Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
1.
Cell Rep ; 43(7): 114431, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38968071

RESUMEN

Bromodomain-containing protein 4 (BRD4) has emerged as a promising therapeutic target in prostate cancer (PCa). Understanding the mechanisms of BRD4 stability could enhance the clinical response to BRD4-targeted therapy. In this study, we report that BRD4 protein levels are significantly decreased during mitosis in a PLK1-dependent manner. Mechanistically, we show that BRD4 is primarily phosphorylated at T1186 by the CDK1/cyclin B complex, recruiting PLK1 to phosphorylate BRD4 at S24/S1100, which are recognized by the APC/CCdh1 complex for proteasome pathway degradation. We find that PLK1 overexpression lowers SPOP mutation-stabilized BRD4, consequently rendering PCa cells re-sensitized to BRD4 inhibitors. Intriguingly, we report that sequential treatment of docetaxel and JQ1 resulted in significant inhibition of PCa. Collectively, the results support that PLK1-phosphorylated BRD4 triggers its degradation at M phase. Sequential treatment of docetaxel and JQ1 overcomes BRD4 accumulation-associated bromodomain and extra-terminal inhibitor (BETi) resistance, which may shed light on the development of strategies to treat PCa.

2.
Expert Opin Ther Pat ; : 1-18, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38994687

RESUMEN

INTRODUCTION: Polo-like kinases (PLKs) have five isoforms, all of which play crucial roles in cell cycle and cell proliferation, offering opportunities for drug design and treatment of cancers and other related diseases. Notably, PLK1 and PLK4 have been extensively investigated as cancer drug targets. One distinctive feature of PLKs is the presence of a unique polo-box domain (PBD), which regulates kinase activity and subcellular localization. This provides possibilities for specifically targeting PLKs. AREA COVERED: This article provides an overview of the roles of PLKs in various cancers and related diseases, as well as the drug development involving PLKs, with a particular focus on PLK1 and PLK4. It summarizes the PLK1 and PLK4 inhibitors that have been disclosed in patents or literature (from 2018 - present), which were sourced from SciFinder and WIPO database. EXPERT OPINION: After two decades of drug development on PLKs, several drugs progressed into clinical trials for the treatment of many cancers; however, none of them has been approved yet. Further elucidating the mechanisms of PLKs and identifying and developing highly selective ATP-competitive inhibitors, highly potent drug-like PBD inhibitors, degraders, etc. may provide new opportunities for cancer therapy and the treatment for several nononcologic diseases. PLKs inhibition-based combination therapies can be another helpful strategy.

3.
Biol Pharm Bull ; 47(7): 1282-1287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38987177

RESUMEN

Assay systems for evaluating compound protein-binding affinities are essential for developing agonists and/or antagonists. Targeting individual members of a protein family can be extremely important and for this reason it is critical to have methods for evaluating selectivity. We have previously reported a fluorescence recovery assay that employs a fluorescein-labelled probe to determine IC50 values of ATP-competitive type 1 inhibitors of polo-like kinase 1 (Plk1). This probe is based on the potent Plk1 inhibitor BI2536 [fluorescein isothiocyanate (FITC)-polyethylene glycol (PEG)-lysine (Lys) (BI2536) 1]. Herein, we extend this approach to the highly homologous Plk2 and Plk3 members of this kinase family. Our results suggest that this assay system is suitable for evaluating binding affinities against Plk2 and Plk3 as well as Plk1. The new methodology represents the first example of evaluating N-terminal catalytic kinase domain (KD) affinities of Plk2 and Plk3. It represents a simple and cost-effective alternative to traditional kinase assays to explore the KD-binding compounds against Plk2 and Plk3 as well as Plk1.


Asunto(s)
Proteínas de Ciclo Celular , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Humanos , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Fluorescencia , Quinasas Tipo Polo , Pteridinas , Proteínas Supresoras de Tumor
4.
Cell Rep ; 43(8): 114510, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39018246

RESUMEN

Ubiquitination is an essential regulator of cell division. The kinase Polo-like kinase 1 (PLK1) promotes protein degradation at G2/M phase through the E3 ubiquitin ligase Skp1-Cul1-F box (SCF)ßTrCP. However, the magnitude to which PLK1 shapes the mitotic proteome is uncharacterized. Combining quantitative proteomics with pharmacologic PLK1 inhibition revealed a widespread, PLK1-dependent program of protein breakdown at G2/M. We validated many PLK1-regulated proteins, including substrates of the cell-cycle E3 SCFCyclin F, demonstrating that PLK1 promotes proteolysis through at least two distinct E3 ligases. We show that the protein-kinase-A-anchoring protein A-kinase anchor protein 2 (AKAP2) is cell-cycle regulated and that its mitotic degradation is dependent on the PLK1/ßTrCP signaling axis. Expression of a non-degradable AKAP2 mutant resulted in actin defects and aberrant mitotic spindles, suggesting that AKAP2 degradation coordinates cytoskeletal organization during mitosis. These findings uncover PLK1's far-reaching role in shaping the mitotic proteome post-translationally and have potential implications in malignancies where PLK1 is upregulated.

5.
DNA Cell Biol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959179

RESUMEN

Polo-like kinase 1 (Plk1), an evolutionarily conserved serine/threonine protein kinase, is a key regulator involved in the mitotic process of the cell cycle. Mounting evidence suggests that Plk1 is also involved in a variety of nonmitotic events, including the DNA damage response, DNA replication, cytokinesis, embryonic development, apoptosis, and immune regulation. The DNA damage response (DDR) includes activation of the DNA checkpoint, DNA damage recovery, DNA repair, and apoptosis. Plk1 is not only an important target of the G2/M DNA damage checkpoint but also negatively regulates the G2/M checkpoint commander Ataxia telangiectasia-mutated (ATM), promotes G2/M phase checkpoint recovery, and regulates homologous recombination repair by interacting with Rad51 and BRCA1, the key factors of homologous recombination repair. This article briefly reviews the function of Plk1 in response to DNA damage.

6.
Cell Rep Med ; 5(7): 101645, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019012

RESUMEN

Fms-like tyrosine kinase 3 (FLT3) mutations, present in over 30% of acute myeloid leukemia (AML) cases and dominated by FLT3-internal tandem duplication (FLT3-ITD), are associated with poor outcomes in patients with AML. While tyrosine kinase inhibitors (TKIs; e.g., gilteritinib) are effective, they face challenges such as drug resistance, relapse, and high costs. Here, we report that metformin, a cheap, safe, and widely used anti-diabetic agent, exhibits a striking synergistic effect with gilteritinib in treating FLT3-ITD AML. Metformin significantly sensitizes FLT3-ITD AML cells (including TKI-resistant ones) to gilteritinib. Metformin plus gilteritinib (low dose) dramatically suppresses leukemia progression and prolongs survival in FLT3-ITD AML mouse models. Mechanistically, the combinational treatment cooperatively suppresses polo-like kinase 1 (PLK1) expression and phosphorylation of FLT3/STAT5/ERK/mTOR. Clinical analysis also shows improved survival rates in patients with FLT3-ITD AML taking metformin. Thus, the metformin/gilteritinib combination represents a promising and cost-effective treatment for patients with FLT3-mutated AML, particularly for those with low income/affordability.


Asunto(s)
Compuestos de Anilina , Proteínas de Ciclo Celular , Sinergismo Farmacológico , Leucemia Mieloide Aguda , Metformina , Mutación , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Pirazinas , Transducción de Señal , Tirosina Quinasa 3 Similar a fms , Metformina/farmacología , Metformina/uso terapéutico , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Humanos , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Transducción de Señal/efectos de los fármacos , Pirazinas/farmacología , Pirazinas/uso terapéutico , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Ratones , Mutación/genética , Línea Celular Tumoral , Tiofenos/farmacología , Tiofenos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Serina-Treonina Quinasas TOR/metabolismo
7.
Open Med (Wars) ; 19(1): 20240971, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841177

RESUMEN

Objective: This research aims to investigate the role and underlying biological mechanism of FBXO45 in regulating ferroptosis of renal fibrocytes in a diabetic nephropathy (DN) model. Methods: C57BL/6 mice were fed with a high-fat diet and injected with streptozotocin to induce diabetes. Human renal glomerular endothelial cells stimulated with d-glucose. Results: Serum FBXO45 mRNA expression was found to be down-regulated in patients with DN. There was a negative correlation between the expression of serum FBXO45 mRNA and serum α-SMA, Collagen I, and E-cadherin mRNA in patients with DN. Additionally, the expression of serum FBXO45 mRNA showed a negative correlation with blood sugar levels. Based on a 3D model prediction, it was observed that FBXO45 interacts with polo-like kinase 1 (PLK1) at GLY-271, ILE-226, GLY-166, LEU-165, ARG-245, and ASN-220, while PLK1 interacts with FBXO45 at TYR-417, ARG-516, HIS-489, TYR-485, GLN-536, and ARG-557. This interaction was confirmed through immunoprecipitation assay, which showed the interlinking of FBXO45 protein with PLK1 protein. Conclusions: These findings indicate that FBXO45 plays a role in mitigating ferroptosis in DN through the regulation of the PLK1/GPX4/SOX2 pathway. This highlights the potential of targeting FBXO45 as a therapeutic approach to ameliorate ferroptosis in DN.

8.
Cell Div ; 19(1): 21, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886738

RESUMEN

This review aims to outline mitotic kinase inhibitors' roles as potential therapeutic targets and assess their suitability as a stand-alone clinical therapy or in combination with standard treatments for advanced-stage solid tumors, including triple-negative breast cancer (TNBC). Breast cancer poses a significant global health risk, with TNBC standing out as the most aggressive subtype. Comprehending the role of mitosis is crucial for understanding how TNBC advances from a solid tumor to metastasis. Chemotherapy is the primary treatment used to treat TNBC. Some types of chemotherapeutic agents target cells in mitosis, thus highlighting the need to comprehend the molecular mechanisms governing mitosis in cancer. This understanding is essential for devising targeted therapies to disrupt these mitotic processes, prevent or treat metastasis, and improve patient outcomes. Mitotic kinases like Aurora kinase A, Aurora Kinase B, never in mitosis gene A-related kinase 2, Threonine-Tyrosine kinase, and Polo-kinase 1 significantly impact cell cycle progression by contributing to chromosome separation and centrosome homeostasis. When these kinases go awry, they can trigger chromosome instability, increase cell proliferation, and activate different molecular pathways that culminate in a transition from epithelial to mesenchymal cells. Ongoing clinical trials investigate various mitotic kinase inhibitors as potential biological treatments against advanced solid tumors. While clinical trials against mitotic kinases have shown some promise in the clinic, more investigation is necessary, since they induce severe adverse effects, particularly affecting the hematopoietic system.

9.
Int J Biol Sci ; 20(8): 3140-3155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904029

RESUMEN

Cysteine-rich angiogenic inducer 61 (CYR61), also called CCN1, has long been characterized as a secretory protein. Nevertheless, the intracellular function of CYR61 remains unclear. Here, we found that CYR61 is important for proper cell cycle progression. Specifically, CYR61 interacts with microtubules and promotes microtubule polymerization to ensure mitotic entry. Moreover, CYR61 interacts with PLK1 and accumulates during the mitotic process, followed by degradation as mitosis concludes. The proteolysis of CYR61 requires the PLK1 kinase activity, which directly phosphorylates two conserved motifs on CYR61, enhancing its interaction with the SCF E3 complex subunit FBW7 and mediating its degradation by the proteasome. Mutations of phosphorylation sites of Ser167 and Ser188 greatly increase CYR61's stability, while deletion of CYR61 extends prophase and metaphase and delays anaphase onset. In summary, our findings highlight the precise control of the intracellular CYR61 by the PLK1-FBW7 pathway, accentuating its significance as a microtubule-associated protein during mitotic progression.


Asunto(s)
Proteínas de Ciclo Celular , Proteína 61 Rica en Cisteína , Microtúbulos , Mitosis , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Humanos , Mitosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Microtúbulos/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Células HeLa , Fosforilación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética
10.
Front Oncol ; 14: 1394653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933441

RESUMEN

Novel therapeutic approaches are needed for the treatment of Ewing sarcoma tumors. We previously identified that Ewing sarcoma cell lines are sensitive to drugs that inhibit protein translation. However, translational and therapeutic approaches to inhibit protein synthesis in tumors are limited. In this work, we identified that reactive oxygen species, which are generated by a wide range of chemotherapy and other drugs, inhibit protein synthesis and reduce the level of critical proteins that support tumorigenesis in Ewing sarcoma cells. In particular, we identified that both hydrogen peroxide and auranofin, an inhibitor of thioredoxin reductase and regulator of oxidative stress and reactive oxygen species, activate the repressor of protein translation 4E-BP1 and reduce the levels of the oncogenic proteins RRM2 and PLK1 in Ewing and other sarcoma cell lines. These results provide novel insight into the mechanism of how ROS-inducing drugs target cancer cells via inhibition of protein translation and identify a mechanistic link between ROS and the DNA replication (RRM2) and cell cycle regulatory (PLK1) pathways.

12.
Exp Cell Res ; 440(1): 114130, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885805

RESUMEN

Prostate cancer (PCa) is the most prevalent malignant tumor of the genitourinary system, and metastatic disease has a significant impact on the prognosis of PCa patients. As a result, knowing the processes of PCa development can help patients achieve better outcomes. Here, we investigated the expression and function of ORC6 in PCa. Our findings indicated that ORC6 was elevated in advanced PCa tissues. Patients with PCa who exhibited high levels of ORC6 had a poor prognosis. Following that, we investigated the function of ORC6 in PCa progression using a variety of functional experiments both in vivo and in vitro, and discovered that ORC6 knockdown inhibited PCa cell proliferation, growth, and migration. Furthermore, RNA-seq was employed to examine the molecular mechanism of PCa progression. The results revealed that ORC6 might promote the expression of PLK1, a serine/threonine kinase in PCa cells. We also discovered that ORC6 as a novel miR-361-5p substrate using database analysis, and miR-361-5p was found to lower ORC6 expression. Additionally, RNA immunoprecipitation (RIP) and luciferase reporter tests revealed that the transcription factor E2F1 could regulate ORC6 expression in PCa cells. PLK1 overexpression or miR-361-5p inhibitor treatment effectively removed the inhibitory effects caused by ORC6 silencing. Notably, our data showed that therapeutically targeting the miR-361-5p/ORC6/PLK1 axis may be a viable therapy option for PCa.


Asunto(s)
Proteínas de Ciclo Celular , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , MicroARNs , Quinasa Tipo Polo 1 , Neoplasias de la Próstata , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Animales , Humanos , Masculino , Ratones , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
13.
Mol Biotechnol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782874

RESUMEN

TAT, a widely used treatment for HCC, can exacerbate the progression of residual HCC. The present study investigated the mechanism of action of PLK1 following ITA of HCC. The PLK1 levels in HCC were determined using qRT-PCR from clinical patient samples, IHC from tissue microarray, and data from globally high-throughput data and microarrays. The PLK1 levels and their effect on the biological phenotype of heat-stress HCC cells were evaluated through in vitro experiments. We detected PLK1 abnormal expression in HCC models of nude mice subjected to ITA. We detected the effects of different PLK1 expression levels on EMT pathway proteins. PLK1 exhibited an overexpression in HCC tissues with an SMD of 1.19 (3414 HCC and 3036 non-HCC tissues were included), distinguishing HCC from non-HCC effectively (AUC = 0.9). The qRT-PCR data from clinical HCC patient samples and IHC from HCC tissue microarray results also indicated an overexpressed level. In the incomplete ablation models, an increased PLK1 expression was found in both heat-stress cells and subcutaneous tumors. The upregulation of PLK1 following ITA was found to enhance the malignancy of HCC and exacerbate the proliferation, migration, and invasion of residual HCC cells, whereas PLK1 knockdown suppressed the biological malignancy of HCC cells. Meanwhile, PLK1 has different regulatory effects on various EMT pathway proteins. PLK1 promotes the progression of residual HCC by activating EMT pathway after ITA, which might provide a novel idea for the treatment and prognosis of residual HCC.

14.
J Cell Mol Med ; 28(10): e18400, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38780513

RESUMEN

Osteosarcoma is the most common primary bone malignancy in children and adolescents. Overexpression of polo-like kinase 1 (PLK1) is frequent in osteosarcoma and drives disease progression and metastasis, making it a promising therapeutic target. In this study, we explored PLK1 knockdown in osteosarcoma cells using RNA interference mediated by high-fidelity Cas13d (hfCas13d). PLK1 was found to be significantly upregulated in osteosarcoma tumour tissues compared to normal bone. sgRNA-mediated PLK1 suppression via hfCas13d transfection inhibited osteosarcoma cell proliferation, induced G2/M cell cycle arrest, promoted apoptosis, reduced cell invasion and increased expression of the epithelial marker E-cadherin. Proximity labelling by TurboID coupled with co-immunoprecipitation identified novel PLK1 interactions with Smad3, a key intracellular transducer of TGF-ß signalling. PLK1 knockdown impaired Smad2/3 phosphorylation and modulated TGF-ß/Smad3 pathway inactivation. Finally, in vivo delivery of hfCas13d vectors targeting PLK1 substantially attenuated osteosarcoma xenograft growth in nude mice. Taken together, this study highlights PLK1 as a potential therapeutic target and driver of disease progression in osteosarcoma. It also demonstrates the utility of hfCas13d-mediated gene knockdown as a strategy for targeted therapy. Further optimization of PLK1 suppression approaches may ultimately improve clinical outcomes for osteosarcoma patients.


Asunto(s)
Apoptosis , Proteínas de Ciclo Celular , Proliferación Celular , Ratones Desnudos , Osteosarcoma , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Interferencia de ARN , Transducción de Señal , Proteína smad3 , Factor de Crecimiento Transformador beta , Osteosarcoma/patología , Osteosarcoma/genética , Osteosarcoma/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteína smad3/metabolismo , Proteína smad3/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Factor de Crecimiento Transformador beta/metabolismo , Ratones , Apoptosis/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino
15.
Cell Signal ; 120: 111226, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38740232

RESUMEN

Lung adenocarcinoma (LUAD), responsible for nearly half of lung cancer cases, is one of the most prevalent and lethal malignant tumors globally. There is increasing evidence suggesting that the oncoprotein PLK1 plays a role in the onset and advancement of different types of cancer, including LUAD. Nonetheless, the precise mechanism by which PLK1 promotes tumorigenesis remains unclear. In this study, we demonstrate the upregulation of PLK1 in LUAD samples, which leads to a poor prognosis for LUAD patients. Intriguingly, PLK1 enables to bind to LZTS2 and promote its phosphorylation without affecting LZTS2 degradation. Furthermore, we identify that Ser451 is a key phosphorylation site in LZTS2 protein. LZTS2 exerts an anti-tumor effect by restricting the translocation of the transcription factor ß-Catenin into the nucleus, thereby suppressing the Wnt pathway. PLK1 disrupts the interaction between LZTS2 and ß-Catenin, resulting in the nuclear accumulation of ß-Catenin and the activation of the Wnt pathway. Additionally, we reveal that LZTS2 inhibits the proliferation and migration of LUAD cells, which is rescued by PLK1. Finally, PLK1 inhibitors exhibit a dose-dependent suppression of LUAD cell proliferation and migration. Collectively, this study uncovers the pro-tumorigenic mechanism of PLK1, positioning it as a promising therapeutic target for Wnt-related LUAD.


Asunto(s)
Proteínas de Ciclo Celular , Proliferación Celular , Neoplasias Pulmonares , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Vía de Señalización Wnt , beta Catenina , Animales , Humanos , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , beta Catenina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
16.
Biochem Pharmacol ; : 116316, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38797267

RESUMEN

Caspase recruitment domain (CARD)-containing protein 14 (CARD14) is an intracellular protein that mediates nuclear factor-kappa B (NF-ĸB) signaling and proinflammatory gene expression in skin keratinocytes. Several hyperactivating CARD14 mutations have been associated with psoriasis and other inflammatory skin diseases. CARD14-induced NF-ĸB signaling is dependent on the formation of a CARD14-BCL10-MALT1 (CBM) signaling complex, but upstream receptors and molecular mechanisms that activate and regulate CARD14 signaling are still largely unclear. Using unbiased affinity purification and mass spectrometry (AP-MS) screening, we discover polo-like kinase 1 (PLK1) as a novel CARD14-binding protein. CARD14-PLK1 binding is independent of the CARD14 CARD domain but involves a consensus phospho-dependent PLK1-binding motif in the CARD14 linker region (LR). Expression of the psoriasis-associated CARD14(E138A) variant in human keratinocytes induces the recruitment of PLK1 to CARD14-containing signalosomes in interphase cells, but does not affect the specific location of PLK1 in mitotic cells. Finally, disruption of the PLK1-binding motif in CARD14(E138A) increases CARD14-induced proinflammatory signaling and gene expression. Together, our data identify PLK1 as a novel CARD14-binding protein and indicate a negative regulatory role for PLK1 in CARD14 signaling.

17.
Biochem Genet ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713442

RESUMEN

Bladder cancer is the most common urinary tract neoplasm, affecting many people annually. Current diagnostic and surveillance methods for bladder cancer are frequently invasive and lack sensitivity and specificity. This study aimed to develop an accurate and non-invasive urine-based gene expression assay, including fibroblast growth factor receptor 3 (FGFR3), homeobox A13 (HOXA13), and polo-like kinase 1 (PLK1), to diagnose non-muscle-invasive bladder cancer (NMIBC) at stages Ta and T1. The samples were acquired from 62 patients with NMIBC, 31 control individuals, and 31 patients with non-cancerous genitourinary tract diseases. The expression levels of three relevant genes were determined using quantitative RT-PCR. In addition, the sensitivity and specificity of the data for these genes were computed. Our results showed that PLK1, HOXA13, and FGFR3 expressions of genes were significantly elevated in patients compared to the control groups (p = 0.0001; p = 0.039). The sensitivity and specificity for the FGFR3 gene were 55% and 76%, respectively (p = 0.39). These parameters for HOXA13 were 100% and 93% (p = 0.0001) and for PLK1 were 100% and 86% (p = 0.0001) for diagnosing and monitoring NMIBC. HOXA13 and PLK 1 exhibited adequate specificity and sensitivity for diagnosis. The results of this research showed that despite the higher expression of these genes in urine, only HOXA13 and PLK1 had sufficient and proper specificity and sensitivity, so the urinary expression of these two genes can be used in future studies for diagnosis and monitoring in cancer bladder.

18.
Clin Transl Med ; 14(5): e1703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769666

RESUMEN

BACKGROUND: Hotspot mutations in the promoter of telomerase reverse transcriptase (TERT) gene are the most common genetic variants in hepatocellular carcinoma (HCC) and associated with poor prognosis of the disease. However, no drug was currently approved for treating TERT promoter mutation positive HCC patients. Here, we aim to explore the potential therapeutic strategy for targeting TERT promoter mutation in HCC. METHODS: The Liver Cancer Model Repository database was used for screening potential drugs to selectively suppress the growth of TERT promoter mutant HCC cells. RNA-seq, CRISPR-Cas9 technology and siRNA transfection were performed for mechanistic studies. Cell counting kit-8 (CCK8) assay and the xenograft tumour models were used for cell growth detection in vitro and in vivo, respectively. Cell apoptosis and cell cycle arrest were analysed by Annexin V-FITC staining and/or propidium iodide staining. RESULTS: PLK1 inhibitors were remarkably more sensitive to HCC cells harbouring TERT promoter mutation than wild-type cells in vitro and in vivo, which were diminished after TERT promoter mutation was edited to the wild-type nucleotide. Comparing the HCC cells with wild-type promoter of TERT, PLK1 inhibitors specifically downregulated Smad3 to regulate TERT for inducing apoptosis and G2/M arrest in TERT mutant HCC cells. Moreover, knockout of Smad3 counteracted the effects of PLK1 inhibitors in TERT mutant HCC cells. Finally, a cooperative effect of PLK1 and Smad3 inhibition was observed in TERT mutant cells. CONCLUSIONS: PLK1 inhibition selectively suppressed the growth of TERT mutant HCC cells through Smad3, thus contributed to discover a novel therapeutic strategy to treat HCC patients harbouring TERT promoter mutations. KEY POINTS: TERT promoter mutation confers sensitivity to PLK1 inhibitors in HCC. The selective growth inhibition of TERT mutant HCC cells induced by PLK1 inhibitor was mediated by Smad3. Combined inhibition of PLK1 and Smad3 showed a cooperative anti-tumor effect in TERT mutant HCC cells.


Asunto(s)
Carcinoma Hepatocelular , Proteínas de Ciclo Celular , Neoplasias Hepáticas , Quinasa Tipo Polo 1 , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Telomerasa , Telomerasa/genética , Telomerasa/antagonistas & inhibidores , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Animales , Mutación , Ratones , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Apoptosis/genética
19.
J Virol ; 98(5): e0019524, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38656209

RESUMEN

The host cytoskeleton plays crucial roles in various stages of virus infection, including viral entry, transport, replication, and release. However, the specific mechanisms by which intermediate filaments are involved in orthoflavivirus infection have not been well understood. In this study, we demonstrate that the Japanese encephalitis virus (JEV) remodels the vimentin network, resulting in the formation of cage-like structures that support viral replication. Mechanistically, JEV NS1 and NS1' proteins induce the translocation of CDK1 from the nucleus to the cytoplasm and interact with it, leading to the phosphorylation of vimentin at Ser56. This phosphorylation event recruits PLK1, which further phosphorylates vimentin at Ser83. Consequently, these phosphorylation modifications convert the typically filamentous vimentin into non-filamentous "particles" or "squiggles." These vimentin "particles" or "squiggles" are then transported retrogradely along microtubules to the endoplasmic reticulum, where they form cage-like structures. Notably, NS1' is more effective than NS1 in triggering the CDK1-PLK1 cascade response. Overall, our study provides new insights into how JEV NS1 and NS1' proteins manipulate the vimentin network to facilitate efficient viral replication. IMPORTANCE: Japanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus that causes severe encephalitis in humans, particularly in Asia. Despite the availability of a safe and effective vaccine, JEV infection remains a significant public health threat due to limited vaccination coverage. Understanding the interactions between JEV and host proteins is essential for developing more effective antiviral strategies. In this study, we investigated the role of vimentin, an intermediate filament protein, in JEV replication. Our findings reveal that JEV NS1 and NS1' proteins induce vimentin rearrangement, resulting in the formation of cage-like structures that envelop the viral replication factories (RFs), thus facilitating efficient viral replication. Our research highlights the importance of the interplay between the cytoskeleton and orthoflavivirus, suggesting that targeting vimentin could be a promising approach for the development of antiviral strategies to inhibit JEV propagation.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Vimentina , Proteínas no Estructurales Virales , Replicación Viral , Animales , Humanos , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Virus de la Encefalitis Japonesa (Especie)/fisiología , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Encefalitis Japonesa/virología , Encefalitis Japonesa/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Fosforilación , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas/metabolismo , Vimentina/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética
20.
Eur J Med Chem ; 271: 116416, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38657480

RESUMEN

Targeting polo-box domain (PBD) small molecule for polo-like kinase 1 (PLK1) inhibition is a viable alternative to target kinase domain (KD), which could avoid pan-selectivity and dose-limiting toxicity of ATP-competitive inhibitors. However, their efficacy in these settings is still low and inaccessible to clinical requirement. Herein, we utilized a structure-based high-throughput virtual screen to find novel chemical scaffold capable of inhibiting PLK1 via targeting PBD and identified an initial hit molecule compound 1a. Based on the lead compound 1a, a structural optimization approach was carried out and several series of derivatives with naphthalimide structural motif were synthesized. Compound 4Bb was identified as a new potent PLK1 inhibitor with a KD value of 0.29 µM. 4Bb could target PLK1 PBD to inhibit PLK1 activity and subsequently suppress the interaction of PLK1 with protein regulator of cytokinesis 1 (PRC1), finally leading to mitotic catastrophe in drug-resistant lung cancer cells. Furthermore, 4Bb could undergo nucleophilic substitution with the thiol group of glutathione (GSH) to disturb the redox homeostasis through exhausting GSH. By regulating cell cycle machinery and increasing cellular oxidative stress, 4Bb exhibited potent cytotoxicity to multiple cancer cells and drug-resistant cancer cells. Subcutaneous and oral administration of 4Bb could effectively inhibit the growth of drug-resistant tumors in vivo, doubling the survival time of tumor bearing mice without side effects in normal tissues. Thus, our study offers an orally-available, structurally-novel PLK1 inhibitor for drug-resistant lung cancer therapy.


Asunto(s)
Antineoplásicos , Proteínas de Ciclo Celular , Proliferación Celular , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Pulmonares , Naftalimidas , Quinasa Tipo Polo 1 , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Naftalimidas/química , Naftalimidas/farmacología , Naftalimidas/síntesis química , Humanos , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Relación Estructura-Actividad , Ratones , Estructura Molecular , Resistencia a Antineoplásicos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Ratones Desnudos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...