Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 671
Filtrar
1.
Plant Physiol Biochem ; 215: 108979, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094483

RESUMEN

Inoculation of Azospirillum in maize has become a standard practice in Latin America. However, information on the behavior and population survival of the Azospirillum post-inoculation is scarce, making standardization difficult and generating variations in inoculation efficiency across assays. In this study, we tracked the colonization of three agriculturally relevant Azospirillum strains (Ab-V5, Az39, and the ammonium excreting HM053) after different inoculation methods in maize crops by qPCR. Besides, we assessed their ability to promote maize growth by measuring biometric parameters after conducting a greenhouse essay over 42 days. Inoculated plants exhibited Azospirillum population ranging from 103 to 107 cells plant-1 throughout the experiment. While all strains efficiently colonized roots, only A. argentinense Az39 demonstrated bidirectional translocation between roots and shoots, which characterizes a systemic behavior. Optimal inoculation methods for plant growth promotion varied among strains: soil inoculation promoted the best maize growth for the Ab-V5 and Az39 strains, while seed inoculation proved most effective for HM053. The findings of this study demonstrate that the inoculation method affects the behavior of Azospirillum strains and their effectiveness in promoting maize growth, thereby guiding practices to enhance crop yield.


Asunto(s)
Azospirillum , Zea mays , Zea mays/microbiología , Zea mays/crecimiento & desarrollo , Azospirillum/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Microbiología del Suelo
2.
Heliyon ; 10(14): e34377, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39104509

RESUMEN

The global market of sweet potato (Ipomoea batatas (L.) Lam.) is continuously growing and, consequently, demands greater productivity from the agricultural sector. The use of biofertilizers facilitates plant growth by making essential nutrients available to crops or providing resistance against different abiotic and biotic factors. The strains Bacillus safensis T052-76 and Bacillus velezensis T149-19 have previously been inoculated in the sweet potato cultivar Ourinho, showing positive effects on plant shoot growth and inhibiting the phytopathogen Plenodomus destruens. To elucidate the effects of these strains on sweet potato growth, four different cultivars of sweet potato were selected: Capivara, IAPAR 69, Rosinha de Verdan and Roxa. The plants were grown in pots in a greenhouse and inoculated with the combined strains according to a randomized block design. A control (without the inoculation of both strains) was also used. A slight positive effect of the inoculation of the two Bacillus strains was observed on the aerial parts of some of the cultivars. An increase in the fresh weight of the sweet potatoes of the inoculated plants was obtained, varying from 2.7 to 11.4 %. The number of sweet potatoes obtained from the inoculated cultivars IAPAR 69 and Roxa increased 15.2 % and 16.7 %, respectively. The rhizosphere soil of each cultivar was further sampled for DNA extraction, and the 16S rRNA gene metabarcoding technique was used to determine how the introduction of these Bacillus strains influenced the rhizosphere bacterial community. The bacterial communities of the four different cultivars were dominated by Actinobacteria, Proteobacteria and Firmicutes. Nonmetric multidimensional scaling (NMDS) revealed that the rhizosphere bacterial communities of plants inoculated with Bacillus strains were more similar to each other than to the bacterial communities of uninoculated plants. This study highlights the contribution of these Bacillus strains to the promotion of sweet potato growth.

3.
Plants (Basel) ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124194

RESUMEN

Maize (Zea mays L.) is an essential commodity for global food security and the agricultural economy, particularly in regions such as San Martin, Peru. This study investigated the plant growth-promoting characteristics of native rhizobacteria isolated from maize crops in the San Martin region of Peru with the aim of identifying microorganisms with biotechnological potential. Soil and root samples were collected from maize plants in four productive zones in the region: Lamas, El Dorado, Picota, and Bellavista. The potential of twelve bacterial isolates was evaluated through traits, such as biological nitrogen fixation, indole acetic acid (IAA) production, phosphate solubilization, and siderophore production, and a completely randomized design was used for these assays. A completely randomized block design was employed to assess the effects of bacterial strains and nitrogen doses on maize seedlings. The B3, B5, and NSM3 strains, as well as maize seeds of the yellow hard 'Advanta 9139' variety, were used in this experiment. Two of these isolates, B5 and NSM3, exhibited outstanding characteristics as plant growth promoters; these strains were capable of nitrogen fixation, IAA production (35.65 and 26.94 µg mL-1, respectively), phosphate solubilization (233.91 and 193.31 µg mL-1, respectively), and siderophore production (34.05 and 89.19%, respectively). Furthermore, molecular sequencing identified the NSM3 isolate as belonging to Sporosarcina sp. NSM3 OP861656, while the B5 isolate was identified as Peribacillus sp. B5 OP861655. These strains show promising potential for future use as biofertilizers, which could promote more sustainable agricultural practices in the region.

4.
Microorganisms ; 12(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39065119

RESUMEN

Microbial melanins are a group of pigments with protective effects against harsh conditions, showing fascinating photoprotective activities, mainly due to their capability to absorb UV radiation. In bacteria, they are produced by the oxidation of L-tyrosine, generating eumelanin and pheomelanin. Meanwhile, allomelanin is produced by fungi through the decarboxylative condensation of malonyl-CoA. Moreover, melanins possess antioxidant and antimicrobial activities, revealing significant properties that can be used in different industries, such as cosmetic, pharmaceutical, and agronomical. In agriculture, melanins have potential applications, including the development of new biological products based on this pigment for the biocontrol of phytopathogenic fungi and bacteria to reduce the excessive and toxic levels of agrochemicals used in fields. Furthermore, there are possibilities to develop and improve new bio-based pesticides that control pest insects through the use of melanin-producing and toxin-producing Bacillus thuringiensis or through the application of melanin to insecticidal proteins to generate a new product with improved resistance to UV radiation that can then be applied to the plants. Melanins and melanin-producing bacteria have potential applications in agriculture due to their ability to improve plant growth. Finally, the bioremediation of water and soils is possible through the application of melanins to polluted soils and water, removing synthetic dyes and toxic metals.

5.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062767

RESUMEN

Brassinosteroids (BRs) are an important group of polyhydroxylated naturally occurring steroidal phytohormones found in the plant kingdom in extremely low amounts. Due to the low concentrations in which these compounds are found, much effort has been dedicated to synthesizing these compounds or their structural analogs using natural and abundant sterols. In this work, we report the synthesis of new brassinosteroid analogs obtained from hyodeoxycholic acid, with a 3,6 dioxo function, 24-Nor-22(S)-hydroxy side chain and p-substituted benzoate function at C-23. The plant growth activities of these compounds were evaluated by two different bioassays: rice lamina inclination test (RLIT) and BSI. The results show that BRs' analog with p-Br (compound 41f) in the aromatic ring was the most active at 1 × 10-8 M in the RLIT and BSI assays. These results are discussed in terms of the chemical structure and nature of benzoate substituents at the para position. Electron-withdrawing and size effects seems to be the most important factor in determining activities in the RLIT assay. These results could be useful to propose a new structural requirement for bioactivity in brassinosteroid analogs.


Asunto(s)
Benzoatos , Brasinoesteroides , Oryza , Brasinoesteroides/química , Brasinoesteroides/síntesis química , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Oryza/metabolismo , Benzoatos/química , Benzoatos/farmacología , Benzoatos/síntesis química , Reguladores del Crecimiento de las Plantas/síntesis química , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/farmacología , Desarrollo de la Planta/efectos de los fármacos , Ácido Desoxicólico
6.
Sci Total Environ ; 946: 174503, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38971246

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) play important roles in plant growth and defense under heavy metal (HM) stress. The direct integration of microbial and plant signals is key to the regulation of plant growth and HM stress defense, but the underlying mechanisms are still limited. Herein, we reveal a novel mechanism by which PGPR regulates plant growth-regulating substances in plant tissues and coordinates plant growth and defense in pak choi under cadmium (Cd) stress. This might be an efficient strategy and an extension of the mechanism by which plant-microbe interactions improve plant stress resistance. Azospirillum brasilense and heme synergistically reduced the shoot Cd content and promoted the growth of pak choi. The interaction between abscisic acid of microbial origin and heme improved Cd stress tolerance through enhancing Cd accumulation in the root cell wall. The interaction between A. brasilense and heme induced the growth-defense shift in plants under Cd stress. Plants sacrifice growth to enhance Cd stress defense, which then transforms into a dual promotion of both growth and defense. This study deepens our understanding of plant-microbe interactions and provides a novel strategy to improve plant growth and defense under HM stress, ensuring future food production and security.


Asunto(s)
Azospirillum brasilense , Cadmio , Hemo , Contaminantes del Suelo , Azospirillum brasilense/fisiología , Cadmio/toxicidad , Hemo/metabolismo , Contaminantes del Suelo/toxicidad , Desarrollo de la Planta/efectos de los fármacos , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Estrés Fisiológico
7.
Front Microbiol ; 15: 1426166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989019

RESUMEN

Phosphorus (P) is a critical nutrient for plant growth, yet its uptake is often hindered by soil factors like clay minerals and metal oxides such as aluminum (Al), iron (Fe), and calcium (Ca), which bind P and limit its availability. Phosphate-solubilizing bacteria (PSB) have the unique ability to convert insoluble P into a soluble form, thereby fostering plant growth. This study aimed to assess the efficacy of inoculation of Bacillus megaterium B119 (rhizospheric) and B. subtilis B2084 (endophytic) via seed treatment in enhancing maize yield, grain P content, and enzyme activities across two distinct soil types in field conditions. Additionally, we investigated various mechanisms contributing to plant growth promotion, compatibility with commercial inoculants, and the maize root adhesion profile of these strains. During five crop seasons in two experimental areas in Brazil, Sete Lagoas-MG and Santo Antônio de Goiás-GO, single inoculations with either B119 or B2084 were implemented in three seasons, while a co-inoculation with both strains was applied in two seasons. All treatments received P fertilizer according to plot recommendations, except for control. Both the Bacillus strains exhibited plant growth-promoting properties relevant to P dynamics, including phosphate solubilization and mineralization, production of indole-3-acetic acid (IAA)-like molecules, siderophores, exopolysaccharides (EPS), biofilms, and phosphatases, with no antagonism observed with Azospirillum and Bradyrizhobium. Strain B2084 displayed superior maize root adhesion compared to B119. In field trials, single inoculations with either B119 or B2084 resulted in increased maize grain yield, with relative average productivities of 22 and 16% in Sete Lagoas and 6 and 3% in Santo Antônio de Goiás, respectively. Co-inoculation proved more effective, with an average yield increase of 24% in Sete Lagoas and 11% in Santo Antônio de Goiás compared to the non-inoculated control. Across all seasons, accumulated grain P content correlated with yield, and soil P availability in the rhizosphere increased after co-inoculation in Santo Antônio de Goiás. These findings complement previous research efforts and have led to the validation and registration of the first Brazilian inoculant formulated with Bacillus strains for maize, effectively enhancing and P grain content.

8.
Environ Microbiome ; 19(1): 50, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030648

RESUMEN

Soybean cultivation in tropical regions relies on symbioses with nitrogen-fixing Bradyrhizobium and plant growth-promoting bacteria (PGPBs), reducing environmental impacts of N fertilizers and pesticides. We evaluate the effects of soybean inoculation with different bacterial consortia combined with PGPBs or microbial secondary metabolites (MSMs) on rhizosoil chemistry, plant physiology, plant nutrition, grain yield, and rhizosphere microbial functions under field conditions over three growing seasons with four treatments: standard inoculation of Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens consortium (SI); SI plus foliar spraying with Bacillus subtilis (SI + Bs); SI plus foliar spraying with Azospirillum brasilense (SI + Az); and SI plus seed application of MSMs enriched in lipo-chitooligosaccharides extracted from B. diazoefficiens and Rhizobium tropici (SI + MSM). Rhizosphere microbial composition, diversity, and function was assessed by metagenomics. The relationships between rhizosoil chemistry, plant nutrition, grain yield, and the abundance of microbial taxa and functions were determined by generalized joint attribute modeling. The bacterial consortia had the most significant impact on rhizosphere soil fertility, which in turn affected the bacterial community, plant physiology, nutrient availability, and production. Cluster analysis identified microbial groups and functions correlated with shifts in rhizosoil chemistry and plant nutrition. Bacterial consortia positively modulated specific genera and functional pathways involved in biosynthesis of plant secondary metabolites, amino acids, lipopolysaccharides, photosynthesis, bacterial secretion systems, and sulfur metabolism. The effects of the bacterial consortia on the soybean holobiont, particularly the rhizomicrobiome and rhizosoil fertility, highlight the importance of selecting appropriate consortia for desired outcomes. These findings have implications for microbial-based agricultural practices that enhance crop productivity, quality, and sustainability.

9.
Braz J Microbiol ; 55(3): 2855-2867, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38825649

RESUMEN

An increasing number of microorganisms are being identified to enhance plant growth and inhibit phytopathogens. Some Cladosporium species form beneficial associations with plants, either as endophytes or by colonizing the rhizosphere. Herein, we evaluated the influence of the Cladosporium psychrotolerans (T01 strain) fungus on the in vitro growth of Arabidopsis thaliana plantlets through direct and split interactions. After 9 days post-inoculation with C. psychrotolerans, Arabidopsis plantlets exhibited a notable increase in fresh weight and lateral roots, particularly in split interactions. Chlorophyll content increased in both plant-fungus interaction conditions, whereas the primary root was inhibited during direct interaction. We observed an increase in the GUS signal from the Arabidopsis auxin-inducible DR5:uidA marker in lateral root tips in both contact and split fungal interactions, and primary root tips in a split interaction. Arabidopsis and tomato plants cultivated in soil pots and inoculated with C. psychrotolerans (T01 strain) showed a positive effect on biomass production. GC/MS analysis detected that the T01 strain emitted volatile organic compounds (VOCs), predominantly alcohols and aldehydes. These VOCs displayed potent inhibitory effects, with a 60% inhibition against Botrytis cinerea and a 50% inhibition against C. gloeosporioides. Our study demonstrates that C. psychrotolerans T01 has the potential to enhance biomass production and inhibit pathogens, making it a promising candidate for green technology applications.


Asunto(s)
Arabidopsis , Biomasa , Cladosporium , Enfermedades de las Plantas , Solanum lycopersicum , Compuestos Orgánicos Volátiles , Cladosporium/crecimiento & desarrollo , Arabidopsis/microbiología , Arabidopsis/crecimiento & desarrollo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/química , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Antifúngicos/farmacología , Antifúngicos/metabolismo , Botrytis/crecimiento & desarrollo , Botrytis/efectos de los fármacos , Raíces de Plantas/microbiología
10.
Plants (Basel) ; 13(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38931058

RESUMEN

Bacterial endophytes (120) were isolated from six halophytes (Distichlis spicata, Cynodon dactylon, Eragrostis obtusiflora, Suaeda torreyana, Kochia scoparia, and Baccharis salicifolia). These halophiles were molecularly identified and characterized with or without NaCl conditions. Characterization was based on tests such as indole acetic acid (IAA), exopolysaccharides (EPS), and siderophores (SID) production; solubilization of phosphate (P), potassium (K), zinc (Zn), and manganese (Mn); mineralization of phytate; enzymatic activity (acid and alkaline phosphatase, phytases, xylanases, and chitinases) and the mineralization/solubilization mechanisms involved (organic acids and sugars). Moreover, compatibility among bacteria was assessed. Eleven halophiles were characterized as highly tolerant to NaCl (2.5 M). The bacteria isolated were all different from each other. Two belonged to Bacillus velezensis and one to B. pumilus while the rest of bacteria were identified up to the genus level as belonging to Bacillus, Halobacillus, Halomonas, Pseudomonas, Nesterenkonia, and three strains of Oceanobacillus. The biochemical responses of nutrient solubilization and enzymatic activity were different between bacteria and were influenced by the presence of NaCl. Organic acids were involved in P mineralization and nutrient solubilization. Tartaric acid was common in the solubilization of P, Zn, and K. Maleic and vanillic acid were only detected in Zn and K solubilization, respectively. Furthermore, sugars appeared to be involved in the solubilization of nutrients; fructose was detected in the solubilization tests. Therefore, these biochemical bacterial characteristics should be corroborated in vivo and tested as a consortium to mitigate saline stress in glycophytes under a global climate change scheme that threatens to exacerbate soil salinity.

11.
J Fungi (Basel) ; 10(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38921404

RESUMEN

Gibberellic acid (GA3) is a tetracyclic diterpenoid carboxylic acid synthesized by the secondary metabolism of Fusarium fujikuroi. This phytohormone is widely studied due to the advantages it offers as a plant growth regulator, such as growth stimulation, senescence delay, flowering induction, increased fruit size, and defense against abiotic or biotic stress, which improve the quality and yield of crops. Therefore, GA3 has been considered as an innovative strategy to improve agricultural production. However, the yields obtained at large scale are insufficient for the current market demand. This low productivity is attributed to the lack of adequate parameters to optimize the fermentation process, as well as the complexity of its regulation. Therefore, this article describes the latest advances for potentializing the GA3 production process, including an analysis of its origins from crops, the benefits of its application, the related biosynthetic metabolism, the maximum yields achieved from production processes, and their association with genetic engineering techniques for GA3 producers. This work provides a new perspective on the critical points of the production process, in order to overcome the limits surrounding this modern line of bioengineering.

12.
Plants (Basel) ; 13(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38891364

RESUMEN

Drought affects several plant physiological characteristics such as photosynthesis, carbon metabolism, and chlorophyll content, causing hormonal and nutritional imbalances and reducing nutrient uptake and transport, which inhibit growth and development. The use of bioinoculants based on plant growth-promoting microorganisms such as plant growth-promoting rhizobacteria (PGPR), yeasts, and arbuscular mycorrhizal fungi (AMF) has been proposed as an alternative to help plants tolerate drought. However, most studies have been based on the use of a single type of microorganism, while consortia studies have been scarcely performed. Therefore, the aim of this study was to evaluate different combinations of three PGPR, three AMF, and three yeasts with plant growth-promoting attributes to improve the biochemical, nutritional, and physiological behavior of strawberry plants growing under severe drought. The results showed that the growth and physiological attributes of the non-inoculated plants were significantly reduced by drought. In contrast, plants inoculated with the association of the fungus Claroideoglomus claroideum, the yeast Naganishia albida, and the rhizobacterium Burkholderia caledonica showed a stronger improvement in tolerance to drought. High biomass, relative water content, fruit number, photosynthetic rate, transpiration, stomatal conductance, quantum yield of photosystem II, N concentration, P concentration, K concentration, antioxidant activities, and chlorophyll contents were significantly improved in inoculated plants by up to 16.6%, 12.4%, 81.2%, 80%, 79.4%, 71.0%, 17.8%, 8.3%, 6.6%, 57.3%, 41%, and 22.5%, respectively, compared to stressed non-inoculated plants. Moreover, decreased malondialdehyde levels by up to 32% were registered. Our results demonstrate the feasibility of maximizing the effects of inoculation with beneficial rhizosphere microorganisms based on the prospect of more efficient combinations among different microbial groups, which is of interest to develop bioinoculants oriented to increase the growth of specific plant species in a global scenario of increasing drought stress.

13.
Braz J Microbiol ; 55(3): 2827-2837, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38769246

RESUMEN

We assessed, in a field experiment, the effects of arbuscular mycorrhizal fungi (Rhizophagus intraradices) and plant growth-promoting bacteria (Azospirillum brasilense) on the soil biological activity and the growth of key pioneer species used in the revegetation of coal-mining areas undergoing recovery. We applied four inoculation treatments to the pioneer plant species (Lablab purpureus, Paspalum notatum, Crotalaria juncea, Neonotonia wightii, Stylosanthes guianensis, Andropogon gayanus and Trifolium repens) used in the recovery process: NI (Control - Non-inoculated), AZO (A. brasilense), AMF (R. intraradices), and co-inoculation of AZO and AMF. On the 75th and 180th days, we measured plant dry mass, mycorrhizal colonization, N and P concentration, and accumulation in plant tissue. We collected soil to quantify glomalin content and soil enzyme activity. After 180 days, we did a phytosociological characterization of the remaining spontaneous plants.The both microorganisms, singly or co-inoculated, promoted increases in different fractions of soil glomalin, acid phosphatase activity, and fluorescein diacetate activity at 75 and 180 days. The inoculation was linked to higher plant biomass production (62-89%) and increased plant P and N accumulation by 34-75% and 70-85% at 180 days, compared with the non-inoculated treatment. Among the pioneer species sown Crotalaria juncea produced the highest biomass at the 75th and 180th days (67% and 76% of all biomass), followed by Lablab purpureus (3% and 0.5%), while the other species failed to establish. At 180 days, we observed twenty spontaneous plant species growing in the area, primarily from the Poaceae family (74%). That suggests that the pioneer species present in the area do not hinder the ecological succession process. Inoculation of R. intraradices and A. brasilense, isolated or combined, increases soil biological activity, growth, and nutrient accumulation in key pioneer plant species, indicating the potential of that technique for the recovery of lands degraded by coal mining.


Asunto(s)
Azospirillum brasilense , Minas de Carbón , Micorrizas , Microbiología del Suelo , Suelo , Micorrizas/fisiología , Micorrizas/crecimiento & desarrollo , Suelo/química , Azospirillum brasilense/metabolismo , Azospirillum brasilense/crecimiento & desarrollo , Glomeromycota/fisiología , Glomeromycota/crecimiento & desarrollo , Desarrollo de la Planta , Nitrógeno/metabolismo , Nitrógeno/análisis
14.
Artículo en Inglés | MEDLINE | ID: mdl-38710850

RESUMEN

The paper industry is a composite one constituting different types of mills, processes, and products. The paper industries consume large amounts of resources, like wood and water. These industries also create huge amounts of waste that have to be treated. In our study, 23 endophytic bacteria were isolated from Argemone mexicana, and 16 endophytic bacteria were isolated from Papaver rhoeas. Seventeen and 15 bacterial endophytes from A. mexicana and P. rhoeas, respectively, showed cellulose-degrading activity. The biochemical and molecular characterization were done for endophytic bacteria with cellulolytic activity. The consortium of cellulose-degrading endophytic bacteria from A. mexicana showed endoglucanase activity (0.462 IU/ml) and FPCase enzyme activity (0.269 IU/ml) and from P. rhoeas gave endoglucanase activity (0.439 IU/ml) and FPCase enzyme activity (0.253 IU/ml). Degraded carboxy methylcellulose and filter paper were further treated by Saccharomyces cerevisiae and bioethanol was produced. Cellulose-degrading endophytic bacteria were also tested for auxin, siderophore production, and phosphate solubilization activities. Individual cellulose-degrading endophytic bacteria with plant growth-promoting activities were used as biofertilizers, tested for plant growth-promoting activities using Basmati Pusa 1121 rice, and plant growth parameters were recorded. The degraded paper enhances the growth of rice plants. Selected bacterial endophytes and their consortia from A. mexicana and P. rhoeas were powerful cellulose degraders, which can be further employed for ethanol production and as significant biofertilizers in agriculture.

15.
Microb Ecol ; 87(1): 76, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801423

RESUMEN

Modern crop production relies on the application of chemical pesticides and fertilizers causing environmental and economic challenges. In response, less environmentally impactful alternatives have emerged such as the use of beneficial microorganisms. These microorganisms, particularly plant growth-promoting bacteria (PGPB), have demonstrated their ability to enhance plant growth, protect against various stresses, and reduce the need for chemical inputs. Among the PGPB, Bacillus species have garnered attention due to their adaptability and commercial potential. Recent reports have highlighted Bacillus strains as biocontrol agents against phytopathogenic bacteria while concurrently promoting plant growth. We also examined Bacillus plant growth-promoting abilities in Arabidopsis thaliana seedlings. In this study, we assessed the potential of various Bacillus strains to control diverse phytopathogenic bacteria and inhibit quorum sensing using Chromobacterium violaceum as a model system. In conclusion, our results suggest that bacteria of the genus Bacillus hold significant potential for biotechnological applications. This includes developments aimed at reducing agrochemical use, promoting sustainable agriculture, and enhancing crop yield and protection.


Asunto(s)
Arabidopsis , Bacillus , Enfermedades de las Plantas , Bacillus/fisiología , Arabidopsis/microbiología , Arabidopsis/crecimiento & desarrollo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Percepción de Quorum , Chromobacterium/fisiología , Chromobacterium/crecimiento & desarrollo , Agentes de Control Biológico/farmacología , Desarrollo de la Planta , Plantones/microbiología , Plantones/crecimiento & desarrollo , Microbiología del Suelo
17.
Front Microbiol ; 15: 1356891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585693

RESUMEN

Tropaeolum majus L. is a versatile edible plant that is widely explored due to its medicinal properties and as a key element in intercropping systems. Its growth could be improved by the use of biofertilizers that can enhance nutrient uptake by the plant or provide tolerance to different abiotic and biotic stresses. In a previous study, 101 endophytes isolated from T. majus roots showed more than three plant growth-promoting (PGP) features in vitro, such as phosphate mineralization/solubilization, production of siderophores, antimicrobial substances and indole-related compounds, and presence of the nifH gene. To provide sustainable alternatives for biofertilization, the genomes of two promising endophytes-CAPE95 and CAPE238-were sequenced to uncover metabolic pathways related to biofertilization. Greenhouse experiments were conducted with 216 seeds and 60 seedlings, half co-inoculated with the endophytes (treatment) and half inoculated with 1X PBS (control), and the impact of the co-inoculation on the plant's bacteriome was accessed through 16S rRNA gene metabarcoding. The strains CAPE95 and CAPE238 were taxonomically assigned as Bacillus thuringiensis and Paenibacillus polymyxa, respectively. Metabolic pathways related to the enhancement of nutrient availability (nitrogen fixation, sulfate-sulfur assimilation), biosynthesis of phytohormones (indole-3-acetic acid precursors) and antimicrobial substances (bacilysin, paenibacillin) were found in their genomes. The in vivo experiments showed that treated seeds exhibited faster germination, with a 20.3% higher germination index than the control on the eleventh day of the experiment. Additionally, treated seedlings showed significantly higher plant height and leaf diameters (p < 0.05). The bacterial community of the treated plants was significantly different from that of the control plants (p < 0.001) and showed a higher richness and diversity of species (Chao and Shannon indexes, p < 0.001). A higher relative abundance of potential synergistic PGP bacteria was also shown in the bacteriome of the treated plants, such as Lysinibacillus and Geobacter. For the first time, co-inoculation of B. thuringiensis and P. polymyxa was shown to have great potential for application as a biofertilizer to T. majus plants. The bacterial consortium used here could also be explored in other plant species in the future.

18.
Plants (Basel) ; 13(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611463

RESUMEN

Inoculation with rhizobacteria and feeding by herbivores, two types of abiotic stress, have been shown to increase the production of secondary metabolites in plants as part of the defense response. This study explored the simultaneous effects of inoculation with Bacillus amyloliquefaciens GB03 (a PGPR species) and herbivory by third-instar Spodoptera frugiperda larvae on essential oil (EO) yield and volatile organic compound (VOC) emissions in Ocimum basilicum plants. The density of glandular trichomes was also examined, given that they are linked to EO production and VOC emission. Herbivory increased EO content, but inoculation on its own did not. When combined, however, the two treatments led to a 10-fold rise in EO content with respect to non-inoculated plants. VOC emissions did not significantly differ between inoculated and non-inoculated plants, but they doubled in plants chewed by the larvae with respect to their undamaged counterparts. Interestingly, no changes were observed in VOC emissions when the treatments were tested together. In short, the two biotic stressors elicited differing plant defense responses, mainly when EO was concerned. PGPR did not stimulate EO production, while herbivory significantly enhanced it and increased VOC emissions. The combined treatment acted synergistically, and in this case, PGPR inoculation may have had a priming effect that amplified plant response to herbivory. Peltate trichome density was higher in inoculated plants, those damaged by larvae, and those subjected to the combination of both treatments. The findings highlight the intricate nature of plant defense mechanisms against various stressors and hint at a potential strategy to produce essential oil through the combined application of the two stressors tested here.

19.
Front Biosci (Elite Ed) ; 16(1): 9, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38538528

RESUMEN

In most ecosystems, plants establish complex symbiotic relationships with organisms, such as bacteria and fungi, which significantly influence their health by promoting or inhibiting growth. These relationships involve biochemical exchanges at the cellular level that affect plant physiology and have evolutionary implications, such as species diversification, horizontal gene transfer, symbiosis and mutualism, environmental adaptation, and positive impacts on community structure and biodiversity. For these reasons, contemporary research, moving beyond observational studies, seeks to elucidate the molecular basis of these interactions; however, gaps in knowledge remain. This is particularly noticeable in understanding how plants distinguish between beneficial and antagonistic microorganisms. In light of the above, this literature review aims to address some of these gaps by exploring the key mechanisms in common interspecies relationships. Thus, our study presents novel insights into these evolutionary archetypes, focusing on the antibiosis process and microbial signaling, including chemotaxis and quorum sensing. Additionally, it examined the biochemical basis of endophytism, pre-mRNA splicing, and transcriptional plasticity, highlighting the roles of transcription factors and epigenetic regulation in the functions of the interacting organisms. These findings emphasize the importance of understanding these confluences in natural environments, which are crucial for future theoretical and practical applications, such as improving plant nutrition, protecting against pathogens, developing transgenic crops, sustainable agriculture, and researching disease mechanisms. It was concluded that because of the characteristics of the various biomolecules involved in these biological interactions, there are interconnected molecular networks in nature that give rise to different ecological scaffolds. These networks integrate a myriad of functionally organic units that belong to various kingdoms. This interweaving underscores the complexity and multidisciplinary integration required to understand plant-microbe interactions at the molecular level. Regarding the limitations inherent in this study, it is recognized that researchers face significant obstacles. These include technical difficulties in experimentation and fieldwork, as well as the arduous task of consolidating and summarizing findings for academic articles. Challenges range from understanding complex ecological and molecular dynamics to unbiased and objective interpretation of diverse and ever-changing literature.


Asunto(s)
Ecosistema , Epigénesis Genética , Plantas , Simbiosis , Bacterias
20.
Microbiol Res ; 283: 127650, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452553

RESUMEN

Azospirillum sp. is a plant growth-promoting rhizobacteria largely recognized for its potential to increase the yield of different important crops. In this work, we present a thorough genomic and phenotypic analysis of A. argentinense Az39T to provide new insights into the beneficial mechanisms of this microorganism. Phenotypic analyses revealed the following in vitro abilities: growth at 20-38 °C (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 6.8), and in the presence of 1% (w/v) NaCl; production of variable amounts of PHB as intracellular granules; nitrogen fixation under microaerophilic conditions; IAA synthesis in the presence of L-tryptophan. Through biochemical (API 20NE) and carbon utilization profiling (Biolog) assays, we proved that A. argentinense Az39T is able to use 15 substrates and metabolize 19 different carbon substrates. Lipid composition indicated a predominance of medium and long-chain saturated fatty acids. A total of 6 replicons classified as one main chromosome, three chromids, and two plasmids, according to their tRNA and core essential genes contents, were identified. Az39T genome includes genes associated with multiple plant growth-promoting (PGP) traits such as nitrogen fixation and production of auxins, cytokinin, abscisic acid, ethylene, and polyamines. In addition, Az39T genome harbor genetic elements associated with physiological features that facilitate its survival in the soil and competence for rhizospheric colonization; this includes motility, secretion system, and quorum sensing genetic determinants. A metadata analysis of Az39T agronomic performance in the pampas region, Argentina, demonstrated significant grain yield increases in wheat and maize, proving its potential to provide better growth conditions for dryland cereals. In conclusion, our data provide a detailed insight into the metabolic profile of A. argentinense Az39T, the strain most widely used to formulate non-legume inoculants in Argentina, and allow a better understanding of the mechanisms behind its field performance.


Asunto(s)
Azospirillum , Azospirillum/fisiología , Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta , Carbono , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA