starch hydrogel-based wearable sensors in harsh conditions remains a challenge. Herein, multifunctional and physical crosslinking hydrogels were developed by introducing ionic liquid (1-ethyl-3-methyl imidazolium acetate) and metal salt (AlCl3) into starch/polyvinyl alcohol double-network structure. The hydrogel exhibited excellent stretchability (567%), tensile strength (0.53 MPa), high conductivity (2.75 S·m-1), good anti-freezing, antibacterial and anti-swelling properties. A wearable sensor assembled from the starch-based hydrogel exhibited a wide working range, high sensitivity (gauge factor: 5.93) and excellent reversibility. Due to the versatility, the sensor effectively detected human motion in normal and underwater environment, and possessed a sensitive pressure and thermal response. Overall, the present work provided a promising route to develop multifunctional and "green" biopolymer-based hydrogels for wearable sensors in human health and sporting applications.


Asunto(s)
Hidrogeles , Dispositivos Electrónicos Vestibles , Antibacterianos/farmacología , Conductividad Eléctrica , Humanos , Hidrogeles/química , Almidón
3.
J Hazard Mater ; 424(Pt B): 127510, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34879513

RESUMEN

3-Nitro-1, 2, 4-triazole-5-one (NTO) is an important insensitive explosive. The discharge of NTO wastewater not only pollutes the environment but also causes the economic loss of the valuable explosive. Currently, the NTO wastewater in industrial production is often treated with activated carbon adsorbents. There are no green, efficient and specific adsorption materials for the NTO treatment yet. In the present work, polymer materials suitable for NTO adsorption were screened by molecular dynamics simulation. With the optimized materials, a carrageenan/chitosan/calcium ion physically cross-linked double network hydrogel (KC/CTS/Ca2+ PCDNH) was successfully prepared by the semi-soluble-acidified sol-gel conversion method. The structure and NTO adsorption performance of the hydrogel were investigated by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The NTO adsorption kinetics, isotherm, and thermodynamics were further studied to understand the adsorption behavior and mechanism. In addition, the adsorbed NTO was successfully released and recovered by soaking the hydrogel in NaOH solution. Our work has provided an environmentally friendly and targeted preparation method of NTO adsorbent materials for NTO wastewater treatment.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Adsorción , Calcio , Carragenina , Hidrogeles , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Triazoles , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA