Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 283: 116805, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096689

RESUMEN

The accumulation of polyethylene microplastics (PE-MPs) in soil has raised considerable concerns; however, the effects of their persistence and mitigation on agroecosystems have not been explored. This study aimed to assess the detrimental effects of PE-MPs on a soil-plant system and evaluate their mitigation using a novel microbial consortium (MC). We incorporated low-density polyethylene (LDPE) and high-density polyethylene (HDPE) at two different concentrations, along with a control (0 %, 1 %, and 2 % w/w) into the sandy loam soil for a duration of 135 days. The samples were also treated with a novel MC and incubated for 135 days. The MC comprised three bacterial strains (Ralstonia pickettii (MW290933) strain SHAn2, Pseudomonas putida strain ShA, and Lysinibacillus xylanilyticus XDB9 (T) strain S7-10F), and a fungal strain (Aspergillus niger strain F1-16S). Sunflowers were subsequently cultivated, and physiological growth parameters were measured. The results showed that adding 2 % LDPE significantly decreased soil pH by 1.06 units compared to the control. Moreover, adding 2 % HDPE resulted in a more significant decrease in soil electrical conductivity (EC) relative to LDPE and the control. A dose-dependent increase in dissolved organic carbon (DOC) was observed, with the highest DOC found in 2 % LDPE. The addition of higher dosages of LDPE reduced soil bulk density (BD) more than HDPE. The addition of 2 % HDPE increased the water drop penetration time (WDPT) but decreased the mean weight diameter of soil aggregates (MWD) and water-stable aggregates (WSA) compared to LDPE. The results also revealed that higher levels of LDPE enhanced soil basal respiration (BR) and microbial carbon biomass (MBC). The interaction of MC and higher MP percentages considerably reduced soil pH, EC, BD, and WDPT but significantly increased soil DOC, MWD, WSA, BR, and MBC. Regarding plant growth, incorporating 2 % PE-MPs significantly reduced physiological responses of sunflower: chlorophyll content (Chl; -15.2 %), Fv/Fm ratio (-25.3 %), shoot dry weight (ShD; -31.3 %), root dry weight (RD; -40 %), leaf area (LA; -38.4 %), and stem diameter (StemD; -25 %) compared to the control; however, the addition of novel MC considerably reduced and ameliorated the harmful effects of 2 % PE-MPs on the investigated plant growth responses.

2.
Mar Pollut Bull ; 206: 116709, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991607

RESUMEN

The reliable quantification of microplastic contamination in chitinous organisms requires validated methods to remove interfering complex organic and inorganic material. This study trialled KOH, H2O2 and HNO3 digestion methods on the digestive tracts of two large decapods (Panulirus cygnus and Portunus armatus) to validate a protocol that facilitates reliable microplastic extraction. KOH digestion provided the best recovery (>95 %) of all polymers (e.g. polyamide, polyethylene, polyethylene terephthalate, polypropylene, polystyrene and polyvinyl chloride), with the lowest impact to their physical morphology and chemical spectra. While HNO3, and HNO3 + H2O2 treatments were more effective at digesting chitin, they destroyed polyamide, and altered several other polymers. High digestion efficiency did not result in high matrix clarification or high microplastic recovery for large decapods. This study emphasises the importance of validating species-specific microplastic extraction methods, whilst proposing additional post-digestion protocols, such as density separation, for complex samples, that can be applied in future research investigating plastic contamination in large decapods.


Asunto(s)
Monitoreo del Ambiente , Tracto Gastrointestinal , Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/análisis , Tracto Gastrointestinal/química , Contaminantes Químicos del Agua/análisis , Decápodos
3.
Sci Total Environ ; 927: 172235, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582125

RESUMEN

Plastic pollution is a global challenge that affects all marine ecosystems, and reflects all types of uses and activities of human society in these environments. In marine ecosystems, microplastics and mesoplastics interact with invertebrates and become available to higher predators, such as fish, which can ingest these contaminants. This study aimed to analyze how ecological food interactions (diet overlap and trophic niche amplitude) among fish species contribute to the ingestion of plastic particles. The gastrointestinal contents of six fish species (Atherinella brasiliensis, Eucinostomus melanopterus, Eucinostomus argenteus, Genidens genidens, Coptodon rendalli, and Geophagus brasiliensis) were analyzed to identify prey items and plastic ingestion. Based on the ontogenetic classification, A. brasiliensis, E. melanopterus, and G. genidens were divided into juveniles and adults, and the six fish species analyzed were divided into nine predator groups. Most of the plastics ingested by the fish species were blue microplastic (MP) fibers (< 0.05 mm) classified as polyester terephthalate, polyethylene, and polybutadiene. Considering all the analyzed predators, the average number and weight of plastics ingested per individual were 2.01 and 0.0005 g, respectively. We observed that predators with a high trophic overlap could present a relationship with the intake of MP fibers owing to predation on the same resources. In addition, we observed the general pattern that when a species expands its trophic diversity and niche, it can become more susceptible to plastic ingestion. For example, the species with the highest Levin niche amplitude, E. argenteus juveniles, had the highest mean number (2.9) of ingested MP fibers. Understanding the feeding ecology and interactions among species, considering how each predator uses habitats and food resources, can provide a better understanding of how plastic particle contamination occurs and which habitats are contaminated with these polluting substances.


Asunto(s)
Monitoreo del Ambiente , Peces , Cadena Alimentaria , Microplásticos , Contaminantes Químicos del Agua , Animales , Peces/fisiología , Contaminantes Químicos del Agua/análisis , Contenido Digestivo/química , Plásticos/análisis , Ecosistema
4.
Environ Pollut ; 347: 123772, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490527

RESUMEN

Determining the sources of marine litter is necessary to mitigate this increasing global problem. Plastic bottles are useful tracers of marine litter and constitute the main item (24%) stranding on remote beaches in the Galapagos Islands. The aim of this study was to estimate the abundance of plastic bottles in remote beaches and inferred their sources. To do so, we collected plastic bottles at 60 remote Galapagos Island beaches from 2018 to 2022. 76% of beaches were qualified as badly polluted, with >34 bottles·100 m-1. Most identified bottles came from Peru (71%), followed by China (17%) and Ecuador (9%). Although most locally-sold products are made in Ecuador, they contribute little to beach litter loads. Polyethylene terephthalate bottles with lid (necessary for litter dispersal) represented 88% of all bottles, demonstrating that most of the litter reaching the Galapagos comes from distant sources, mainly from South America. However, bottle ages indicate that at least 10% of Peruvian, 26% of Ecuadorian, and all Chinese bottles likely were dumped from ships. Reducing marine litter reaching the Galapagos Islands requires tackling litter leakage from land-based sources in South America and better compliance with regulations banning the dumping of plastics and other persistent wastes from ships.


Asunto(s)
Playas , Residuos , Ecuador , Residuos/análisis , Monitoreo del Ambiente , América del Sur , Plásticos
5.
Environ Pollut ; 343: 123254, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38160772

RESUMEN

Plastic mulch is widely utilized for weed control, temperature regulation, soil erosion prevention, disease management, and soil structure improvement, ultimately enhancing crop quality and yield. However, a significant issue with conventional plastic mulches is their low recycling rates, which can cause plastic residue to build up, thereby damaging soil quality and reducing crop yield. The emergence of biodegradable films offers a promising solution to mitigate this issue and reduce soil pollution. However, its potential effects on soil properties and plant performance remain unclear. In this study, low-density polyethylene (LDPE) and poly (butylene succinate-co-butylene adipate) (PBSA) were used to observe the effect of plastic mulch residues on soil properties and plant growth performance via potting experiment. Additionally, the interaction effects of compost and biochar as soil amendments with plastic mulch residues were also evaluated. The result of this study revealed that the type of plastic significantly affected the total nitrogen and magnesium uptake; however, the morphological traits of the tested plant (Japanese mustard spinach) were not significantly affected. The addition of compost and biochar led to a significant increase in both shoot and total dry weight of the plant, indicating a positive effect on its growth. The results of the two-way ANOVA indicated a significant influence of plastic type on dissolved phosphate (PO43-) levels and soil dehydrogenase activity (DHA). The interaction effect (plastic type with soil amendment) was statistically significant only for soil DHA. Neither plastic mulch residues nor soil amendments significantly affected other soil chemical properties. However, long-term experiments to systematically investigate the long-term effects of plastic residues are necessary.


Asunto(s)
Agricultura , Carbón Orgánico , Suelo , Alquenos , Plásticos
6.
Biota Neotrop. (Online, Ed. ingl.) ; 20(3): e20201005, 2020. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1131936

RESUMEN

Abstract This is the first study to report the plastic ingestion by Prochilodus lineatus in Brazilian fluvial ecosystems. We examined 32 individuals collected in two contrasting lotic environments: the highly polluted Tietê River and its much less degraded tributary, Peixe River. Most individuals, 71.88%, contained plastic in their digestive tract, with averages of 3.26 and 9.37 particles per individual in the tributary and main river, respectively. The blue color was predominant among the observed plastic particles and size ranged from 0.18 to 12.35 mm. Plastic ingestion must be accidental, predominantly, since the species has an iliophagous eating habit. As this species is regionally the most important fishery resource, potential adverse effects of this type of contamination may be transferred to human consuming populations. Mitigation measures against pollution are urgent in the Tietê River basin.


Resumo Este é o primeiro estudo a relatar a ingestão de plástico por Prochilodus lineatus em ecossistemas fluviais brasileiros. Nós examinamos 32 indivíduos coletados em dois ambientes lóticos contrastantes: o rio Tietê, altamente poluído, e seu tributário muito menos degradado, o rio do Peixe. A maioria dos indivíduos, 71,88%, continha plástico em seus tratos digestivos, com médias de 3,26 e 9,37 partículas por indivíduo no tributário e no rio principal, respectivamente. A cor azul foi predominante entre as partículas plásticas observadas e o tamanho variou de 0,18 a 12,35 mm. A ingestão de plástico deve ser predominantemente acidental, uma vez que a espécie possui um hábito alimentar iliófago. Como esta espécie constitui o recurso pesqueiro mais importante regionalmente, potenciais efeitos adversos desse tipo de contaminação podem ser transferidos para populações humanas consumidoras. Medidas de mitigação contra a poluição são urgentes na bacia do rio Tietê.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA