Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.105
Filtrar
1.
J Colloid Interface Sci ; 675: 1040-1051, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39008922

RESUMEN

Open wounds are susceptible to bacterial infections, and antibiotics are commonly used to treat these infections. However, widespread use of antibiotics will easily induce bacterial resistance. Green antibacterial agents serve as excellent alternative for antibiotics in infection therapy. In this work, polydopamine (PDA) was used to modify the surface of ZIF-8, which not only enhances the water stability of Zeolitic imidazolate framework-8(ZIF-8) but also improves its photocatalytic and photothermal capabilities. ZIF-8@PDA was incorporated into carboxylated chitosan (CCS) films as an antibacterial agent, the resulting ZIF-8@PDA-CCS films exhibit excellent ionic/photocatalytic/photothermal antibacterial performance. The film exhibited an impressive 99% in vitro bacterial inhibition rate. After treatment with ZIF-8@PDA-CCS, the bacteria in infected wounds can be completely suppressed. These findings suggest that ZIF-8@PDA-CCS could serve as a potentional antibacterial dressing.

2.
Chemosphere ; : 142842, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39009089

RESUMEN

In today's world, major pollutants, such as cationic dyes and heavy metals, pose a serious threat to human health and the environment. In this study, a novel adsorbent was created through the electrospinning of polyvinyl alcohol/polyacrylic acid (PVA/PAA), incorporated with hexagonal boron nitride (hBN) coated with polydopamine (PDA). The integration of hBN and PDA substantially enhanced the adsorption capacity of the PVA/PAA fibers, making them highly effective in adsorbing cationic dyes such as methylene blue and crystal violet, as well as cobalt (II) ions, from contaminated water. The adsorbents were assessed to understand how their adsorption behavior varies with pH, as well as to examine their adsorption kinetics and isotherms. The results indicate that the PVA/PAA-hBN@PDA adsorbent has maximum adsorption capacities of 1029.57 mg/g, 793.65 mg/g, and 62.46 mg/g for methylene blue, crystal violet, and cobalt (II) ions, respectively. This underscores the superior performance of the PVA/PAA-hBN@PDA adsorbent when compared to both the PVA/PAA and PVA/PAA-hBN adsorbents. The adsorption kinetics adhered to a pseudo-second-order model, indicating chemisorption, whereas the Langmuir model implied a monolayer adsorption. Overall, the findings of this study highlight the efficacy of harnessing the synergistic capabilities of hBN and PDA within the PVA/PAA-hBN@PDA adsorbents, providing an efficient and eco-friendly approach to removing cationic dyes and heavy metals from contaminated water, and thereby contributing to a cleaner and safer environment for all.

3.
Biopolymers ; : e23613, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989603

RESUMEN

Hydrogels are notable for their outstanding absorbent qualities, satisfactory compatibility with biological systems, ability to degrade, and inherent safety, all of which contribute to their high demand in the field of biomedicine. This study focuses on the fabrication of hydrogels using environmentally friendly cellulosic material. Cellulose hydrogel beads were prepared by physical cross-linking in a NaOH/urea medium. Furthermore, nano polydopamine was integrated into the hydrogel matrix as functional polymers and α-mangostin was employed as an active pharmaceutical ingredient. The physicochemical properties were comprehensively analyzed using Fourier-transform infrared spectrometer, 13C cross-polarization/magic angle spinning nuclear magnetic resonance, thermogravimetric analysis, and scanning electron microscope. The drug delivery properties, including water content, swelling ratio, and drug release profiles, were evaluated. In vitro cytotoxicity against MC3T3-E1 cells was assessed using sulforhodamine B staining. All test hydrogels exhibited inhibitory activity against the growth of MC3T3-E1 cells. These results indicated the potential use of these hydrogels as a drug delivery carrier for α-mangostin in the treatment of ankylosing spondylitis.

4.
Sci Rep ; 14(1): 15667, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977741

RESUMEN

The microreactor with two types of immobilized enzymes, exhibiting excellent orthogonal performance, represents an effective approach to counteract the reduced digestion efficiency resulting from the absence of a single enzyme cleavage site, thereby impacting protein identification. In this study, we developed a hydrophilic dual-enzyme microreactor characterized by rapid mass transfer and superior enzymatic activity. Initially, we selected KIT-6 molecular sieve as the carrier for the dual-IMER due to its three-dimensional network pore structure. Modification involved co-deposition of polyethyleneimine (PEI) and acrylamide (AM) as amine donors, along with dopamine to enhance material hydrophilicity. Remaining amino and double bond functional groups facilitated stepwise immobilization of trypsin and Glu-C. Digestion times for bovine serum albumin (BSA) and bovine hemoglobin (BHb) on the dual-IMER were significantly reduced compared to solution-based digestion (1 min vs. 36 h), resulting in improved sequence coverage (91.30% vs. 82.7% for BSA; 90.24% vs. 89.20% for BHb). Additionally, the dual-IMER demonstrated excellent durability, retaining 96.08% relative activity after 29 reuse cycles. Enhanced protein digestion efficiency can be attributed to several factors: (1) KIT-6's large specific surface area, enabling higher enzyme loading capacity; (2) Its three-dimensional network pore structure, facilitating faster mass transfer and substance diffusion; (3) Orthogonality of trypsin and Glu-C enzyme cleavage sites; (4) The spatial effect introduced by the chain structure of PEI and glutaraldehyde's spacing arm, reducing spatial hindrance and enhancing enzyme-substrate interactions; (5) Mild and stable enzyme immobilization. The KIT-6-based dual-IMER offers a promising technical tool for protein digestion, while the PDA/PEI/AM-KIT-6 platform holds potential for immobilizing other proteins or active substances.


Asunto(s)
Acrilamida , Dopamina , Enzimas Inmovilizadas , Polietileneimina , Albúmina Sérica Bovina , Tripsina , Polietileneimina/química , Dopamina/química , Dopamina/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Acrilamida/química , Tripsina/química , Tripsina/metabolismo , Animales , Bovinos , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Porosidad , Interacciones Hidrofóbicas e Hidrofílicas , Hemoglobinas/química , Hemoglobinas/metabolismo , Proteolisis
5.
Polymers (Basel) ; 16(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000661

RESUMEN

The escalating environmental concerns associated with petroleum-based adhesives have spurred an urgent need for sustainable alternatives. Chitosan, a natural polysaccharide, is a promising candidate; however, its limited water resistance hinders broader application. The aim of this study is to develop a new chitosan-based adhesive with improved properties. The polydopamine association with chitosan presents a significant increase in adhesiveness compared to pure chitosan. Polydopamine is synthesized by the enzymatic action of laccase from Trametes versicolor at pH = 4.5, in the absence or presence of chitosan. This pH facilitates chitosan's solubility and the occurrence of catechol in its reduced form (pH < 5.5), thereby increasing the final adhesive properties. To further enhance the adhesive properties, various crosslinking agents were tested. A multi-technique approach was used for the characterization of formulations. The formulation based on 3% chitosan, 50% polydopamine, and 3% xanthan gum showed a spectacular increase in adhesive properties when tested on glass, cardboard and textile. This formulation increased water resistance, maintaining the adhesion of a sample soaked in water for up to 10 h. For cardboard and textile, material rapture occurred, in mechanical tests, prior to adhesive bond failure. Furthermore, all the samples showed antiflame properties, expanding the benefits of their use. Comparison with commercial glues confirms the remarkable adhesive properties of the new formulation.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38954244

RESUMEN

Triple-negative breast cancer (TNBC) could benefit from PARP inhibitors (PARPi) for their frequent defective homologous recombination repair (HR). However, the efficacy of PARPi is limited by their lower bioavailability and high susceptibility to drug resistance, so it often needs to be combined with other treatments. Herein, polydopamine nanoparticles (PDMN) were constructed to load Olaparib (AZD) as two-channel therapeutic nanoplatforms. The PDMN has a homogeneous spherical structure around 100 nm and exhibits a good photothermal conversion efficiency of 62.4%. The obtained AZD-loaded nanoplatform (PDMN-AZD) showed enhanced antitumor effects through the combination of photothermal therapy (PTT) and PARPi. By western blot and flow cytometry, we found that PTT and PARPi could exert synergistic antitumor effects by further increasing DNA double-strand damage (DSBs) and enhancing HR defects. The strongest therapeutic effect of PDMN-AZD was observed in a BRCA-deficient mouse tumor model. In conclusion, the PDMN-AZD nanoplatform designed in this study demonstrated the effectiveness of PTT and PARPi for synergistic treatment of TNBC and preliminarily explained the mechanism.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38954488

RESUMEN

In the intricate landscape of Traumatic Brain Injury (TBI), the management of TBI remains a challenging task due to the extremely complex pathophysiological conditions and excessive release of reactive oxygen species (ROS) at the injury site and the limited regenerative capacities of the central nervous system (CNS). Existing pharmaceutical interventions are limited in their ability to efficiently cross the blood-brain barrier (BBB) and expeditiously target areas of brain inflammation. In response to these challenges herein, we designed novel mussel inspired polydopamine (PDA)-coated mesoporous silica nanoparticles (PDA-AMSNs) with excellent antioxidative ability to deliver a new potential therapeutic GSK-3ß inhibitor lead small molecule abbreviated as Neuro Chemical Modulator (NCM) at the TBI site using a neuroprotective peptide hydrogel (PANAP). PDA-AMSNs loaded with NCM (i.e., PDA-AMSN-D) into the matrix of PANAP were injected into the damaged area in an in vivo cryogenic brain injury model (CBI). This approach is specifically built while keeping the logic AND gate circuit as the primary focus. Where NCM and PDA-AMSNs act as two input signals and neurological functional recovery as a single output. Therapeutically, PDA-AMSN-D significantly decreased infarct volume, enhanced neurogenesis, rejuvenated BBB senescence, and accelerated neurological function recovery in a CBI.

8.
Bioelectrochemistry ; 160: 108769, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38955054

RESUMEN

The structure and surface physicochemical properties of anode play a crucial role in microbial fuel cells (MFCs). To enhance the enrichment of exoelectrogen and facilitate extracellular electron transfer (EET), a three-dimensional macroporous graphene aerogel with polydopamine coating was successfully introduced to modify carbon brush (PGA/CB). The three-dimensional graphene aerogel (GA) with micrometer pores improved the space utilization efficiency of microorganisms. Polydopamine (PDA) coating enhanced the physicochemical properties of the electrode surface by introducing abundant functional groups and nitrogen-containing active sites. MFCs equipped with PGA/CB anodes (PGA/CB-MFCs) demonstrated superior power generation compared to GA/CB-MFCs and CB-MFCs (MFCs with GA/CB and CB anodes respectively), including a 23.0 % and 30.1 % reduction in start-up time, and an increase in maximum power density by 2.43 and 1.24 times respectively. The higher bioelectrochemical activity exhibited by the biofilm of PGA/CB anode and the promoted riboflavin secretion by PGA modification imply the enhanced EET efficiency. 16S rRNA high-throughput sequence analysis of the biofilms revealed successful enrichment of Geobacter on PGA/CB anodes. These findings not only validate the positive impact of the synergistic effects between GA and PDA in promoting EET and improving MFC performance but also provide valuable insights for electrode design in other bioelectrochemical systems.

9.
Chemosphere ; 362: 142735, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950743

RESUMEN

To fulfill the requirements of environmental protection, a magnetically recoverable immobilized laccase has been developed for water pollutant treatment. In order to accomplish this objective, we propose a polydopamine-coated magnetic graphene material that addresses the challenges associated with accumulation caused by electrostatic interactions between graphene and enzyme molecules, which can lead to protein denaturation and inactivation. To achieve this, we present a polydopamine-coated magnetic graphene material that binds to the enzyme molecule through flexible spacer arms formed by ionic liquids. The immobilized laccase exhibited a good protective effect on laccase and showed a high stability and recycling ability. Laccase-ILs-PDA-MGO has a wider pH and temperature range and retains about 80% of its initial activity even after incubation at 50 °C for 2 h, which is 2.2 times more active than free laccase. Furthermore, the laccase-ILs-PDA-MGO exhibited a remarkable removal efficiency of 97.0% and 83.9% toward 2,4-DCP and BPA within 12 h at room temperature. More importantly, laccase-ILs-PDA-MGO can be recovered from the effluent and used multiple times for organic pollutant removal, while maintaining a relative removal efficiency of 80.6% for 2,4-DCP and 81.4% for BPA after undergoing seven cycles. In this study, a strategy for laccase immobilization by utilizing ILs spacer arms to modify GO aims to provide valuable insights into the advancement of efficient enzyme immobilization techniques and the practical application of immobilized enzymes in wastewater treatment.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38958653

RESUMEN

Hydrogels, as flexible materials, have been widely used in the field of flexible sensors. Human sweat contains a variety of biomarkers that can reflect the physiological state of the human body. Therefore, it is of great practical significance and application value to realize the detection of sweat composition and combine it with human motion sensing through a hydrogel. Based on mussel-inspired chemistry, polydopamine (PDA) and gold nanoparticles (AuNPs) were coated on the surface of cellulose nanocrystals (CNCs) to obtain CNC-based nanocomposites (CNCs@PDA-Au), which could simultaneously enhance the mechanical, electrochemical, and self-healing properties of hydrogels. The CNCs@PDA-Au was composited with poly(vinyl alcohol) (PVA) hydrogel to obtain the nanocomposite hydrogel (PVA/CNCs@PDA-Au) by freeze-thaw cycles. The PVA/CNCs@PDA-Au has excellent mechanical strength (7.2 MPa) and self-healing properties (88.3%). The motion sensors designed with PVA/CNCs@PDA-Au exhibited a fast response time (122.9 ms), wide strain sensing range (0-600.0%), excellent stability, and fatigue resistance. With the unique electrochemical redox properties of uric acid, the designed hydrogel sensor successfully realized the detection of uric acid in sweat with a wide detection range (1.0-100.0 µmol/L) and low detection limit (0.42 µmol/L). In this study, the dual detection of human motion and uric acid in sweat was successfully realized by the designed PVA/CNCs@PDA-Au nanocomposite hydrogel.

11.
Int J Biol Macromol ; 275(Pt 1): 133568, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969033

RESUMEN

This paper initially examines the feasibility and effectiveness on interfacial adhesion of composites when grafting nanoparticle-structured polydopamine (PDA) and chitosan around carbon fiber periphery. The resulting interfacial shear strength was maximized as 92.3 MPa, delivering 50.1 % and 15.7-16.2 % gains over those of control fiber and only polydopamine nanospheres (PDANPs) or only chitosan modified fiber composites. Measuring surface morphology and thermal stability of fibers found that abundant PDANPs well adhered with the help of chitosan, highlighting nanoscale size effects and intrinsic adhesiveness of PDA. Under good wettability, rich and dense interfacial interactions (covalent and hydrogen bond, electrostatic interaction, and π conjugation) caused by PDANPs/chitosan coating provides impetus for effective stress transfer. Additionally, the stable "soft-rigid" combination of chitosan and PDANPs adds the efficiency of crack passivation. As such, it is hoped that this work could fully explore the possibility of PDA geometry in interphase engineering of fiber composites.

12.
J Colloid Interface Sci ; 675: 263-274, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38970912

RESUMEN

The removal of dye molecules in alkaline environments is an issue that should receive increased attention. In this study, the interaction mechanism between polydopamine-modified multiwalled carbon nanotubes (P-MWCNTs) and multiwalled carbon nanotubes (MWCNTs) with the cationic dye methylene blue (MB) in alkaline environments was explained in depth by adsorption, spectroscopy, and density functional theory (DFT). The mechanism of action and dominant forces between the adsorbent and adsorbate were analyzed graphically by introducing energy decomposition analysis (EDA) and an independent gradient model (IGM) into the DFT calculations. In addition, the force distribution was investigated through an isosurface. Moreover, batch adsorption studies were conducted to evaluate the performance of MWCNTs and P-MWCNTs for MB removal in alkaline environments. The maximum MB adsorption capacities of the MWCNTs and P-MWCNTs in solution were 113.3 mg‧g-1 and 230.4 mg‧g-1, respectively, at pH 9. The IGM and EDA showed that the better adsorption capacity of the P-MWCNTs originated from the enhancement of the electrostatic effect by the proton dissociation of polydopamine. Moreover, the adsorption of MB by MWCNTs and P-MWCNTs in alkaline environments was governed by dispersion and electrostatic effects, respectively. Through this study, it is hoped that progress will be made in the use of DFT to explore the mechanism of adsorbent-adsorbate interactions.

13.
ACS Biomater Sci Eng ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991039

RESUMEN

Within the context of seeking eco-friendly and readily available materials for energy storage, there is a pressing demand for energy storage solutions that employ environmentally sustainable, high-performance, and adaptable constituents. Specifically, such materials are essential for use in wearable technology, smart sensors, and implantable medical devices, whereas, more broadly, their use plays a pivotal role in shaping their efficiency and ecological footprint. Here, we demonstrate an entirely biopolymer-based supercapacitor with a remarkable performance, achieving a capacitance greater than 0.2 F cm-2 at a charge-discharge current of 10 mA cm-2 with 94% capacitance retention after 20,000 cycles. The supercapacitor is composed of three distinct silk fibroin (SF) composite materials, namely, photo-cross-linkable SF (Sil-MA) hydrogel, SF-polydopamine (SF-PDA), and SF bioplastic, to create a gel electrolyte, electrode binder, and encapsulation, respectively. Together, these elements form a mechanically and electrochemically robust skeleton for biofriendly energy storage devices. Moreover, these biomaterial-based supercapacitor devices show stretchability, flexibility, and compressibility while maintaining their electrochemical performance. The biomaterials and fabrication techniques presented can serve as a foundation for investigating various aqueous electrochemical energy storage systems, especially for emerging applications in wearable electronics and environmentally friendly material systems.

14.
Talanta ; 278: 126525, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38991406

RESUMEN

Bacterial infection is a great threat to human health. Lateral flow immunoassays (LFIAs) with the merits of low cost, quick screening, and on-site detection are competitive technologies for bacteria detection, but their detection limits depend on the optical performance of the adopted nanotags. Herein, we presented a LFIA platform for bacteria detection using polydopamine (PDA) functionalized Au nanoparticles (denoted as Au@PDA) as the nanotag. The introduction of PDA could provide enhanced light absorption of Au, as well as numerous functional groups for conjugation. Small recognition molecules i.e. vancomycin (Van) and p-mercaptophenylboronic acid (PMBA) were covalently anchored to Au@PDA, and selected as the specific probes towards Gram-positive (G+) and Gram-negative (G-) bacteria, respectively. Taken Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) as the representative targets of G+ and G- bacteria, two LFA strips were successfully constructed based on the immuno-sandwich principle. They could quantitatively detect S. aureus and E. coli both down to 102 cfu/mL, a very competitive detection limit in comparison with other colorimetric or luminescent probes-based LFIAs. Furthermore, the proposed two strips were applied for the quantitative, accurate, and rapid detection of S. aureus and E. coli in food and human urine samples with good analytical results obtained. In addition, they were integrated as a screening platform for quick evaluation of diverse antibacterial agents within 3 h, which is remarkably shortened compared with that of the two traditional methods i.e. bacterial culture and plate-counting.

15.
Sci Rep ; 14(1): 15969, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987324

RESUMEN

Photocatalytic membranes are effective in removing organic dyes, but their low UV resistance poses a challenge. To address this, self-protected photocatalytic PVDF membranes were developed using polyaniline (PANI) and polydopamine (PDA), whaich are anti-oxidation polymers, as interlayers between the membrane and TiO2. PVDF membranes were first modified by a self-polymerization layer of either PANI or PDA and then coated with titanium dioxide (TiO2). The TiO2 remained firmly attached to the PANI and PDA layer, regardless of sonication and prolonged usage. The PANI and PDA layers enhanced the durability of PVDF membrane under UV/TiO2 activation. After 72 h of irradiation, PVDF-PDA-TiO2 and PVDF-PANI-TiO2 membranes exhibited no significant change. This process improved both separation and photocatalytic activity in dye wastewater treatment. The PVDF-PDA-TiO2 and PVDF-PANI-TiO2 membranes showed enhanced membrane hydrophilicity, aiding in the rejection of organic pollutants and reducing fouling. The modified membranes exhibited a significant improvement in the flux recovery rate, attributed to the synergistic effects of high hydrophilicity and photocatalytic activity. Specially, the flux recovery rate increased from 17.7% (original PVDF) to 56.3% and 37.1% for the PVDF-PDA-TiO2 membrane and PVDF-PANI-TiO2 membrane. In dye rejection tests, the PVDF‒PDA‒TiO2 membrane achieved 88% efficiency, while the PVDF‒PANI‒TiO2 reached 95.7%. Additionally, the photodegradation of Reactive Red 239 (RR239) by these membranes further improved dye removal. Despite an 11% reduction in flux, the PVDF-PDA-TiO2 membrane demonstrated greater durability and longevity. The assistance of PANI and PDA in TiO2 coating also improved COD removal (from 33 to 58-68%) and provided self-protection for photocatalytic membranes, indicating that these photocatalytic membranes can contribute to more sustainable wastewater treatment processes.

16.
Sci Rep ; 14(1): 15927, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987493

RESUMEN

The development of intelligent, environmentally responsive and biocompatible photothermal system holds significant importance for the photothermal combined therapy of tumors. In this study, inspired by Lactobacillus (LAC), we prepared a biomimetic nanoplatform PDA&DOX@LAC for tumor photothermal-chemotherapy by integrating the chemotherapeutic drug doxorubicin (DOX) with dopamine through oxidative polymerization to form polydopamine (PDA) on the surface of LAC. The PDA&DOX@LAC nanoplatform not only achieves precise and controlled release of DOX based on the slightly acidic microenvironment of tumor tissues, but also exhibits enzyme-like properties to alleviate tumor hypoxia. Under near-infrared light irradiation, it effectively induces photothermal ablation of tumor cells, enhances cellular uptake of DOX with increasing temperature, and thus efficiently inhibits tumor cell growth. Moreover, it is further confirmed in vivo experiments that photothermal therapy combined with PDA&DOX@LAC induces tumor cells apoptosis, releases tumor-associated antigens, which is engulfed by dendritic cells to activate cytotoxic T lymphocytes, thereby effectively suppressing tumor growth and prolonging the survival period of 4T1 tumor-bearing mice. Therefore, the PDA&DOX@LAC nanoplatform holds immense potential in precise tumor targeting as well as photothermal combined therapy and provides valuable insights and theoretical foundations for the development of novel tumor treatment strategies based on endogenous substances within the body.


Asunto(s)
Doxorrubicina , Portadores de Fármacos , Indoles , Polímeros , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Animales , Indoles/química , Indoles/farmacología , Indoles/administración & dosificación , Ratones , Polímeros/química , Portadores de Fármacos/química , Terapia Fototérmica/métodos , Línea Celular Tumoral , Femenino , Ratones Endogámicos BALB C , Humanos , Nanopartículas/química , Apoptosis/efectos de los fármacos , Fototerapia/métodos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología
17.
Mikrochim Acta ; 191(8): 456, 2024 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980419

RESUMEN

Polydopamine (PDA) has garnered significant interest for applications in biosensors, drug delivery, and tissue engineering. However, similar polycatecholamines like polynorepinephrine (PNE) with additional hydroxyl groups and poly-α-methylnorepinephrine (PAMN) with additional hydroxyl and methyl groups remain unexplored in the biosensing domain. This research introduces three innovative biosensing platforms composed of ternary nanocomposite based on reduced graphene oxide (RGO), gold nanoparticles (Au NPs), and three sister polycatecholamine compounds (PDA, PNE, and PAMN). The study compares and evaluates the performance of the three biosensing systems for the ultrasensitive detection of Mycobacterium tuberculosis (MTB). The formation of the nanocomposites was meticulously examined through UV-Visible, Raman, XRD, and FT-IR studies with FE-SEM and HR-TEM analysis. Cyclic voltammetry and differential pulse voltammetry measurements were also performed to determine the electrochemical characteristics of the modified electrodes. Electrochemical biosensing experiments reveal that the RGO-PDA-Au, RGO-PNE-Au, and RGO-PAMN-Au-based biosensors detected target DNA up to a broad detection range of 0.1 × 10-8 to 0.1 × 10-18 M, with a low detection limit (LOD) of 0.1 × 10-18, 0.1 × 10-16, and 0.1 × 10-17 M, respectively. The bioelectrodes were proved to be highly selective with excellent sensitivities of 3.62 × 10-4 mA M-1 (PDA), 7.08 × 10-4 mA M-1 (PNE), and 6.03 × 10-4 mA M-1 (PAMN). This study pioneers the exploration of two novel mussel-inspired polycatecholamines in biosensors, opening avenues for functional nanocoatings that could drive further advancements in this field.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Grafito , Indoles , Límite de Detección , Nanopartículas del Metal , Polímeros , Técnicas Biosensibles/métodos , Indoles/química , Polímeros/química , Técnicas Electroquímicas/métodos , Grafito/química , Oro/química , Animales , Nanopartículas del Metal/química , Mycobacterium tuberculosis , Bivalvos/química , Nanocompuestos/química , Electrodos , Norepinefrina/análisis
18.
Artículo en Inglés | MEDLINE | ID: mdl-38980701

RESUMEN

Achievement of a stable surface coating with long-term resistance to biofilm formation remains a challenge. Catechol-based polymerization chemistry and surface deposition are used as tools for surface modification of diverse materials. However, the control of surface deposition of the coating, surface coverage, coating properties, and long-term protection against biofilm formation remain to be solved. We report a new approach based on supramolecular assembly to generate long-acting antibiofilm coating. Here, we utilized catechol chemistry in combination with low molecular weight amphiphilic polymers for the generation of such coatings. Screening studies with diverse low molecular weight (LMW) polymers and different catechols are utilized to identify lead compositions, which resulted in a thick coating with high surface coverage, smoothness, and antibiofilm activity. We have identified that small supramolecular assemblies (∼10 nm) formed from a combination of polydopamine and LMW poly(N-vinyl caprolactam) (PVCL) resulted in relatively thick coating (∼300 nm) with excellent surface coverage in comparison to other polymers and catechol combinations. The coating properties, such as thickness (10-300 nm) and surface hydrophilicity (with water contact angle: 20-60°), are readily controlled. The optimal coating composition showed excellent antibiofilm properties with long-term (>28 days) antibiofilm activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains. We further utilized the combination of optimal binary coating with silver to generate a coating with sustained release of silver ions, resulting in killing both adhered and planktonic bacteria and preventing long-term surface bacterial colonization. The new coating method utilizing LMW polymers opens a new avenue for the development of a novel class of thick, long-acting antibiofilm coatings.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38979633

RESUMEN

Powder dusting method is the most widely used approach due to its low cost, simplicity, minimal instrument dependence, and extensive applicability for developing latent fingerprints (LFPs). Herein, a novel optical and electrochemical dual-mode method for high-resolution LFP enhancement has been explored based on size-tunable polydopamine (PDA) nanoparticles (NPs) and scanning electrochemical microscopy (SECM). Dark PDAs rich in functional groups and negative charges can combine with the residues of LFPs on various surfaces with high sensitivity and selectivity to realize high-resolution visual fingerprint physical patterns on various porous and nonporous substrates with light color. However, optical visualization is not feasible for LFPs on dark or multicolored surfaces. Fortunately, based on the differences in electrochemical reactivity between ridges and furrows caused by the conductivity and reducibility of PDA powders, SECM can serve as a powerful supplement to optical methods to effectively overcome background color interference and distinctly display fingerprint patterns. Intriguingly, it is noteworthy that the binding amount and particle size of PDA powder significantly affected the optical and electrochemical visualization of LFPs: more powder binding amounts provided darker ridges in optical, and more surface reaction sites (larger powder binding mass at the same particle size or smaller particle size at the same mass) provided higher currents of ridges in electrochemical imaging. It demonstrates that the PDA powder as a dual-mode developer for LFPs offers a promising method for individual identification in forensics.

20.
Int J Nanomedicine ; 19: 6717-6730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979530

RESUMEN

Introduction: Immune regulatory small molecule JQ1 can block its downstream effector PD-L1 pathway and effectively reverse the PD-L1 upregulation induced by doxorubicin (DOX). So the synergistic administration of chemotherapeutic drug DOX and JQ1 is expected to increase the sensitivity of tumors to immune checkpoint therapy and jointly enhance the body's own immunity, thus effectively killing tumor cells. Therefore, a drug delivery system loaded with DOX and JQ1 was devised in this study. Methods: Polydopamine nanoparticles (PDA NPs) were synthesized through spontaneous polymerization. Under appropriate pH conditions, DOX and JQ1 were loaded onto the surface of PDA NPs, and the release of DOX and JQ1 were measured using UV-Vis or high performance liquid chromatography (HPLC). The mechanism of fabricated nanocomplex in vitro was investigated by cell uptake experiment, cell viability assays, apoptosis assays, and Western blot analysis. Finally, the tumor-bearing mouse model was used to evaluate the tumor-inhibiting efficacy and the biosafety in vivo. Results: JQ1 and DOX were successfully loaded onto PDA NPs. PDA-DOX/JQ1 NPs inhibited the growth of prostate cancer cells, reduced the expression of apoptosis related proteins and induced apoptosis in vitro. The in vivo biodistribution indicated that PDA-DOX/JQ1 NPs could accumulated at the tumor sites through the EPR effect. In tumor-bearing mice, JQ1 delivered with PDA-DOX/JQ1 NPs reduced PD-L1 expression at tumor sites, generating significant tumor suppression. Furthermore, PDA-DOX/JQ1 NPs could reduce the side effects, and produce good synergistic treatment effect in vivo. Conclusion: We have successfully prepared a multifunctional platform for synergistic prostate cancer therapy.


Asunto(s)
Apoptosis , Azepinas , Doxorrubicina , Indoles , Nanopartículas , Polímeros , Neoplasias de la Próstata , Masculino , Animales , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/farmacocinética , Doxorrubicina/administración & dosificación , Indoles/química , Indoles/farmacología , Indoles/farmacocinética , Polímeros/química , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Nanopartículas/química , Humanos , Ratones , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Azepinas/química , Azepinas/farmacología , Azepinas/farmacocinética , Sinergismo Farmacológico , Supervivencia Celular/efectos de los fármacos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto , Liberación de Fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Antígeno B7-H1/metabolismo , Triazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...