Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Huan Jing Ke Xue ; 45(8): 4837-4846, 2024 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-39168700

RESUMEN

To understand the pollution status, distribution characteristics, and pollution sources of soil heavy metals in tourist cities in northwest China, the soil content of heavy metals As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in the main areas of Dunhuang City was collected and analyzed. The soil heavy metal pollution level was quantitatively evaluated by the methods of the geo-accumulation index and improved Nemerow pollution index, and the sources of heavy metal pollution were quantitatively analyzed using cluster analysis and the positive matrix factorization (PMF) model. The contribution rate of each pollution source to ecological risk was determined by combining the PMF model and comprehensive ecological risk index. The results showed that except for the mean contents of As and Ni, the mean contents of Cd, Cr, Cu, Hg, Pb, and Zn were all higher than the background values in Gansu Province. However, the average content of the eight elements was lower than the screening value of construction land in the Standard for Soil Pollution Risk Control of Soil Environmental Quality Construction Land (trial) (GB 36600-2018). Among them, the enrichment of Cd, Pb, and Hg was more serious, and the exceedance rate was higher than 90%. The results of the geo-accumulation index indicated that urban soils were mainly polluted by Hg in the study area, and Cd, Cr, Cu, Pb, and Zn pollution also existed in different degrees. The improved Nemerow pollution index illustrated that the comprehensive pollution degree of the soil was clean to moderate pollution, and the overall pollution was light pollution. Based on the PMF model, we could conclude that soil heavy metals in the study area were affected by natural sources, industrial deposition sources, industrial sources, traffic sources, and comprehensive sources, and the contribution rates were 29.28%, 25.86%, 20.13%, 16.5%, and 8.23%, respectively. The specific source-integrated ecological risk assessment model found that the industrial deposition source contributed the most to the ecological risk in the study area and could be regarded as the priority control pollution source, and Hg was considered to be the priority control pollution element for ecological risk.

2.
J Hazard Mater ; 474: 134762, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38823099

RESUMEN

Bioremediation of cadmium (Cd) pollution, a recognized low-carbon green environmental protection technology, is significantly enhanced by the discovery of Cd-tolerant microorganisms and their underlying tolerance mechanisms. This study presents Colpoda sp., a soil ciliate with widespread distribution, as a novel bioindicator and bioremediator for Cd contamination. With a 24 h-LC50 of 5.39 mg l-1 and an IC50 of 24.85 µg l-1 in Cd-contaminated water, Colpoda sp. achieves a maximum bioaccumulation factor (BAF) of 3.58 and a Cd removal rate of 32.98 ± 0.74 % within 96 h. The toxic responses of Colpoda sp. to Cd stress were assessed through cytological observation with transmission electron microscopy (TEM), oxidative stress kinase activity, and analysis of Cd-metallothionein (Cd-MTs) and the cd-mt gene via qRT-PCR. The integrated biomarker response index version 2 (IBRv2) and structural equation models (SEM) were utilized to analyze key factors and mechanisms, revealing that the up-regulation of Cd-MTs and cd-mt expression, rather than the oxidative stress system, is the primary determinant of Cd accumulation and tolerance in Colpoda sp. The ciliate's ability to maintain growth under 24.85 µg l-1 Cd stress and its capacity to absorb and accumulate Cd particles from water into cells are pivotal for bioremediation. A new mathematical formula and regression equations based on Colpoda sp.'s response parameters have been established to evaluate environmental Cd removal levels and design remediation schemes for contaminated sites. These findings provide a novel bioremediation and monitoring pathway for Cd remobilization and accumulation in soil and water, potentially revolutionizing the governance of Cd pollution.


Asunto(s)
Biodegradación Ambiental , Cadmio , Cilióforos , Metalotioneína , Contaminantes del Suelo , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Cilióforos/efectos de los fármacos , Cilióforos/metabolismo , Metalotioneína/metabolismo , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
3.
Artículo en Inglés | MEDLINE | ID: mdl-38928979

RESUMEN

The accelerated loss of glacial cover in the Cordillera Blanca in Áncash, Peru, exposes the underlying rocks with high concentrations of sulfides from the Chicama Formation to oxidation and leaching processes, generating acid rock drainage (ARD) in glacial and periglacial areas. These are transported by surface runoff, contaminating the surface water with high concentrations of metals and sulfates, as well as increasing the acidity, which poses a risk to human health and the ecosystem. Therefore, the risk indices for human health due to metal contamination were evaluated at 19 surface water sampling points distributed in the Río Negro sub-basin. Hydrochemical analyses revealed average metal concentrations in the following order: Fe (28.597 mg/L), Al (3.832 mg/L), Mn (1.085 mg/L), Zn (0.234 mg/L), Ni (0.085 mg/L), Co (0.053 mg/L), Li (0.036 mg/L), Cu (0.005 mg/L), and Pb (0.002 mg/L). The risk was determined by calculating the Heavy Metal Pollution Index (HPI) and the Hazard Index (HI). The average HPI value was 360.959, indicating a high level of contamination (HPI ≥ 150). The human health risk assessment indicated that adverse effects caused by iron, lithium, and cobalt in children and adults should be considered. Through the use of Pearson correlation analysis, principal component analysis, and cluster analysis, it was identified that SO42-, Fe, S, Al, Co, Mn, Ni, Zn, and Li originate from natural sources, associated with the generation of ARD in glacial and periglacial areas.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Humanos , Medición de Riesgo , Ríos/química , Perú , Metales Pesados/análisis
4.
Huan Jing Ke Xue ; 45(6): 3502-3511, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897770

RESUMEN

In order to reveal the influence of urban transportation systems on the quality of urban ecological environment, this study selected surface dust from bus stops, which is strongly disturbed by transportation, as the research object. The contents of eight heavy metals (V, Cr, Co, Ni, Cu, Zn, Cd, and Pb) in the dust were determined through inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-ASE). The spatial distribution characteristics and pollution levels of the eight heavy metals in the dust were analyzed using the geo-accumulation index method. A combined qualitative (correlation analysis and principal component analysis) and quantitative (absolute principal component scores-multiple linear regression model (APCS-MLR)) method was used to explore the sources of heavy metals in surface dust near bus stops. The spatial distribution characteristics of heavy metals from different sources were elucidated using the Kriging interpolation method. The health risk assessment model proposed by the United States Environmental Protection Agency was used to evaluate the human health risks. The results showed that the average values of ω(V), ω(Cr), ω(Co), ω(Ni), ω(Cu), ω(Zn), ω(Cd), ω(Pb), and ω(As) in the bus stop surface dust were 68.36, 59.73, 5.81, 19.34, 40.10, 208.32, 1.01, and 49.46 mg·kg-1, respectively. The concentrations of heavy metals (Cd, Zn, Pb, Cu, and Cr) in the dust were all higher than the background values in the surrounding dust, exceeding them by 3.37, 2.70, 2.01, 1.95, and 1.28 times, respectively. The order of the geo-accumulation index for the eight heavy metals was Cd > Zn > Pb > Cu > Cr > V > Ni > Co, with Cd, Zn, Cu, and Pb in the dust indicating mild pollution levels and the others showing no pollution. The source analysis results showed that Cr, Co, and Ni were natural sources, whereas Cu, Zn, Pb, and Cd were traffic sources, and V was derived from a combination of industrial and natural sources. The APCS-MLR results indicated that the average contribution rates of the four sources were as follows:natural source (34.17 %), traffic source (29.84 %), industrial-natural mixed source (14.64 %), and unknown source (21.35 %). The spatial distribution map of the contribution rate of the traffic source was consistent with the trends of traffic volume and bus route density distribution. According to the health risk assessment, the cancer risk and non-cancer risk for children were both higher than those for adults. Cr was the main non-cancer factor, and Cd was the main cancer-causing factor. Natural and traffic sources contributed the most to non-cancer risk and cancer risk, respectively.


Asunto(s)
Ciudades , Polvo , Monitoreo del Ambiente , Metales Pesados , Metales Pesados/análisis , Polvo/análisis , Medición de Riesgo , China , Monitoreo del Ambiente/métodos , Modelos Lineales , Contaminantes Atmosféricos/análisis , Humanos , Emisiones de Vehículos/análisis , Vehículos a Motor
5.
Chemosphere ; 359: 142378, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763392

RESUMEN

Soil potentially toxic elements (PTEs) pollution of contaminated sites has become a global environmental issue. However, given that previous studies mostly focused on pollution assessment in surface soils, the current status and environmental risks of potentially toxic elements in deeper soils remain unclear. The present study aims to cognize distribution characteristics and spatial autocorrelation, pollution levels, and risk assessment in a stereoscopic environment for soil PTEs through 3D visualization techniques. Pollution levels were assessed in an integrated manner by combining the geoaccumulation index (Igeo), the integrated influence index of soil quality (IICQs), and potential ecological hazard index. Results showed that soil environment at the site was seriously threatened by PTEs, and Cu and Cd were ubiquitous and the predominant pollutants in the study area. The stratigraphic models and pollution plume simulation revealed that pollutants show a decreasing trend with the deepening of the soil layer. The ranking of contamination soil volume is as follows: Cu > Cd > Zn > As > Pb > Cr > Ni. According to the IICQs evaluation, this region was subject to multiple PTE contamination, with more than 60% of the area becoming seriously and highly polluted. In addition, the ecological hazard model revealed the existence of substantial ecological hazards in the soils of the site. The integrated potential ecological risk index (RI) indicated that 45.7%, 10.13%, and 4.15% of the stereoscopic areas were in considerable, high, and very high risks, respectively. The findings could be used as a theoretical reference for applying multiple methods to integrate evaluation through 3D visualization analysis in the assessment and remediation of PTE-contaminated soils.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Minería , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Suelo/química , Medición de Riesgo/métodos , Metales Pesados/análisis , Contaminación Ambiental/análisis , Ciudades
6.
J Hazard Mater ; 470: 134201, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38579585

RESUMEN

From the onset of coronavirus disease (COVID-19) pandemic, there are concerns regarding the disease spread and environmental pollution of biohazard since studies on genetic engineering flourish and numerous genetic materials were used such as the nucleic acid test of the severe acute respiratory syndrome coronavirus (SARS-CoV-2). In this work, we studied genetic material pollution in an institute during a development cycle of plasmid, one of typical genetic materials, with typical laboratory settings. The pollution source, transmission routes, and pollution levels in laboratory environment were examined. The Real-Time quantitative- Polymerase Chain Reaction results of all environmental mediums (surface, aerosol, and liquid) showed that a targeted DNA segment occurred along with routine experimental operations. Among the 79 surface and air samples collected in the genetic material operation, half of the environment samples (38 of 79) are positive for nucleic acid pollution. Persistent nucleic acid contaminations were observed in all tested laboratories and spread in the public area (hallway). The highest concentration for liquid and surface samples were 1.92 × 108 copies/uL and 5.22 × 107 copies/cm2, respectively. Significant amounts of the targeted gene (with a mean value of 74 copies/L) were detected in the indoor air of laboratories utilizing centrifuge devices, shaking tables, and cell homogenizers. Spills and improper disposal of plasmid products were primary sources of pollution. The importance of establishing designated experimental zones, employing advanced biosafety cabinets, and implementing highly efficient cleaning systems in laboratories with lower biosafety levels is underscored. SYNOPSIS: STATEMENT. Persistent environmental pollutions of genetic materials are introduced by typical experiments in laboratories with low biosafety level.


Asunto(s)
Laboratorios , Humanos , SARS-CoV-2/genética , Plásmidos/genética , COVID-19/transmisión , Contaminación Ambiental/análisis , Monitoreo del Ambiente
7.
Mar Pollut Bull ; 202: 116396, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657493

RESUMEN

The Ledong Sea Area is located on the southwest side of Hainan Island. In recent years, with the development of industrialization and urbanization, the problem of heavy metals in marine sediments has gradually become a global problem, and research on this topic is of great significance for nearshore environmental protection and coastal management. This paper analysed the heavy metal content of 97 surface sediments in the Ledong Sea, indicating unpolluted to moderately polluted and low to moderate risk. Cu, Zn, Hg, Pb, Cr, and Cd are highly correlated, with similar origins, and originate from rivers carrying industrial wastewater, domestic sewage, and weathered material from the parent rocks, which are subsequently redistributed under the action of ocean dynamics. The distribution of Hg is mainly influenced by feed and biological metabolites during the farming process. As originates from rivers carrying large amounts of agricultural pesticide and fertilizer residues.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , China , Sedimentos Geológicos/química , Océanos y Mares
8.
PeerJ ; 12: e17200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577416

RESUMEN

Background: Dayu County, a major tungsten producer in China, experiences severe heavy metal pollution. This study evaluated the pollution status, the accumulation characteristics in paddy rice, and the potential ecological risks of heavy metals in agricutural soils near tungsten mining areas of Dayu County. Furthermore, the impacts of soil properties on the accumulation of heavy metals in soil were explored. Methods: The geo-accumulation index (Igeo), the contamination factor (CF), and the pollution load index (PLI) were used to evaluate the pollution status of metals (As, Cd, Cu, Cr, Pb, Mo, W, and Zn) in soils. The ecological risk factor (RI) was used to assess the potential ecological risks of heavy metals in soil. The health risks and accumulation of heavy metals in paddy rice were evaluated using the health risk index and the translocation factor (TF), respectively. Pearson's correlation coefficient was used to discuss the influence of soil factors on heavy metal contents in soil. Results: The concentrations of metals exceeded the respective average background values for soils (As: 10.4, Cd: 0.10, Cu: 20.8, Cr: 48.0, Pb: 32.1, Mo: 0.30, W: 4.93, Zn: 69.0, mg/kg). The levels of As, Cd, Mo, and tungsten(W) exceeded the risk screening values for Chinese agricultural soil contamination and the Dutch standard. The mean concentrations of the eight tested heavy metals followed the order FJ-S > QL > FJ-N > HL > CJ-E > CJ-W, with a significant distribution throughout the Zhangjiang River basin. Heavy metals, especially Cd, were enriched in paddy rice. The Igeo and CF assessment indicated that the soil was moderately to heavily polluted by Mo, W and Cd, and the PLI assessment indicated the the sites of FJ-S and QL were extremely severely polluted due to the contribution of Cd, Mo and W. The RI results indicated that Cd posed the highest risk near tungsten mining areas. The non-carcinogenic and total carcinogenic risks were above the threshold values (non-carcinogenic risk by HQ > 1, carcinogenic risks by CR > 1 × 10-4 a-1) for As and Cd. Correlation analysis indicated that K2O, Na2O, and CaO are main factors affecting the accumulation and migration of heavy metals in soils and plants. Our findings reveal significant contamination of soils and crops with heavy metals, especially Cd, Mo, and W, near mining areas, highlighting serious health risks. This emphasizes the need for immediate remedial actions and the implementation of stringent environmental policies to safeguard health and the environment.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Suelo , Tungsteno/análisis , Cadmio/análisis , Plomo/análisis , Monitoreo del Ambiente , Medición de Riesgo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Minería , China
9.
J Environ Manage ; 358: 120898, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38640756

RESUMEN

The reasonable utilization of water resources and real-time monitoring of water pollution are the core tasks of current world hydrological and water conservancy work. Novel technologies and methods for monitoring water pollution are important means to ensure water health. However, the absence of intuitive and simple analysis methods for the assessment of regional pollution in large-scale water bodies has prevented scientists from quickly grasping the overall situation of water pollution. In this study, we propose a strategy based on the unique combination of fluorescence technology and simple kriging (SK) interpolation (FL-SK) for the first time. This strategy could present the relative magnitude and distribution of the physicochemical indicators of a whole natural lake intuitively and accurately. The unique FL-SK model firstly offers a simple and effective water quality method that provides the pollution index of different sampling points in lakes. The macroscopic evaluation of large-scale water bodies by the FL-SK model primarily relies on the fluorescence response of the RDM-TPE to the comprehensive indicators of the water body, as experimental results have revealed a good correlation between fluorescent responses and six normalized physicochemical indicators. Multiple linear regression and fluorescence response experiments on RDM-TPE indicate that to some extent, the fluorescence signals of the FL-SK model may originate from a certain type of sulfide in the water body. Pattern discovery could enable the analysis of pollution levels in other ecosystems and promote early pollution assessment in the future.


Asunto(s)
Monitoreo del Ambiente , Lagos , Calidad del Agua , Monitoreo del Ambiente/métodos , Fluorescencia , Contaminación del Agua/análisis , Modelos Teóricos
10.
Sci Rep ; 14(1): 8880, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632322

RESUMEN

To scrutinize the spatial distribution attributes of soil heavy metal content and discern its pollution status within the expanse of Wulongdong National Forest Park, a meticulous investigation is imperative. Three altitude gradients of 900, 1000, and 1069 m were selected on the shady and sunny slopes of Wulongdong National Forest Park, and a total of 300 soil sample points were collected. Soil samples were collected in layers, and the contents of seven soil heavy metal elements, Cr, Cd, Hg, Ni, Se, As, and Pb, were measured. With regard to the national soil element background values, the single factor index method, Nemerow index method, and pollution load index were employed to undertake a thorough assessment of soil heavy metal pollution. (1) The contents of heavy metal elements Cr, Se, As, and Pb in the 0-20 cm soil layer of Wulongdong National Forest Park are lower than the national soil element background value and the Henan soil element background value; the Cd and Hg contents exceed the national soil element background value. The value and Henan soil element background value are 2.2 times and 2.92 times the national soil element background value, and 2.75 times and 9.5 times the Henan soil element background value respectively; Ni content is lower than the Henan soil element background value, but higher than the national soil element background value. The background value is 1.03 times its content. The coefficients of variation of the contents of seven heavy metal elements are all greater than 50%, among which Hg shows extreme variation, and the remaining six are highly variable. (2) In the same soil layer, the Cr and As contents are lower on sunny slopes than on shady slopes, and the contents of Pb, Ni, and Hg are generally higher on sunny slopes than on shady slopes. On sunny slopes, the contents of As, Cd, and Hg decrease with increasing altitude, and the Se content increases with increasing altitude; while on shady slopes, the contents of Cr, Se, and As decrease with increasing altitude, and Pb and Hg content increase with the increase of altitude; the content of heavy metal element As increases with the deepening of the soil layer on shady slopes, and the Hg content decreases with the deepening of the soil layer on sunny slopes. The contents of other heavy metal elements have no obvious regularity among different slope directions, altitudes and soil layers. (3) The single factor index evaluation results show that in the 0 ~ 20c soil layer and on the sunny slope, Hg is heavily polluted, Cd is moderately polluted, Ni is lightly polluted, and Cr, Se, As, and Pb are all non-polluted; On the shady slope, Cd and Hg are moderately polluted, and the other five heavy metal elements are in a non-polluting state. (4) The Nemerow index method evaluation results show that in the 0 ~ 20 cm soil layer, the soil on sunny slopes is significantly more polluted by heavy metals than on shady slopes, and the main pollutants are Ni, Cd and Hg. (5) In the 0 ~ 20 cm soil layer of Wulongdong National Forest Park, the three heavy metal elements Ni, Cd and Hg have reached pollution levels, of which Ni is slightly polluted, Cd and Hg are moderately or above polluted; the sunny slope soil is slightly polluted. Heavy metal pollution, no heavy metal pollution on shady slopes.

11.
Int J Phytoremediation ; 26(9): 1526-1536, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525911

RESUMEN

Bauxite residue (BR) is a large volume by-product generated during bauxite smelting process and metal pollution problem is becoming increasingly prominent in residue areas. Accumulation and transfer of metals in six vascular plants were analyzed and soil environment was evaluated. Results found levels of Al (2,110-26,280 mg kg-1), Fe (990 to 9,880 mg kg-1), Ca (8,020 to 49,250 mg kg-1), Mg (2,060 to 17,190 mg kg-1), K (16,840 to 39,670 mg kg-1), and Ti (80 to 1,240 mg kg-1) in plants. Metal concentrations in soils exceeded background levels. Bioconcentration factor (BCF) found that Al, Fe, and Ti in plants (roots, stems, and leaves) were relatively depleted (BCF <1). Transfer factor (TF) of Al, Fe, Ca, K, and Ti in plants was distinctly higher than 1 and mainly concentrated in stems and leaves. Pollution indices revealed that soil environment was at moderated to serious contaminated risk. Principal components analysis (PCA) showed that Artemisia caruifolia Buch. and Siegesbeckia orientalis L. plants had a good ability to absorb Al and Fe, which can be used as biological indicators and restoration materials.


Currently, soil environment was exposed to moderated to serious contaminated risk from Wachangping karst bauxite residue areas.Bioconcentration factor (BCF) analysis found that Al, Fe, and Ti in six vascular plants (roots, stems, and leaves) were relatively depleted (BCF <1).Transfer factor (TF) of Al, Fe, Ca, K, and Ti in vascular plants was distinctly higher than 1, which mainly concentrated in stems and leaves.PCA revealed that Artemisia caruifolia Buch. and Siegesbeckia orientalis L. plants had a good ability to absorb Al and Fe, which can be used as biological indicators and ecological restoration materials.


Asunto(s)
Óxido de Aluminio , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Bioacumulación , Biodegradación Ambiental , China , Suelo/química , Metales/metabolismo , Metales Pesados/metabolismo , Metales Pesados/análisis , Monitoreo del Ambiente , Hojas de la Planta/metabolismo
12.
Environ Res ; 248: 118413, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38316388

RESUMEN

Roadside soil contamination is mostly caused by human-caused pollutant deposition. PTEs are among the many substances that are harmful for both humans and the environment. PTE concentrations in roadside soil in Chennai, southern India, have been determined in this study. To evaluate the seriousness of the threats, more environmental and geochemical indices have been applied. 83 soil samples have been obtained from the study regions and focusing on important roads. Elemental analysis has been analyzed with ED-XRF and sieve-filtered samples focused on PTEs such as arsenic, barium, cobalt, chromium, copper, iron, potassium, nickel, lead, thorium, titanium, zinc, and uranium. Significant metallic variations have been found in soil samples around roads by the investigation. The elements this study examined section ascending in the following sequence: Fe > Ti > Zn > Cr > Pb > Cu > Ni > Th > As > U > K. In the research area, the CD classification denotes high contamination, whereas the CF indices show mild to significant pollution. PLI indicates moderate to high pollution, whereas EF suggests excessive enrichment. Igeo demonstrates a range from uncontaminated to highly contaminated. PERI showed high levels in the northern study region, whereas GUFI shows several hot spots indicating moderate to severe pollution. The Hazard Index (HI) values for all metals were less than one, demonstrating the absence of non-carcinogenic risks for both adults and children. Multivariate data show natural and anthropogenic PTEs in roadside soil. In addition, a soil quality monitoring system is needed to mitigate continual contamination risks.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Adulto , Niño , Humanos , Metales Pesados/análisis , Suelo/química , Monitoreo del Ambiente , India , Medición de Riesgo , Contaminantes del Suelo/análisis , China , Cadmio/análisis
13.
Environ Geochem Health ; 46(2): 55, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263529

RESUMEN

Source-specific risk apportionment for soil potentially toxic metals (PTMs) is of great significance for contamination prevention and risk management in urban environments. Eighty-five urban soil samples were obtained from an oasis-tourist city, China and examined for eight PTMs (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn). The pollution levels, sources, and ecological risk of soil PTMs were quantified, and their source-specific ecological and human health effects were also estimated using the multi-proxy approaches. The results demonstrated that accumulation of Cd, Hg, Pb, Cr, Cu, and Zn in soils was observed compared to their background levels, and the soils experienced varying degrees of PTMs pollution, especially at sites with high-intensity anthropogenic activities. Natural sources, atmospheric deposition, industrial sources, vehicular emissions, and comprehensive inputs were the principal sources, with contributions of 29.28%, 25.86%, 20.13%, 16.50%, and 8.23%, respectively. The integrated ecological risks of PTMs in soils were moderate at most sites, with atmospheric deposition being the dominant contributor to ecological risks. Children exhibited pronounced non-cancer risks, but adults had no notable non-cancer risks. Moreover, there were potential carcinogenic risks for both children and adults within the study region. Non-cancer and carcinogenic risks were more significant for children than adults, and traffic emissions were the primary contributor to non-cancer risks (adults: 20.53%, children: 20.49%) and carcinogenic risks (adults: 22.95%, children: 22.08%). The industrial and traffic activities were considered as priority control sources for soil pollution control and risk management, with Hg, Cd, Zn, and Pb corresponding to the priority elements. This study highlights the source-specific ecological and human health effects of PTMs pollution in urban soils, thereby providing valuable information for targeted pollution control and priority source management.


Asunto(s)
Cadmio , Mercurio , Adulto , Niño , Humanos , Plomo , Carcinogénesis , Carcinógenos , China , Contaminación Ambiental , Suelo , Medición de Riesgo
14.
Mar Pollut Bull ; 199: 116015, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38217917

RESUMEN

Understanding the influence of terrestrial inputs on heavy metals in bays is crucial for the environmental protection of regional estuaries and coastal systems. In this study, the concentrations, temporal and regional distribution characteristics, and fluxes of heavy metals (Cr, Cu, Zn, Cd, Pb) in the surface seawater and terrestrial sewage of Zhanjiang Bay (ZJB) in four different seasons were investigated. The results identified the heavy metal concentrations in the sewage outlet around ZJB had significant seasonal variation. The heavy metals in the surface seawater of ZJB had significant spatiotemporal variations. Terrestrial input, biological activity and hydrodynamics affected the overall distribution. The heavy metal emission fluxes indicated that riverine input was the main influencing factor for heavy metals in ZJB (96.22 %). The fluxes of heavy metals into ZJB increased significantly after the typhoon (Cu: 127 %, Zn: 63 %, Pb: 136 %), it was possible to deteriorate the seawater quality.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Bahías , Aguas del Alcantarillado , Plomo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , China , Sedimentos Geológicos , Medición de Riesgo
15.
Mar Pollut Bull ; 199: 116018, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244391

RESUMEN

Eighteen surface sediment samples collected from the Rongcheng offshore area of China in 2021 were analyzed for heavy metal concentrations, sources, and pollution status. The Cu, Zn, Cr, Cd, As, and total organic carbon (TOC) distributions were similar. In contrast, the distributions of Pb and Hg were irregular, and high concentrations appeared in two or several areas. Occasional adverse effects were observed from pollution caused by Cu, Pb, and As, and none of the heavy metal concentrations exceeded the probable effect level (PEL). The Pearson's correlation coefficient, geoaccumulation index, and principal component analysis were used to distinguish the sources and assess the pollution risk of heavy metals. The results showed that heavy metals did not pollute the surface sediments in the Rongcheng offshore area and that the metals were mainly derived from natural sources.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Plomo/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Metales Pesados/análisis , China , Medición de Riesgo
16.
Toxics ; 12(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38251001

RESUMEN

Heavy metals (HMs) in agricultural land have caused serious environmental problems, resulting in severe contamination of the food chain and posing potential health threats. This study aims to investigate the pollution levels and potential ecological risks of HMs in farmland soils in central China, taking into account atmospheric deposition. Several indices were used to assess the status of HMs and compare surface soil with deeper soil. Descriptive statistics, Pearson correlation, and UMAP clustering methods were utilized to identify the characteristics of HMs. Additionally, stepwise linear regression models were employed to quantify the contributions of different variables to the potential ecological risks of HMs. The results showed that the average content of Zn in surface soil (289.41 ± 87.72 mg/kg) was higher than in the deeper soil (207.62 ± 37.81 mg/kg), and similar differences were observed in the mean values of related Igeo (1.622 ± 0.453 in surface soil and 1.183 ± 0.259 in deeper soil) and PEI (0.965 ± 0.292 in surface soil and 0.692 ± 0.126 in deeper soil) indices. This indicates that surface soil is more heavily polluted. The UMAP results confirmed the high variability of HMs in the surface soil, while PCA results suggested the importance of pollution and ecological risk indices. The stepwise linear model revealed that different variable structures contribute differently to the risk. In conclusion, Cr and Zn were found to be the major contaminants in the local farmland soil, with higher concentrations in the surface soil. The geoaccumulation and total potential ecological risk were classified as low risk. High variability of HMs was observed in the surface soil. Therefore, HM-related pollution indices and ecological risk indices are important for assessing the contamination status of local HMs. The local potential ecological risk can be attributed to specific heavy metals, each of which can have different effects on the local ecological risk.

17.
J Hazard Mater ; 465: 133212, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101012

RESUMEN

Cultivated soil quality is crucial because it directly affects food safety and human health, and rice is of primary concern because of its centrality to global food networks. However, a detailed understanding of cadmium (Cd) geochemical cycling in paddy soils is complicated by the multiple influencing factors present in many rice-growing areas that overlap with industrial centers. This study analyzed the pollution characteristics and health risks of Cd in paddy soils across Hainan Island and identified key influencing factors based on multi-source environmental data and prediction models. Approximately 27.07% of the soil samples exceeded the risk control standard screening value for Cd in China, posing an uncontaminated to moderate contamination risk. Cd concentration and exposure duration contributed the most to non-carcinogenic and carcinogenic risks to children, teens, and adults through ingestion. Among the nine prediction models tested, Extreme Gradient Boosting (XGBoost) exhibited the best performance for Cd prediction with soil properties having the highest importance, followed by climatic variables and topographic attributes. In summary, XGBoost reliably predicted the soil Cd concentrations on tropical islands. Further research should incorporate additional soil properties and environmental variables for more accurate predictions and to comprehensively identify their driving factors and corresponding contribution rates.


Asunto(s)
Oryza , Contaminantes del Suelo , Adulto , Niño , Humanos , Adolescente , Suelo/química , Cadmio/análisis , Contaminantes del Suelo/análisis , Inocuidad de los Alimentos , Oryza/química , China , Medición de Riesgo
18.
Environ Sci Pollut Res Int ; 31(4): 5384-5398, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123772

RESUMEN

Luanchuan is rich in molybdenum resources, and mining activities are frequent, but over-mining can cause serious metal pollution to the local environment. To explore the degree of metal pollution caused by mining activities, the content characteristics and spatial distribution of metals in mining areas were studied by measuring the concentrations of Fe, Mn, Zn, Ba, Mo, Cu, Cr, Co, V, and W in surface water and mosses of mining areas. In addition, the metal pollution index (HPI), contamination factor (CF), and pollution load index (PLI) were used to evaluate metal pollution, and factor analysis was used to analyze the sources of metals. The results of the analysis of surface water at the mine site indicate the most abundant element in surface water, with a maximum concentration of 3713.8 µg/L, and its content far exceeds the water quality standard of Class III of the Environmental Quality Standard for Surface Water. The results of the HPI analysis showed that nearly 90% of the surface water was moderately contaminated (HPI ≥ 15). The results of the analysis of atmospheric deposition at the mine site confirm that the metal elements with a high threat to the atmospheric environment are Mo and W. The results of PLI indicate that the level of atmospheric deposition pollution in the study area is severe (PLI > 4). Factor analysis indicated that rock weathering and mining activities were the main sources of metals. This study provides a theoretical basis for the investigation and control of metal pollution in similar metal mining areas.


Asunto(s)
Briófitas , Metales Pesados , Contaminantes del Suelo , Molibdeno/análisis , Metales Pesados/análisis , Monitoreo del Ambiente/métodos , China , Minería , Calidad del Agua , Medición de Riesgo , Contaminantes del Suelo/análisis
19.
Huan Jing Ke Xue ; 44(12): 6720-6727, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098398

RESUMEN

Heavy metals(HMs) are highly toxic and do not easily degrade in the environment. They can accumulate in the human body through the food chain, with serious impacts on the ecological environment and human health. In this study, 14 sampling sites along the mainstream of the Yellow River were investigated, and the total content and chemical fractions of six heavy metals(As, Cd, Cr, Cu, Pb, and Zn) in sediments were analyzed. The geo-accumulation index, potential ecological risk index, and risk assessment coding were used to assess the contamination level and bioavailability of HMs in sediment. Principal component analysis and redundancy analysis were used to identify the main sources of HMs. The results showed that the average content of heavy metals was in the order of Cr>Zn>Cu>Pb>As>Cd. Cd had the highest excess rate relative to the background value of each reach, reaching 85.7%. In the sediments, As, Zn, Pb, and Cu were predominantly in the oxidizable fraction(F3:sulfide and organic matter-bound), Cd was mainly occupied by the acid-soluble(F1:exchangeable and carbonate-bound) and a residual fraction(F4:mineral matrix-bound), and Cr was predominantly in the residual fraction. As, Cr, Cu, Pb, and Zn showed the lowest bioavailability in the upstream, increased in the midstream, and finally decreased in the downstream. The risk assessment showed that Cd, the element with the highest pollution risk level in the Yellow River, was prone to pose a serious threat to the ecological environment and should be prevented and controlled first. The PCA and RDA analyses revealed that fine sediment and total organic matter controlled HMs contamination. Therefore, the prevention and control of soil erosion and sediment migration should be emphasized to control HMs pollution in the Yellow River Basin.

20.
Environ Monit Assess ; 195(12): 1422, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37932466

RESUMEN

The Qinghai-Tibet Plateau stands as the loftiest geographical area on our planet, frequently denoted as the "Crown of the Globe." To acquire an exhaustive comprehension of the heavy metal contamination situation in the topsoil of Maqin County, Qinghai Province, a total of 1616 surface soil specimens were gathered across a 6300 km2 area. An examination was carried out on 12 metallic elements to investigate the impact of diverse geological contexts, soil categorizations, and land utilization practices on the levels of heavy metals. Additionally, the fundamental factors contributing to these trends were probed. The findings unveiled that the mean levels of the 12 metallic elements in the topsoil of Maqin County surpassed or equaled the baseline values of soil heavy metal concentrations within the research region. The coefficients of variation (CV) values for Hg, Sb, Ni, and Pb exceeded 30%, with Hg showing strong variation. The overall pollution level in the study area was classified as mild, posing a moderate ecological risk. In this study, we performed a multi-factor analysis of the significant differences in heavy metal concentrations among different geological backgrounds, soil types, and land-use types. The results showed that geological background had extremely significant impacts on elements such as Ba, Be, Cd, Cr, Cu, Hg, Ni, Sb, Tl, and Zn (p < 0.01). Soil type had an extremely significant influence on Be, Cd, Cu, and Zn (p < 0.01), as well as a significant influence on Ba (p < 0.05). Land-use type had an extremely significant impact on Ba (p < 0.01) and a significant impact on Cd (p < 0.05). Building upon the amalgamation of the outcomes from the Pearson correlation analysis, it was inferred that the main source of heavy metals in Maqin County, Qinghai Province, was the geological background.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Medición de Riesgo , China , Metales Pesados/análisis , Suelo , Mercurio/análisis , Contaminación Ambiental/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA