Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Food Chem ; 460(Pt 3): 140709, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39098220

RESUMEN

With an increasing emphasis on health and environmental consciousness, there is a growing inclination toward plant protein-based meat substitutes as viable alternatives to animal meat. In the pursuit of creating diverse and functional plant protein-based substitutes, innovative plant proteins have been introduced in conjunction with soy protein isolate (SPI), encompassing pea protein isolate (PPI), rice bran protein (RBP), fava bean protein isolate (FPI), and spirulina protein isolate (SPPI). Notably, SPI-WG extrudates and SPI-PPI extrudates exhibited superior fiber structures (fiber degrees were 1.72 and 1.88, respectively), with coarse fibers in SPI-WG extrudates and fine, dense fibers in SPI-PPI extrudates. The addition of RBP, FPI and SPPI had minimal effect on fiber structure. Fresh SPI-FPI displayed the slowest rate of water loss, losing about 7.11% of their total weight in 5 h. Different plant proteins can be selected for the preparation of plant protein-based meat substitutes according to practical needs.

2.
Food Res Int ; 192: 114807, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147471

RESUMEN

Alternative protein sources have been required to meet the significant plant protein demand. Agro-industrial by-products such as leaves have considerable potential as a source of macromolecules once they are mostly discarded as waste. The current study evaluated dried cassava leaves as a protein source. First, alkaline extraction parameters (solid-liquid ratio, pH, and temperature) were optimized and the run that result in the highest protein yield were acidified at pH 2.5 or 4. The influence of carbohydrate solubilized on protein precipitation was also evaluated by removing it via alcoholic extraction prior to precipitation. The experimental design showed that high pH and temperature conditions associated with a low solid-liquid ratio led to increased protein yields. The presence of carbohydrates in the supernatant significantly influenced protein precipitation. The protein concentrate had around 17.51% protein when it was obtained from a supernatant with carbohydrates, while protein content increased to 26.88% when it was obtained from carbohydrate-free supernatant. The precipitation pH also influenced protein content, whereas protein content significantly decreased when pH increased from 2.5 to 4. The natural interaction between carbohydrates and proteins from cassava leaves positively influenced the emulsion stability index and the foaming capacity and stability. Thus, the presented results bring insights into challenges in extracting and precipitation proteins from agro-industrial by-products.


Asunto(s)
Precipitación Química , Manihot , Hojas de la Planta , Proteínas de Plantas , Temperatura , Manihot/química , Hojas de la Planta/química , Concentración de Iones de Hidrógeno , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/química , Emulsiones/química
3.
Crit Rev Food Sci Nutr ; : 1-16, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154210

RESUMEN

The rising consumption of plant protein foods and the emergence of meat alternatives have prompted interest in the health benefits of such products, which contain fiber in addition to protein. This review investigates the effect of fiber on plant-based protein metabolism and evaluates its contribution to gut-derived health impacts. Plant proteins, which often come with added fiber, can have varying health outcomes. Factors such as processing and the presence of fiber and starch influence the digestibility of plant proteins, potentially leading to increased proteolytic fermentation in the gut and the production of harmful metabolites. However, fermentable fiber can counteract this effect by serving as a primary substrate for gut microbes, decreasing proteolytic activity. The increased amount of fiber, rather than the protein source itself, plays a significant role in the observed health benefits of plant-based diets in human studies. Differences between extrinsic and intrinsic fiber in the food matrix further impact protein fermentation and digestibility. Thus, in novel protein products without naturally occurring fiber, the health impact may differ from conventional plant protein sources. The influence of various fibers on plant-based protein metabolism throughout the gastrointestinal tract is not fully understood, necessitating further research.

4.
Zebrafish ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042596

RESUMEN

Soybean meal (SBM) has become a common dietary replacement for fish meal (FM) in aquafeed. However, at high inclusions, SBM has been shown to have negative impacts presenting as reduced feed intake and intestinal inflammation. Medicinal plant extracts, namely essential oils, have been used to promote growth performance and immune response. The objective of this study was to investigate the potential therapeutic effects of oregano (Origanum vulgare) essential oil (OEO) inclusion on utilization of a high-inclusion SBM diet using zebrafish as a model. Five diets were used in this study: reference-FM-based diet, control-55.7% inclusion SBM diet, and three experimental SBM-based diets OEO1, OEO2, and OEO3 that were supplemented with 1%, 2%, or 3% of oregano oil, respectively. The FM group had overall better growth performance when compared with the other treatment groups; however, the OEO3 mean weight and feed conversion ratio were not significantly different from the FM group (p > 0.05) and were significantly improved compared with the SBM group (p < 0.05). Similarly, OEO2 total length was not significantly different from FM (p > 0.05) but significantly higher than the SBM group (p < 0.05). Expression of inflammation-related genes did not significantly differ between the OEO groups and the SBM-only group. However, the OEO2 and OEO3 groups displayed improved growth performance compared with the SBM group, suggesting that inclusion of OEO at or above 2% inclusion may help to alleviate common symptoms induced by a high-inclusion SBM diet.

5.
Food Chem X ; 23: 101540, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39007110

RESUMEN

Plant proteins can meet consumers' demand for healthy and sustainable alternatives to animal proteins. It has been reported to possess numerous health benefits and is widely used in the food industry. However, conventional extraction methods are time-consuming, energy-intensive, as well as environmentally unfriendly. Plant proteins are also limited in application due to off-flavors, allergies, and anti-nutritional factors. Therefore, this paper discusses the challenges and limitations of conventional extraction processes. The current advances in green extraction technologies are also summarized. In addition, methods to improve the nutritional value, bioactivity, functional and organoleptic properties of plant proteins, and strategies to reduce their allergenicity are mentioned. Finally, examples of applications of plant proteins in the food industry are presented. This review aims to stimulate thinking and generate new ideas for future research. It will also provide new ideas and broad perspectives for the application of plant proteins in the food industry.

6.
Aging Cell ; : e14276, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011855

RESUMEN

Plant-based diets reduces the risk of chronic conditions. The interaction between protein source and other macronutrients-fat (F) and carbohydrate (C)-has yet to be investigated. The aim was to assess the main and interactive effects of protein-source (plant vs. animal) and F:C (high or low) and the transition from an Australian diet to a whole food diet on various health markers in older individuals. This single-blinded, parallel, randomised experimental trial used a 2 × 2 factorial design to compare pro-vegetarian (70:30 plant to animal) versus omnivorous (50:50 plant to animal) diets at 14% protein and varying fat-to-carbohydrate ratios (high fat ~40% vs. low fat ~30%) over 4 weeks. Study foods were provided, alcohol consumption was discouraged, and dietary intake was determined through food records. Analysis included both RCT and observational data. Changes in appetite, palatability of diets, and dietary intake were assessed. Body composition, muscle strength, function, gut microbiome, and cardiometabolic health parameters were measured. Data from 113 (of the 128 randomised) individuals aged 65-75 years were analysed. Pro-vegetarian diets reduced diastolic blood pressure, total cholesterol and glucose levels. Moreover, the overall sample exhibited increased short-chain fatty acids and FGF21 levels, as well as improvements in body composition, function, and cardio-metabolic parameters irrespective of dietary treatment. Transitioning to a diet rich in fruit, vegetables, fibre, and moderate protein was associated with improved health markers in older age, with added benefits from pro-vegetarian diets. Further research on long-term effects is needed.

7.
Gels ; 10(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39057490

RESUMEN

The present study aimed to investigate the properties of calcium-rich soy protein isolate (SPI) gels (14% SPI; 100 mM CaCl2), the effects of incorporating different concentrations locust bean gum (LBG) (0.1-0.3%, w/v) to the systems and the stability of the obtained gels. Also, the incorporation of solid lipid microparticles (SLMs) was tested as an alternative strategy to improve the system's stability and, therefore, potential to be applied as a product prototype. The gels were evaluated regarding their visual aspect, rheological properties, water-holding capacities (WHCs) and microstructural organizations. The CaCl2-induced gels were self-supported but presented low WHC (40.0% ± 2.2) which was improved by LBG incorporation. The obtained mixed system, however, presented low stability, with high syneresis after 10 days of storage, due to microstructural compaction. The gels' stability was improved by SLM incorporation, which decreased the gelled matrices' compaction and syneresis for more than 20 days. Even though the rheological properties of the emulsion-filled gels (EFGs) were very altered due to the ageing process (which may affect the sensory perception of a future food originated from this EFG), the incorporation of SLMs increased the systems potential to be applied as a calcium-rich product prototype.

8.
Foods ; 13(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063388

RESUMEN

As the lack of resources required to meet the demands of a growing population is increasingly evident, plant-based diets can be seen as part of the solution, also addressing ethical, environmental, and health concerns. The rise of vegetarian and vegan food regimes is a powerful catalyzer of a transition from animal-based diets to plant-based diets, which foments the need for innovation within the food industry. Vegetables and fruits are a rich source of protein, and bioactive compounds such as dietary fibres and polyphenols and can be used as technological ingredients (e.g., thickening agents, emulsifiers, or colouring agents), while providing health benefits. This review provides insight on the potential of plant-based ingredients as a source of alternative proteins, dietary fibres and antioxidant compounds, and their use for the development of food- and alternative plant-based products. The application of these ingredients on meat analogues and their impact on health, the environment and consumers' acceptance are discussed. Given the current knowledge on meat analogue production, factors like cost, production and texturization techniques, upscaling conditions, sensory attributes and nutritional safety are factors that require further development to fully achieve the full potential of plant-based meat analogues.

9.
J Sci Food Agric ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970166

RESUMEN

BACKGROUND: Use of high hydrostatic pressure (HHP) with reduced processing times is gaining traction in the food industry as an alternative to conventional thermal treatment. In order to enhance functional benefits while minimizing processing losses, functionalized products are being developed with such novel techniques. In this study, changes in quality parameters for HHP treated enriched tomato sauce were evaluated, with the aim to assess its viability as an alternative to conventional thermal treatment methods. RESULTS: HHP treatments at 500 MPa, 30 °C/50 °C significantly increased the total phenolic and lycopene content of the sauce samples, achieving 6.7% and 7.5% improvements over conventionally treated samples. The antioxidant capacity of the HHP-treated samples was also found to match or be better than conventionally treated samples. Furthermore, a T2 relaxation time study revealed that pressure-temperature processing treatments were effective in maintaining the structural integrity of water molecules. Microbiological analyses revealed that 500 MPa/50 °C 5 min treatment can offer 8 logs reduction colony formation, matching the results of conventional thermal treatment. CONCLUSION: Combined pressure-temperature treatments improve results, reduce time consumption. 500 MPa/50 °C treatments provided retention of quality parameters and significant reduction in microbial activity. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

10.
Food Chem ; 460(Pt 1): 140458, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029364

RESUMEN

In recent years, meat analogs based on plant proteins have received increasing attention. However, the process of high moisture extrusion (HME), the method for their preparation, has not been thoroughly explored, particularly in terms of elucidating the complex interactions that occur during extrusion, which remain challenging. These interactions arise from the various ingredients added during HME, including proteins, starches, edible gums, dietary fibers, lipids, and enzymes. These ingredients undergo intricate conformational changes and interactions under extreme conditions of high temperature, pressure, and shear, ultimately forming the fibrous structure of meat analogs. This review offers a overview of these ingredients and the molecular interaction changes they undergo during the extrusion process. Additionally, it delves into the major molecular interactions such as disulfide bonding, hydrogen bonding, and hydrophobic interactions, providing detailed insights into each.

11.
Food Chem X ; 23: 101550, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022785

RESUMEN

This study aimed to modify plant protein mixture to improve their functionality and digestibility by limited hydrolysis. Soy protein isolate and corn zein were mixed at the ratio of 5:1 (w/w), followed by limited hydrolysis using papain from 15 to 30 min. The structural characteristics, in vitro digestibility, and functional properties were evaluated. Also, DPPH radical scavenging activity was determined. The results indicated that the molecular weight of different modified samples was largely reduced by limited hydrolysis, and the proportion of random coil was significantly increased. Furthermore, the solubility, foaming, emulsifying and water-holding capacity of hydrolyzed protein mixture were significantly improved, which were close to those of whey protein isolate. In vitro digestibility after 30-min limited hydrolysis was remarkably elevated. In addition, the hydrolyzed protein mixture exhibited a higher antioxidant activity than those of untreated proteins. Overall, limited hydrolysis of protein mixture led to improved digestibility, functionality and antioxidant activity.

12.
Food Res Int ; 190: 114631, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945582

RESUMEN

Plant-based meat analogs have increasingly attracted the attention of the food industry in recent years. However, the digestion behavior of this innovative solid food in human stomach is poorly understood. In this study, plant-based meat analogs with different internal structures were prepared with/without high-moisture extrusion technology and at different temperatures. A semi-dynamic gastric digestion system which involves the mimic processes of the secretion of gastric juice and the gastric emptying was applied. After extrusion treatment at high temperature (150 ℃), the EHT had the highest anisotropic index (H⊥/H∥=1.90) and an ideal meat-like structure. It was found that particle disintegration and swelling simultaneously occurred in the bolus of the EHT but not in the sample without extrusion treatment (the HLT) in the early stage of gastric digestion. This difference might be attributed to the compact and well-arranged anisotropic structure of the EHT resulting from the extrusion, and leads to difficult enzymatic hydrolyzation unless the particles swell and unfold the polymer chains. The difficulty in particle disintegration in the EHT during gastric digestion is the consequence of the relatively slow gastric emptying rate and the decrease of protein degradation. As a result, the EHT which underwent extrusion treatment at high temperature and possessed the best anisotropic fibrous structure exhibited the slowest gastric digestion. This novel solid food shows good potential as a desired nutritional food for people on diet.


Asunto(s)
Digestión , Vaciamiento Gástrico , Digestión/fisiología , Humanos , Anisotropía , Estómago/fisiología , Manipulación de Alimentos/métodos , Temperatura , Modelos Biológicos , Sustitutos de la Carne
13.
Foods ; 13(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38890999

RESUMEN

This review discusses different protein sources and their role in human nutrition, focusing on their structure, digestibility, and bioavailability. Plant-based proteins, such as those found in legumes, nuts, and seeds, may contain anti-nutritional factors that impact their bioavailability apart from structural and compositional differences from animal proteins. Animal proteins are generally highly digestible and nutritionally superior to plant proteins, with higher amino acid bioavailability. Alternative protein sources are also processed in different ways, which can alter their structure and nutritional value, which is also discussed.

14.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 237-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945889

RESUMEN

Fibroblast growth factor-23 (FGF23) is a phosphaturic hormone secreted by osteocytes in response to dietary phosphate intake. An increase in FGF23 level is an indicator of excess phosphate intake relative to the residual nephron number. Therefore, avoiding excessive phosphate intake and inhibiting the elevation of serum FGF23 levels are important to preserve the number of functional nephrons. This randomized crossover trial aimed to determine the potential differences in the impacts on serum FGF23 levels between plant protein and animal protein-based meals in individuals with normal renal function. Nine young men were administered plant (no animal protein) or animal protein-based meals (70% of their protein was from animal sources) with the same phosphate content. The test meals consisted of breakfast, lunch, and dinner. Blood samples were collected in the morning, after overnight fasting, and before and after eating the test meals (for two consecutive days at the same hour each day). Furthermore, a 24-h urine sample was obtained on the day the test meal was consumed. No significant interactions were found among serum phosphate, calcium, and 1,25-dihydroxyvitamin D levels. However, after eating plant protein-based meals, serum FGF23 levels decreased and serum intact parathyroid hormone levels increased (interaction, p<0.05). Additionally, urine 24-h phosphate excretion tended to be lower in individuals consuming plant protein-based meals than in those consuming animal protein-based meals (p=0.06). In individuals with normal renal function, plant protein-based meals may prevent an increase in serum FGF23 levels and kidney damage caused by phosphate loading.


Asunto(s)
Estudios Cruzados , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Comidas , Hormona Paratiroidea , Fosfatos , Humanos , Masculino , Factores de Crecimiento de Fibroblastos/sangre , Adulto Joven , Hormona Paratiroidea/sangre , Fosfatos/sangre , Adulto , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/farmacología , Calcio/sangre , Calcio/orina , Vitamina D/sangre , Vitamina D/administración & dosificación , Vitamina D/análogos & derivados
15.
Crit Rev Food Sci Nutr ; : 1-20, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907628

RESUMEN

Bioactive peptides from vegetal sources have been shown to have functional properties as anti-inflammatory, antioxidant, antihypertensive or antidiabetic capacity. For this reason, they have been proposed as an interesting and promising alternative to improve human health. In recent years, the numerous advances in the bioinformatics field for in silico prediction have speeded up the discovery of bioactive peptides, also reducing the associated costs when using an integrated approach between the classical and bioinformatics discovery. This review aims to provide an overview of the evolution, limitations and latest advances in the field of bioinformatics and computational tools, and specifically make a critical and comprehensive insight into computational techniques used to study the mechanism of interaction that allows the explanation of plant bioactive peptide functionality. In particular, molecular docking is considered key to explain the different functionalities that have been previously identified. The assumptions to simplify such a high complex environment implies a degree of uncertainty that can only be guaranteed and validated by in vitro or in vivo studies, however, the combination of databases, software and bioinformatics applications with the classical approach has become a promising procedure for the study of bioactive peptides.

16.
Food Res Int ; 188: 114399, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823854

RESUMEN

In the context of replacing animal proteins in food matrices, rice proteins (RP) become promised because they come from an abundant plant source, are hypoallergenic, and have high digestibility and nutritional value. However, commercial protein isolates obtained by spray drying have low solubility and poor functionality, especially in their isoelectric point. One way to modify these properties is through interaction with polysaccharides, such as gum arabic (GA). Therefore, this work aims to evaluate the effects of pH and GA concentration on the interaction and emulsifying activity of RP:GA coacervates. First, the effects of pH (2.5 to 7.0) and GA concentrations (0.2 to 1.0 wt%, giving rise to RP:GA mass ratios of 1:0.2 to 1:1.0) in RP:GA blends were evaluated. The results demonstrated that biopolymers present opposite net charges at pH between 2.5 and 4.0. At pH 3.0, insoluble coacervates with complete charge neutralization were formed by electrostatic interactions, while at pH 5.0 it was observed that the presence of GA prevented the RP massive aggregation. Second, selected blends with 0.4 or 1.0 wt% of GA (RP:GA mass ratios of 1:0.4 or 1:1.0) at pH 3.0 or 5.0 were tested for their ability to stabilize oil-in-water emulsions. The emulsions were characterized for 21 days. It was observed that the GA increased the stability of RP emulsions, regardless of the pH and polysaccharide concentration. Taken together, our results show that it is possible to combine RP and GA to improve the emulsifying properties of these plant proteins at pH conditions close to their isoelectric point, expanding the possibility of implementation in food systems.


Asunto(s)
Emulsiones , Goma Arábiga , Oryza , Proteínas de Plantas , Polisacáridos , Agua , Goma Arábiga/química , Emulsiones/química , Concentración de Iones de Hidrógeno , Proteínas de Plantas/química , Oryza/química , Polisacáridos/química , Agua/química , Emulsionantes/química , Solubilidad
17.
Crit Rev Food Sci Nutr ; 64(13): 4179-4201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708867

RESUMEN

The increasing world population requires the production of nutrient-rich foods. Protein is an essential macronutrient for healthy individuals. Interest in using plant proteins in foods has increased in recent years due to their sustainability and nutritional benefits. Dry and wet protein fractionation methods have been developed to increase protein yield, purity, and functional and nutritional qualities. This review explores the recent developments in pretreatments and fractionation processes used for producing pulse protein concentrates and isolates. Functionality differences between pulse proteins obtained from different fractionation methods and the use of fractionated pulse proteins in different food applications are also critically reviewed. Pretreatment methods improve the de-hulling efficiency of seeds prior to fractionation. Research on wet fractionation methods focuses on improving sustainability and functionality of proteins while studies on dry methods focus on increasing protein yield and purity. Hybrid methods produced fractionated proteins with higher yield and purity while also improving protein functionality and process sustainability. Dry and hybrid fractionated proteins have comparable or superior functionalities relative to wet fractionated proteins. Pulse protein ingredients are successfully incorporated into various food formulations with notable changes in their sensory properties. Future studies could focus on optimizing the fractionation process, improving protein concentrate palatability, and optimizing formulations using pulse proteins.


Asunto(s)
Fraccionamiento Químico , Valor Nutritivo , Proteínas de Plantas , Fraccionamiento Químico/métodos , Proteínas de Plantas/análisis , Manipulación de Alimentos/métodos , Humanos , Proteínas en la Dieta/análisis , Semillas/química
18.
Nutrients ; 16(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38794673

RESUMEN

Pulses-comprising the dry, edible seeds of leguminous plants-have long been lauded for their culinary flexibility and substantial nutritional advantages. This scoping review aimed to map the evidence on how pulses contribute to overall human health. Four electronic databases were searched for clinical and observational studies in English. We identified 30 articles (3 cross-sectional studies, 1 federated meta-analysis, 8 prospective cohort studies, 1 before-and-after study, and 17 randomized controlled trials) that met our inclusion criteria. Predominant among the pulses studied were lentils, chickpeas, common bean varieties (e.g., pinto, black, navy, red, kidney), black-eyed peas, cowpeas, and split peas. Consumption modalities varied; most studies examined mixed pulses, while five isolated individual types. In intervention studies, pulses were incorporated into diets by allotting a fixed pulse serving on top of a regular diet or by substituting red meat with pulses, offering a comparative analysis of dietary effects. The health outcomes evaluated were multifaceted, ranging from lipid profiles to blood pressure, cardiovascular disease risk and mortality, type 2 diabetes and glycemic control, metabolic syndrome indicators, inflammatory markers, oxidative stress biomarkers, and hormonal profiles. The most frequently assessed study outcomes included changes in low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, systolic blood pressure, diastolic blood pressure, fasting blood sugar, hemoglobin A1c, waist circumference, and C-reactive protein or high-sensitivity C-reactive protein. This review should serve as a call to action for the scientific community to build upon the existing evidence, enriching our understanding of the nutritional and health-promoting attributes of pulses.


Asunto(s)
Dieta , Humanos , Fabaceae , Enfermedades Cardiovasculares/prevención & control , Semillas , Presión Sanguínea
19.
Food Chem ; 451: 139530, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703723

RESUMEN

With increasing consumer health awareness and demand from some vegans, plant proteins have received a lot of attention. Plant proteins have many advantages over animal proteins. However, the application of plant proteins is limited by a number of factors and there is a need to improve their functional properties to enable a wider range of applications. This paper describes the advantages and disadvantages of traditional methods of modifying plant proteins and the appropriate timing for their use, and collates and describes a method with fewer applications in the food industry: the Hofmeister effect. It is extremely simple but efficient in some respects compared to traditional methods. The paper provides theoretical guidance for the further development of plant protein-based food products and a reference value basis for improving the functional properties of proteins to enhance their applications in the food industry, pharmaceuticals and other fields.


Asunto(s)
Proteínas de Plantas , Proteínas de Plantas/química , Manipulación de Alimentos
20.
Food Res Int ; 186: 114351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729699

RESUMEN

The global demand for high-quality animal protein faces challenges, prompting a surge in interest in plant-based meat analogues (PBMA). PBMA have emerged as a promising solution, although they encounter technological obstacles. This review discusses the technological challenges faced by PBMA from the viewpoint of plant proteins, emphasizing textural, flavor, color, and nutritional aspects. Texturally, PBMA confront issues, such as deficient fibrous structure, chewiness, and juiciness. Addressing meat flavor and mitigating beany flavor in plant protein are imperative. Furthermore, achieving a distinctive red or pink meat color remains a challenge. Plant proteins exhibit a lower content of essential amino acids. Future research directions encompass (1) shaping myofibril fibrous structures through innovative processing; (2) effectively eliminating the beany flavor; (3) developing biotechnological methodologies for leghemoglobin and plant-derived pigments; (4) optimizing amino acid composition to augment the nutritional profiles. These advancements are crucial for utilization of plant proteins in development of high-quality PBMA.


Asunto(s)
Proteínas de Plantas , Valor Nutritivo , Animales , Gusto , Carne/análisis , Manipulación de Alimentos/métodos , Humanos , Color , Sustitutos de la Carne
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA