Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Protoc ; 4(4)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34842790

RESUMEN

Plant leaves present an intricate array of layers providing a robust barrier against pathogens and abiotic stressors. However, these layers may also constitute an obstacle for the assessment of intracellular processes, especially when using fluorescence microscopy approaches. Current methods for leaf mitochondrial membrane potential determinations have been traditionally performed in thin mesophyll sections, in isolated protoplasts or in fluorescent protein-expressing transgenic plants. This may limit the amount of information obtained about overall mitochondrial morphology in intact leaves. Here, we detail a fast and straightforward protocol to assess changes in leaf mitochondrial membrane potential associated with mitochondrial dysfunction in the model plant Arabidopsis thaliana. This protocol also permits mitochondrial shape, dynamics and polarity assessment in leaves subjected to diverse stress conditions.

2.
Environ Sci Pollut Res Int ; 28(47): 67711-67723, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34263402

RESUMEN

Cadmium (Cd) inhibits soybean root growth, but its exact mode of action is still not completely understood. We evaluated the effects of Cd on growth, mitochondrial respiration, lipid peroxidation, total phenols, glutathione, and activities of lipoxygenase (LOX), superoxide dismutase (SOD), and catalase (CAT) in soybean roots. In primary roots, Cd stimulated KCN-insensitive respiration and KCN-SHAM-insensitive respiration, indicating the involvement of the alternative oxidase (AOX) pathway, while it decreased KCN-sensitive respiration, suggesting an inhibition of the cytochrome oxidase pathway (COX). In isolated mitochondria, Cd uncoupled the oxidative phosphorylation since it decreased state III respiration (coupled respiration) and ADP/O and respiratory control ratios, while it increased state IV respiration (depletion of exogenously added ADP). The uncoupling effect increased extramitochondrial LOX activity, lipid peroxidation, and oxidized and reduced glutathione, which induced an antioxidant response with enhanced SOD and CAT activities. In brief, our findings reveal that Cd acts as an uncoupler of the mitochondrial oxidative phosphorylation in soybean roots, disturbing cellular respiration and inducing oxidative cellular stress.


Asunto(s)
Cadmio , Fosforilación Oxidativa , Antioxidantes/metabolismo , Cadmio/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Raíces de Plantas/metabolismo , Glycine max/metabolismo , Superóxido Dismutasa/metabolismo
3.
Plant Cell Physiol ; 61(6): 1080-1094, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32163154

RESUMEN

The Arabidopsis genome encodes >450 proteins containing the pentatricopeptide repeat (PPR) motif. The PPR proteins are classified into two groups, termed as P and P Long-Short (PLS) classes. Typically, the PLS subclass proteins are mainly involved in the RNA editing of mitochondrial and chloroplast transcripts, whereas most of the analyzed P subclass proteins have been mainly implicated in RNA metabolism, such as 5' or 3' transcript stabilization and processing, splicing and translation. Mutations of PPR genes often result in embryogenesis and altered seedling developmental defect phenotypes, but only a limited number of ppr mutants have been characterized in detail. In this report, we show that null mutations in the EMB2794 gene result in embryo arrest, due to altered splicing of nad2 transcripts in the Arabidopsis mitochondria. In angiosperms, nad2 has five exons that are transcribed individually from two mitochondrial DNA regions. Biochemical and in vivo analyses further indicate that recombinant or transgenic EMB2794 proteins bind to the nad2 pre-mRNAs in vitro as well as in vivo, suggesting a role for this protein in trans-splicing of nad2 intron 2 and possibly in the stability of the second pre-mRNA of nad2. Homozygous emb2794 lines, showing embryo-defective phenotypes, can be partially rescued by the addition of sucrose to the growth medium. Mitochondria of rescued homozygous mutant plants contain only traces of respiratory complex I, which lack the NADH-dehydrogenase activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Proteínas Mitocondriales/metabolismo , NADH Deshidrogenasa/metabolismo , ARN Mensajero/metabolismo , Arabidopsis/enzimología , Perfilación de la Expresión Génica , Potencial de la Membrana Mitocondrial , Mutación , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/metabolismo , Transcriptoma
4.
Plant Cell Physiol ; 60(5): 986-998, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668784

RESUMEN

Mitochondrial Nicotinamide adenine dinucleotide (NADH) dehydrogenase complex is the first complex of the mitochondrial electron transfer chain. In plants and in a variety of eukaryotes except Opisthokonta, complex I (CI) contains an extra spherical domain called carbonic anhydrase (CA) domain. This domain is thought to be composed of trimers of gamma type CA and CA-like subunits. In Arabidopsis, the CA gene family contains five members (CA1, CA2, CA3, CAL1 and CAL2). The CA domain appears to be crucial for CI assembly and is essential for normal embryogenesis. As CA and CA-like proteins are arranged in trimers to form the CA domain, it is possible for the complex to adopt different arrangements that might be tissue-specific or have specialized functions. In this work, we show that the proportion of specific CI changes in a tissue-specific manner. In immature seeds, CI assembly may be indistinctly dependent on CA1, CA2 or CA3. However, in adult plant tissues (or tissues derived from stem cells, as cell cultures), CA2-dependent CI is clearly the most abundant. This difference might account for specific physiological functions. We present evidence suggesting that CA3 does not interact with any other CA family member. As CA3 was found to interact with CI FRO1 (NDUFS4) subunit, which is located in the matrix arm, this suggests a role for CA3 in assembly and stability of CI.


Asunto(s)
Arabidopsis/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Semillas/metabolismo , Proteínas de Arabidopsis/metabolismo , Anhidrasas Carbónicas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
5.
Mitochondrion ; 19 Pt B: 238-44, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24704804

RESUMEN

Plants constitute excellent sources for pathogen nutrition and survival. To fight against pathogen attack, higher plants have developed a sophisticated immune system responsible for pathogen recognition and activation of downstream defense responses. After pathogen perception, mitochondria play an important role in the defense strategy of the plant cell, integrating and amplifying diverse signals such as salicylic acid, nitric oxide, reactive oxygen species (ROS) or pathogen elicitors. Signals perceived by mitochondria usually impact on their normal function, destabilizing the organelle, generating changes in respiration, membrane potential and ROS production. At this stage, mitochondria produce several signals influencing the redox state of the cell and promoting changes in the expression of nuclear genes by mitochondrial retrograde regulation. At more advanced stages, they promote programmed cell death in order to avoid pathogen propagation to the whole plant. Recent evidence indicates that plants and pathogens have evolved mechanisms to modulate the immune response by acting on mitochondrial functions. In this review, we summarize knowledge about the involvement of mitochondria in different aspects of the response of plants to pathogen attack.


Asunto(s)
Mitocondrias/metabolismo , Plantas/inmunología , Plantas/microbiología , Apoptosis , Regulación de la Expresión Génica de las Plantas , Mitocondrias/efectos de los fármacos , Óxido Nítrico/metabolismo , Oxidación-Reducción , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo
6.
Mitochondrion ; 19 Pt B: 350-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24512842

RESUMEN

Plants alternate between two generations during their life cycle: the diploid sporophyte and the haploid male and female gametophytes, in which gametes are generated. In higher plants, the female gametophyte or embryo sac is a highly polarized seven-celled structure that develops within the sporophytic tissues of the ovule. It has been proposed that mitochondria are crucial in many cell signaling pathways controlling mitosis, cell specification, cell death and fertilization within the embryo sac. Here, we summarize recent findings that highlight the importance of this organelle during female gametophyte development and fertilization in plants.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Fenómenos Fisiológicos Celulares , Mitocondrias/genética , Mitocondrias/metabolismo , Óvulo Vegetal/genética , Fertilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA