Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.679
Filtrar
1.
Planta ; 260(2): 44, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963439

RESUMEN

MAIN CONCLUSION: The pilot-scale genome-wide association study in the US proso millet identified twenty marker-trait associations for five morpho-agronomic traits identifying genomic regions for future studies (e.g. molecular breeding and map-based cloning). Proso millet (Panicum miliaceum L.) is an ancient grain recognized for its excellent water-use efficiency and short growing season. It is an indispensable part of the winter wheat-based dryland cropping system in the High Plains of the USA. Its grains are endowed with high nutritional and health-promoting properties, making it increasingly popular in the global market for healthy grains. There is a dearth of genomic resources in proso millet for developing molecular tools to complement conventional breeding for developing high-yielding varieties. Genome-wide association study (GWAS) is a widely used method to dissect the genetics of complex traits. In this pilot study of the first-ever GWAS in the US proso millet, 71 globally diverse genotypes of 109 the US proso millet core collection were evaluated for five major morpho-agronomic traits at two locations in western Nebraska, and GWAS was conducted to identify single nucleotide polymorphisms (SNPs) associated with these traits. Analysis of variance showed that there was a significant difference among the genotypes, and all five traits were also found to be highly correlated with each other. Sequence reads from genotyping-by-sequencing (GBS) were used to identify 11,147 high-quality bi-allelic SNPs. Population structure analysis with those SNPs showed stratification within the core collection. The GWAS identified twenty marker-trait associations (MTAs) for the five traits. Twenty-nine putative candidate genes associated with the five traits were also identified. These genomic regions can be used to develop genetic markers for marker-assisted selection in proso millet breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Panicum , Polimorfismo de Nucleótido Simple , Panicum/genética , Polimorfismo de Nucleótido Simple/genética , Marcadores Genéticos , Genotipo , Fenotipo , Sitios de Carácter Cuantitativo/genética , Proyectos Piloto , Genoma de Planta/genética , Fitomejoramiento/métodos
2.
Vet Res Commun ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963470

RESUMEN

Adoption of a rational management in dairy farms would improve the milk quality and farmers' income. In the current study, we aimed to describe bovine mastitis in 32 dairy herds, identify the main cow- and herd-associated risk factors, and analyze both epidemiological along with molecular characteristics of Staphylococcus aureus infecting udders. Based on Californian Mastitis Test and clinical examination, the prevalence of mastitis in cows was 52.25% (116/222), of which 6.3% was clinical mastitis and 45.94% was subclinical mastitis. Overall, 218 (24.54%) quarters suffered from mastitis, whose 29.81% (65/218) infected with S. aureus. Mastitis was lowest in mid-lactation with OR = 0.371 with 95% confidence interval (CI) of 0.141-0.976, and in cows separated from their calves (OR = 0.164, 95% CI 0.056-0.477) than suckler cows. Similar results were obtained from S. aureus related mastitis. To assess the genetic lineages of S. aureus isolates, we determined clonal complexes (CC) using DNA microarray hybridization profiles and performed spa typing. The strains were assigned to nine clonal complexes, and 19 spa types; with CC97 (44.77%), and CC22 (40.29%) were the most predominant lineages and t223 (40.29%), t7136 (10.44%), t359 (8.95%) and t267 (5.97%) were the most common spa types. A total of 88.05% (n = 59) isolates were resistant to at least one tested antibiotic while only 4.47% were multi-drug resistant strains. Higher rates of resistance were observed for penicillin (86.5%) and tetracycline (14.9%) respectively. Our results show the need for adoption of feasible mastitis program with special emphasis on sub-clinical mastitis and associated risk factors.

3.
Poult Sci ; 103(8): 103960, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38964270

RESUMEN

Danzhou chicken (DZ) is a local breed in China noted for its strong adaptability, roughage resistance, strong wildness, and delicious taste, thus containing important genetic resources. In this study, genome re-sequencing data was generated from 200 DZ chickens. Combined with previously generated data from 72 additional chickens across six other exotic and local breeds, these data were used to systematically evaluate the germplasm characteristics of DZ chickens from a genomic perspective. Unlike exotic breeds, both DZ and southern local chicken varieties exhibited high genetic diversity, and the genetic distance between DZ and southern local chickens was smaller than the genetic distance between DZ and exotic chickens. A reconstructed Neighbor-Joining phylogenetic tree indicated that all sampled populations clustered into single independent populations, with DZ chickens showing clear evidence of intra-population differentiation, forming 2 subpopulations. Principal component analysis and ADMIXTURE analysis showed that DZ was significantly different from other breeds. These results indicate that DZ is a unique genetic resource that is different from other southern native and exotic chickens. The results of the study will improve our understanding of the genetic structure and current status of the DZ breed, which is of great significance in promoting the conservation of genetic resources of DZ chickens and fostering breed innovations and genetic improvement.

4.
ISME J ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959851

RESUMEN

Implications of geographic separation and temporal dynamics on the evolution of free-living bacterial species are widely unclear. However, the vast amount of metagenome sequencing data generated during the last decades from various habitats around the world provides an unprecedented opportunity for such investigations. Here we exploited publicly available and new freshwater metagenomes in combination with genomes of abundant freshwater bacteria to reveal geographic and temporal population structure. We focused on species that were detected across broad geographic ranges at high enough sequence coverage for meaningful population genomic analyses, associated to the predominant freshwater taxa acI, LD12, Polynucleobacter and Ca. Methylopumilus. Despite the broad geographic ranges, each species appeared as sequence-discrete cluster, in contrast to abundant marine taxa, for which continuous diversity structures were reported on global scale. Population differentiation increased significantly with spatial distance in all species, but notable dispersal barriers (e.g. oceanic) were not apparent. Yet, the different species showed contrasting rates of geographic divergence and strikingly different intra-population dynamics in time series within individual habitats. Change of an LD12 population over seven years was minor (FST = 0.04) compared to differentiation between lakes, whereas a Polynucleobacter population displayed strong changes within merely two months (FST up to 0.54), similar in scale to differentiation between populations separated by thousands of kilometers. The slowly and steadily evolving LD12 population showed high strain diversity, whereas the dynamic Polynucleobacter population exhibited alternating clonal expansions of mostly two strains only. Based on the contrasting population structures we propose distinct models of speciation.

5.
Parasitol Res ; 123(7): 259, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958790

RESUMEN

Hyalomma anatolicum, an Anatolian hard tick is a well-recognized vector involved in the transmission of various pathogens to animals and humans. The present study elucidated the population structure and haplotype network of H. anatolicum based on the mitochondrial large subunit ribosomal RNA (16S rRNA) gene sequence. The population structure and haplotype network analysis of 75 sequences archived in the GenBank, including the 15 sequences generated herein, yielded 24 haplotypes. Haplotype 1 (Hap_1) was the predominant haplotype consisting of 45 sequences from India, China, Pakistan, Turkey, Egypt, Iraq, and Tajikistan. The complete haplotype network exhibited a stellate conformation, highlighting a recent population expansion. The overall dataset, together with the sequences corresponding to India, China, and Pakistan, showed a high haplotype (0.638 ± 0.065, 0.671 ± 0.103, 0.753 ± 0.099, and 0.854 ± 0.061, respectively) and low nucleotide (0.00407 ± 0.00090, 0.00525 ± 0.00196, 0.00680 ± 0.00233, and 0.00453 ± 0.00056, respectively) diversity, further emphasized a recent population expansion. The neutrality indices including Tajima's D, Fu and Li's D, and Fu and Li's F for the complete dataset (- 2.661, - 6.008, and - 5.649, respectively) as well as for the sequences from India (- 2.223, - 3.414, and - 3.567, respectively) were negative, suggesting deviation from neutrality and a recent population expansion. The present study provided novel insights into the population structure and haplotype networks of H. anatolicum based on the mitochondrial 16S rRNA gene, and the different tests inferred a low genetic differentiation and suggested a recent population expansion of this economically important tick species.


Asunto(s)
Haplotipos , Ixodidae , ARN Ribosómico 16S , Animales , ARN Ribosómico 16S/genética , Ixodidae/genética , Ixodidae/clasificación , Variación Genética , Filogenia , Análisis de Secuencia de ADN
6.
BMC Genomics ; 25(1): 664, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961357

RESUMEN

BACKGROUND: Wheat landraces are considered a valuable source of genetic diversity for breeding programs. It is useful to evaluate the genetic diversity in breeding studies such as marker-assisted selection (MAS), genome-wide association studies (GWAS), and genomic selection. In addition, constructing a core germplasm set that represents the genetic diversity of the entire variety set is of great significance for the efficient conservation and utilization of wheat landrace germplasms. RESULTS: To understand the genetic diversity in wheat landrace, 2,023 accessions in the Jiangsu Provincial Crop Germplasm Resource Bank were used to explore the molecular diversity and population structure using the Illumina 15 K single nucleotide polymorphism (SNP) chip. These accessions were divided into five subpopulations based on population structure, principal coordinate and kinship analysis. A significant variation was found within and among the subpopulations based on the molecular variance analysis (AMOVA). Subpopulation 3 showed more genetic variability based on the different allelic patterns (Na, Ne and I). The M strategy as implemented in MStratv 4.1 software was used to construct the representative core collection. A core collection with a total of 311 accessions (15.37%) was selected from the entire landrace germplasm based on genotype and 12 different phenotypic traits. Compared to the initial landrace collections, the core collection displayed higher gene diversity (0.31) and polymorphism information content (PIC) (0.25), and represented almost all phenotypic variation. CONCLUSIONS: A core collection comprising 311 accessions containing 100% of the genetic variation in the initial population was developed. This collection provides a germplasm base for effective management, conservation, and utilization of the variation in the original set.


Asunto(s)
Variación Genética , Polimorfismo de Nucleótido Simple , Triticum , Triticum/genética , China , Genética de Población , Fenotipo , Genotipo
7.
Plant Dis ; : PDIS07231426SC, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937876

RESUMEN

Ganoderma boninense is a basidiomycete pathogen of African oil palm (Elaeis guineensis) and the causal agent of basal stem rot (BSR) disease, which is the most destructive fungal disease of oil palm in Southeast Asia. The disease is fatal for infected palms and can result in 50 to 80% losses in oil yields because of a reduction in productive life span and a yield decline of infected oil palms. In this study, G. boninense isolates collected from different locations and planting blocks with different palm ages were molecularly characterized using microsatellite genotyping. Results showed high pathogen genetic diversity (He = 0.67 to 0.74) among planting blocks and between oil palm estates. Two nearby planting blocks with similar planting ages (i.e., 1999 and 2001) had a similar percentage of BSR incidence (>20%) but showed distinct Ganoderma genetic structure as detected using STRUCTURE. Similar results were obtained from another trial site where planting blocks differing in planting age but located only less than 1 km apart showed a diverse genetic background. The pathogen genetic admixture of the oldest planting (>30% BSR incidence) differed significantly from the younger planting (1.8 to 2.8% BSR incidence, breeding trial block), suggesting that the host-pathogen genotype interaction may impact the Ganoderma genetic variation over time. The genetic structure of G. boninense, as revealed in this study, implies positive selection resulting from the pathogen genetic variation, host-pathogen interaction, and possible introductions of novel genetic variants (through spores) from adjacent plantings. These findings offer new insights into the genetic changes of G. boninense over time. The information is essential to design disease management strategies and breeding for BSR resistance in oil palm.

8.
Animals (Basel) ; 14(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38929366

RESUMEN

The Huitang duck (HT), a long-domesticated elite local breed from Hunan Province, China, with excellent meat quality, has not had its population genetic structure and genomic selective sweeps extensively studied to date. This study measured the phenotypic characteristics of HT and conducted comparative analysis between HT and 16 different duck breeds, including wild, indigenous, and meat breeds, to characterize its population structure and genetic potential. The results revealed that HT is a dual-purpose indigenous breed with a genetic background closely related to the Youxian sheldrake and Linwu ducks. In the selective sweep analysis between HT and Linwu ducks, genes such as PLCG2, FN1, and IGF2BP2, which are associated with muscle growth and development, were identified near the 27 selection signals. The comparison between HT and Jinding ducks revealed 68 selective signals that contained important genes associated with ovarian development (GRIK4, MAP3K8, and TGIF1) and egg-laying behaviors (ERBB4). Selective sweep analysis between HT and Youxian sheldrake ducks found 93 selective regions covering genes related to both meat (IGF1R and IGFBP5) and egg-production (FOXO3 and ITPR1) traits. Our study may provide novel knowledge for exploring the population structure and genetic potential of HT, offering a theoretical basis for its breeding strategies in the future.

9.
Biology (Basel) ; 13(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38927299

RESUMEN

Indigenous goats are important in the livelihoods of rural households in East African countries. This is due to their ability to produce and reproduce in different environments and climatic conditions. Even though these indigenous goats are important, there is little available information on the genetic characterization of these breeds in Africa and at the international level. This paper reviews the status of indigenous goats, highlighting their production systems, phenotypic and genetic characteristics, and genetic diversity, and proposes potential ways for sustainable improvement and conservation in East African countries. Most households use traditional production systems with various uncharacterized goat breeds and ecotypes, which are hence named after the tribe or locality in which they are found. Most of these goats are classified as small East African breeds, with significant variability in morphological features. Some of the challenges to goat production in this region are indiscriminate crossbreeding, lack of pedigree records, parasites and disease incidences, low-quality pastures, and low levels of management. There is a need for a collaborative approach amongst the actors in goat breeding value chains as well as integrating modern genomic tools into breeding programs to enhance selection. This will ensure the resilience and sustainability of these unique indigenous goat populations in East Africa.

10.
Genes (Basel) ; 15(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38927666

RESUMEN

Fritillaria cirrhosa and its relatives have been utilized in traditional Chinese medicine for many years and are under priority protection in China. Despite their medicinal and protective value, research on their phylogeny, genetic diversity, and divergence remains limited. Here, we investigate the chloroplast genome variation architecture of 46 samples of F. cirrhosa and its relatives collected from various regions, encompassing the majority of wild populations across diverse geographical areas. The results indicate abundant variations in 46 accessions including 1659 single-nucleotide polymorphisms and 440 indels. Six variable markers (psbJ, ndhD, ycf1, ndhG, trnT-trnL, and rpl32-trnL) were identified. Phylogenetic and network analysis, population structure analysis, and principal component analysis showed that the 46 accessions formed five clades with significant divergence, which were related to their geographical distribution. The regions spanning from the southern Hengduan Mountains to the Qinghai-Tibet Plateau exhibited the highest levels of genetic diversity. F. cirrhosa and its relatives may have suffered a genetic bottleneck and have a relatively low genetic diversity level. Moreover, geographical barriers and discrete patches may have accelerated population divergence. The study offers novel perspectives on the phylogeny, genetic diversity, and population structure of F. cirrhosa and its relatives, information that can inform conservation and utilization strategies in the future.


Asunto(s)
Fritillaria , Genoma del Cloroplasto , Filogenia , Polimorfismo de Nucleótido Simple , Fritillaria/genética , Fritillaria/clasificación , Variación Genética , China , Genética de Población
11.
Vet Parasitol Reg Stud Reports ; 52: 101058, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38880571

RESUMEN

Despite being endemic in Iraq, no reports have been published in the past 10 years to update the molecular epidemiology of the Old World screwworm fly (OWSF), Chrysomya bezziana, in this country. In the present study, 130 sheep from 10 Iraqi governorates were found infected with C. bezziana larvae, whose identities were PCR-confirmed based on the cytochrome b (Cytb) gene, and 23 isolates from various tested governorates were successfully sequenced. Although most isolates (n = 20) belonged to the common haplotype circulating in Iraq, two new haplotypes were detected. Significant changes in OWSF epidemiology in Iraq were also suggested, since infestations were detected, for the first time, in Nineveh governorate. Isolates of the present study were combined to those previously published from Iraq and worldwide, collected after searching the GenBank, and various genetic and population structure analyses were conducted. These isolates displayed a great statistically significant value when tested for the purifying (negative) selection, suggesting the limited occurrence of genetic variations, which was evidenced by the high sequence conservation (C = 0.937) value detected. A few isolates from Africa were revealed during our search, and clustered in a separate lineage other than that of the Asian isolates. The latter displayed different genetic variation patterns when compared. For example, isolates from geographically separate regions, e.g., the Gulf Arab countries and South-Eastern Asia had marked genetic differences. On the other hand, isolates from regions with close geographic proximity (the Gulf Arab countries and Iran) had limited genetic subdivision. This is not the case when comparing isolates from 10 islands in the Indonesian Archipelago. Populations from Sumatra and Sumba were isolated and displayed high genetic variations toward the other populations. On the contrary, populations from Sulawesi, Lombok and Sumbawa displayed limited genetic variations. This is particularly important, since it can help detecting the dynamics of establishing the sterile insect technique over various regions as an effective control strategy against the OWSFs.


Asunto(s)
Citocromos b , Variación Genética , Enfermedades de las Ovejas , Animales , Irak/epidemiología , Ovinos , Enfermedades de las Ovejas/parasitología , Enfermedades de las Ovejas/epidemiología , Citocromos b/genética , Epidemiología Molecular , Larva/genética , Dípteros/genética , Haplotipos , Calliphoridae/genética , Filogenia , Infección por Gusano Barrenador/epidemiología , Infección por Gusano Barrenador/veterinaria , Infección por Gusano Barrenador/parasitología , Miasis/epidemiología , Miasis/parasitología , Miasis/veterinaria
12.
Genome Biol Evol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918882

RESUMEN

The European sprat is a small plankton-feeding clupeid present in the northeastern Atlantic Ocean, the Mediterranean Sea as well as in the brackish Baltic Sea and Black Sea. This species is the target of a major fishery and therefore an accurate characterization of its genetic population structure is crucial to delineate proper stock assessments that aid ensuring the fishery's sustainability. Here we present (i) a draft genome assembly, (ii) pooled whole genome sequencing of 19 population samples covering most of the species' distribution range, and (iii) the design and test of a SNP-chip resource and use this to validate the population structure inferred from pooled sequencing. These approaches revealed, using the populations sampled here, three major groups of European sprat: Oceanic, Coastal, and Brackish with limited differentiation within groups even over wide geographical stretches. Genetic structure is largely driven by six large putative inversions that differentiate Oceanic and Brackish sprats, while Coastal populations display intermediate frequencies of haplotypes at each locus. Interestingly, populations from the Baltic and the Black Seas share similar frequencies of haplotypes at these putative inversions despite their distant geographic location. The closely related clupeids European sprat and Atlantic herring both show genetic adaptation to the brackish Baltic Sea, providing an opportunity to explore the extent of genetic parallelism. This analysis revealed limited parallelism because out of 125 independent loci detected in the Atlantic herring, three showed sharp signals of selection that overlapped between the two species and contained single genes such as PRLRA, which encodes the receptor for prolactin, a freshwater-adapting hormone in euryhaline species, and THRB, a receptor for thyroid hormones, important both for metabolic regulation and the development of red cone photoreceptors.

13.
Front Plant Sci ; 15: 1404071, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887455

RESUMEN

Backgrounds: Prunus mume in the Rosaceae and commonly referred to as mei or Chinese plum is widely used as a traditional ornamental flowering plant and fruit tree in China. Although some population and genetic analyses have been conducted for this species, no extensive comparisons of genetic variation from plastomes have yet been investigated. Methods: We de novo assembled a total of 322 complete P. mume plastomes in this study and did a series of comparative analyses to better resolve pan-plastomic patterns of P. mume. To determine the phylogeny and domestication history of this species, we reconstructed the phylogenetic tree of Prunus genus, and resolved the population structure of P. mume. We also examined the nucleotide variation of P. mume to find potential DNA barcodes. Results: The assembled plastomes exhibited a typical quadripartite structure and ranged from 157,871 bp to 158,213 bp in total size with a GC content ranging from 36.73 to 36.75%. A total of 112 unique genes were identified. Single nucleotide variants (SNVs) were the most common variants found among the plastomes, followed by nucleotide insertions/deletions (InDels), and block substitutions with the intergenic spacer (IGS) regions containing the greatest number of variants. From the pan-plastome data six well-supported genetic clusters were resolved using multiple different population structure analyses. The different cultivars were unevenly distributed among multiple clades. We also reconstructed a phylogeny for multiple species of Prunus to better understand genus level diversity and history from which a complex introgressive relationship between mei and other apricots/plums was resolved. Conclusion: This study constructed the pan-plastome of P. mume, which indicated the domestication of P. mume involved multiple genetic origins and possible matrilineal introgression from other species. The phylogenetic analysis in Prunus and the population structure of P. mume provide an important maternal history for Prunus and the groundwork for future studies on intergenomic sequence transfers, cytonuclear incompatibility, and conservation genetics.

14.
Animals (Basel) ; 14(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891676

RESUMEN

The pig industry is usually considered an intensive livestock industry, mainly supported by hybrid breeding between commercial pig breeds. However, people's pursuit of a more natural environment and higher meat quality has led to an increasing demand for eco-friendly and diverse pig feeding systems. Therefore, the importance of rearing and conserving local pig breeds is increasing. The Livni pig is a local breed with good adaptability to the environmental and fodder conditions in central Russia. In this study, we aimed to analyze the genetic diversity and population structure of Livni pigs using whole-genome single nucleotide polymorphism (SNP) data. We utilized the Porcine GGP HD BeadChip on genotype samples from old (n = 32, 2004) and modern (n = 32, 2019) populations of Livni pigs. For the museum samples of Livni pigs (n = 3), we extracted DNA from their teeth, performed genomic sequencing, and obtained SNP genotypes from the whole-genome sequences. SNP genotypes of Landrace (n = 32) and Large White (n = 32) pigs were included for comparative analysis. We observed that the allelic richness of Livni pigs was higher than those of Landrace and Large White pigs (AR = 1.775-1.798 vs. 1.703 and 1.668, respectively). The effective population size estimates (NE5 = 108 for Livni pigs, NE5 = 59 for Landrace and Large White pigs) confirmed their genetic diversity tendency. This was further supported by the length and number of runs of homozygosity, as well as the genomic inbreeding coefficient (almost twofold lower in Livni pigs compared to Landrace and Large White pigs). These findings suggest that the Livni pig population exhibits higher genetic diversity and experiences lower selection pressure compared to commercial pig populations. Furthermore, both principal component and network tree analyses demonstrated a clear differentiation between Livni pigs and transboundary commercial pigs. The TreeMix results indicated gene flow from Landrace ancestors to Livni pigs (2019) and from Large White ancestors to Livni pigs (2004), which was consistent with their respective historical breeding backgrounds. The comparative analysis of museum, old, and modern Livni pigs indicated that the modern Livni pig populations have preserved their historical genomic components, suggesting their potential suitability for future design selection programs.

15.
J Dairy Sci ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908686

RESUMEN

While dairy goat production, characterized by traditional production on small farms, is an important source of income in the Czech Republic and Slovakia, locally adapted breeds have not been fully consolidated over the last 100 years due to large fluctuations in population size and inconsistent breeding programs that allowed for different crossbreeding strategies. Our main objective in this study was therefore to assess the conservation status of 4 Czech (Alpine Goat, White Shorthair, Brown Shorthair and Czech Landrace) and one Slovak (Slovak White Shorthair) local goat breeds, to analyze their population structure and admixture, and to estimate their relatedness to several neighboring breeds. Our analyses included 142 goats belonging to 5 local breeds genotyped with the Illumina 50K BeadChip and 618 previously genotyped animals representing 15 goat breeds from Austria and Switzerland (all analyses based on 46,862 autosomal SNPs and 760 animals). In general, the conservation status of the Czech and Slovak local goat breeds was satisfactory, with the exception of the Brown Shorthair goat, as the analyzed parameters (heterozygosity, haplotype richness, ROH-based inbreeding and effective population size) were mostly above the median of 20 breeds. However, for all 5 Czech and Slovakian breeds, an examination of historical effective population size indicated a substantial decline about 8 to 22 generations ago. In addition, our study revealed that the Czech and Slovakian breeds are not fully consolidated; for instance, White Shorthair and Brown Shorthair were not clearly distinguishable. Considerable admixture, especially in Czech Landrace (effective number of parental clusters equal to 4.2), and low but numerous migration rates from other Austrian and Swiss breeds were found. These results provide valuable insights for future breeding programs and genetic diversity management of local Czech and Slovak goat breeds.

16.
Infect Dis Poverty ; 13(1): 43, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863070

RESUMEN

BACKGROUND: The strong invasiveness and rapid expansion of dengue virus (DENV) pose a great challenge to global public health. However, dengue epidemic patterns and mechanisms at a genetic scale, particularly in term of cross-border transmissions, remain poorly understood. Importation is considered as the primary driver of dengue outbreaks in China, and since 1990 a frequent occurrence of large outbreaks has been triggered by the imported cases and subsequently spread to the western and northern parts of China. Therefore, this study aims to systematically reveal the invasion and diffusion patterns of DENV-1 in Guangdong, China from 1990 to 2019. METHODS: These analyses were performed on 179 newly assembled genomes from indigenous dengue cases in Guangdong, China and 5152 E gene complete sequences recorded in Chinese mainland. The genetic population structure and epidemic patterns of DENV-1 circulating in Chinese mainland were characterized by phylogenetics, phylogeography, phylodynamics based on DENV-1 E-gene-based globally unified genotyping framework. RESULTS: Multiple serotypes of DENV were co-circulating in Chinese mainland, particularly in Guangdong and Yunnan provinces. A total of 189 transmission clusters in 38 clades belonging to 22 subgenotypes of genotype I, IV and V of DENV-1 were identified, with 7 Clades of Concern (COCs) responsible for the large outbreaks since 1990. The epidemic periodicity was inferred from the data to be approximately 3 years. Dengue transmission events mainly occurred from Great Mekong Subregion-China (GMS-China), Southeast Asia (SEA), South Asia Subcontinent (SASC), and Oceania (OCE) to coastal and land border cities respectively in southeastern and southwestern China. Specially, Guangzhou was found to be the most dominant receipting hub, where DENV-1 diffused to other cities within the province and even other parts of the country. Genome phylogeny combined with epidemiological investigation demonstrated a clear local consecutive transmission process of a 5C1 transmission cluster (5C1-CN4) of DENV-1 in Guangzhou from 2013 to 2015, while the two provinces of Guangdong and Yunnan played key roles in ongoing transition of dengue epidemic patterns. In contextualizing within Invasion Biology theories, we have proposed a derived three-stage model encompassing the stages of invasion, colonization, and dissemination, which is supposed to enhance our understanding of dengue spreading patterns. CONCLUSIONS: This study demonstrates the invasion and diffusion process of DENV-1 in Chinese mainland within a global genotyping framework, characterizing the genetic diversities of viral populations, multiple sources of importation, and periodic dynamics of the epidemic. These findings highlight the potential ongoing transition trends from epidemic to endemic status offering a valuable insight into early warning, prevention and control of rapid spreading of dengue both in China and worldwide.


Asunto(s)
Virus del Dengue , Dengue , Genotipo , Filogenia , Serogrupo , Virus del Dengue/genética , Virus del Dengue/clasificación , Virus del Dengue/fisiología , China/epidemiología , Dengue/epidemiología , Dengue/virología , Dengue/transmisión , Humanos , Brotes de Enfermedades , Filogeografía , Genoma Viral
17.
BMC Genomics ; 25(1): 559, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840048

RESUMEN

BACKGROUND: The crossbreeding of specialized beef cattle breeds with Chinese indigenous cattle is a common method of genetic improvement. Xia'nan cattle, a crossbreed of Charolais and Nanyang cattle, is China's first specialized beef cattle breed with independent intellectual property rights. After more than two decades of selective breeding, Xia'nan cattle exhibit a robust physique, good environmental adaptability, good tolerance to coarse feed, and high meat production rates. This study analyzed the population genetic structure, genetic diversity, and genomic variations of Xia'nan cattle using whole-genome sequencing data from 30 Xia'nan cattle and 178 published cattle genomic data. RESULT: The ancestry estimating composition analysis showed that the ancestry proportions for Xia'nan cattle were mainly Charolais with a small amount of Nanyang cattle. Through the genetic diversity studies (nucleotide diversity and linkage disequilibrium decay), we found that the genomic diversity of Xia'nan cattle is higher than that of specialized beef cattle breeds in Europe but lower than that of Chinese native cattle. Then, we used four methods to detect genome candidate regions influencing the excellent traits of Xia'nan cattle. Among the detected results, 42 genes (θπ and CLR) and 131 genes (FST and XP-EHH) were detected by two different detection strategies. In addition, we found a region in BTA8 with strong selection signals. Finally, we conducted functional annotation on the detected genes and found that these genes may influence body development (NR6A1), meat quality traits (MCCC1), growth traits (WSCD1, TMEM68, MFN1, NCKAP5), and immunity (IL11RA, CNTFR, CCL27, SLAMF1, SLAMF7, NAA35, and GOLM1). CONCLUSION: We elucidated the genomic features and population structure of Xia'nan cattle and detected some selection signals in genomic regions potentially associated with crucial economic traits in Xia'nan cattle. This research provided a basis for further breeding improvements in Xia'nan cattle and served as a reference for genetic enhancements in other crossbreed cattle.


Asunto(s)
Variación Genética , Selección Genética , Secuenciación Completa del Genoma , Bovinos/genética , Animales , Secuenciación Completa del Genoma/métodos , Desequilibrio de Ligamiento , Genómica/métodos , Polimorfismo de Nucleótido Simple , Genoma , Genética de Población , Cruzamiento , Sitios de Carácter Cuantitativo , Fenotipo
18.
Heliyon ; 10(11): e31650, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845887

RESUMEN

The genus Allium is the most diverse, with cultivated crops such as onion, garlic, bunching onion, chives, leeks, and shallots, and several wild and semi-domesticated Allium species utilized as minor vegetables. These minor species are the genetic resources for various abiotic and biotic stresses. To employ underutilized species in breeding programmes, the magnitude of the genetic background of cultivated and semi-domesticated alliums, the phylogeny and diversity of the population must be known. In this study, nineteen SSR markers were employed to study the divergence and population structure of 95 Allium accessions which includes species, varieties, and interspecific hybrids, yielded 92 polymorphic loci, averaging 4.84 loci per SSR. PIC values range between 0.24 (ACM 018) and 0.98 (ACM 099). The cross transferability of ACM markers among Allium species ranges from 1.33 to 10.53 per cent, which is relatively low. The genotypes investigated were clustered into four primary clusters A, B, C, and D with 13 sub clusters I-XIII, conferring to the clustering results. The population structure investigations also found that K is a peak at value 4, implying that the population is predominantly segregated into four distinct groups, which associates the clustering pattern. The employed SSR markers adeptly unravel the complexities of diversity within alliums, holding promise for refining future breeding programs targeting elite progenies.

19.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38832496

RESUMEN

Subei yak is an essential local yak in the Gansu Province, which genetic resource has recently been discovered. It is a meat-milk dual-purpose variety with high fecundity and relatively stable population genetic structure. However, its population genetic structure and genetic diversity are yet to be reported. Therefore, this study aimed to identify molecular markers of Subei yak genome by whole-genome resequencing, and to analyze the population structure and genetic diversity of Subei yak. This study screened 12,079,496 single nucleotide polymorphism (SNP) molecular markers in the 20 Subei yaks genome using whole-genome resequencing technology. Of these SNPs, 32.09% were located in the intronic region of the genome. Principal component analysis, phylogenetic analysis, and population structure analysis revealed that the Subei yak belonged to an independent group in the domestic yak population. A selective clearance analysis was carried out on Subei yak and other domestic yaks, and the genes under positive selection were annotated. The functional enrichment analysis showed that Subei yak possessed prominent selection characteristics in terms of external environment perception, hypoxia adaptation, and muscle development. Furthermore, Subei yak showed excellent muscle fat deposition and meat quality traits. Thus, this study will serve as a reference for discovering population structure, genetic evolution, and other unique traits of Subei yak and for expanding the genetic variation catalog of yaks.


Subei yak is an important local yak genetic resource newly discovered in Gansu Province. In this study, the molecular markers of Subei yak genome were identified by whole-genome resequencing. Principal component analysis, phylogenetic analysis, and population structure analysis showed that Subei yak belonged to an independent group in the domestic yak population. In addition, functional enrichment analysis showed that Subei yaks had prominent selection characteristics in external environment perception, hypoxia adaptation, and muscle development.


Asunto(s)
Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Animales , Bovinos/genética , Secuenciación Completa del Genoma/veterinaria , Genoma , Filogenia , Variación Genética , Carne/análisis
20.
BMC Genom Data ; 25(1): 60, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877416

RESUMEN

BACKGROUND: Forest geneticists typically use provenances to account for population differences in their improvement schemes; however, the historical records of the imported materials might not be very precise or well-aligned with the genetic clusters derived from advanced molecular techniques. The main objective of this study was to assess the impact of marker-based population structure on genetic parameter estimates related to growth and wood properties and their trade-offs in Norway spruce, by either incorporating it as a fixed effect (model-A) or excluding it entirely from the analysis (model-B). RESULTS: Our results indicate that models incorporating population structure significantly reduce estimates of additive genetic variance, resulting in substantial reduction of narrow-sense heritability. However, these models considerably improve prediction accuracies. This was particularly significant for growth and solid-wood properties, which showed to have the highest population genetic differentiation (QST) among the studied traits. Additionally, although the pattern of correlations remained similar across the models, their magnitude was slightly lower for models that included population structure as a fixed effect. This suggests that selection, consistently performed within populations, might be less affected by unfavourable genetic correlations compared to mass selection conducted without pedigree restrictions. CONCLUSION: We conclude that the results of models properly accounting for population structure are more accurate and less biased compared to those neglecting this effect. This might have practical implications for breeders and forest managers where, decisions based on imprecise selections can pose a high risk to economic efficiency.


Asunto(s)
Picea , Madera , Picea/genética , Picea/crecimiento & desarrollo , Madera/genética , Marcadores Genéticos/genética , Modelos Genéticos , Genética de Población/métodos , Variación Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...