RESUMEN
Early life is a challenging phase because of the high rates of morphophysiological development and growth. Changes in ambient temperature, which directly affect energy metabolism and digestive functions in ectotherms, may be of great impact during this phase. We addressed this issue in red-footed tortoise (Chelonoidis carbonaria) hatchlings kept in captivity. To this end, we investigated the effect of temperature (28 °C and 18 °C) on mass-specific gross energy intake (GEIm), daily body mass gain (MG), daily intake of gross energy (GEI), digestible energy (DEI), resting metabolic rate (RMR), and specific dynamic action (SDA) components during different seasons in the first 13 months after hatching. Greater GEIm and MG were observed in spring (381.7 ± 84.9 J.g-0.86.day-1 and 0.9 ± 0.4 g.day-1) and summer (356.9 ± 58.9 J.g-0.86.day-1 and 1.0 ± 0.4 g.day-1). The highest and lowest RMRs at 28 °C were observed in spring (36.4 ± 5.1 kJ.kg-1.day-1) and winter (22.4 ± 6.2 kJ.kg-1.day-1), respectively. Regardless season, hatchlings showed greater GEI and DEI, O2 consumption, CO2 production, RMR, maximum metabolic rate after feeding (FMRMAX), and heat increment (FMRMAX- RMR) at 28 °C compared to 18 °C. In addition, the significant body mass influence showed allometric exponents of 0.62 at 28 °C and 0.92 at 18 °C for RMR. Our results indicate an important effect of environmental temperature on energy requirements and utilization in C. carbonaria hatchlings, which is seasonally influenced even in this early phase of life.
Asunto(s)
Tortugas , Animales , Temperatura , Metabolismo Energético/fisiología , Metabolismo Basal , Ingestión de EnergíaRESUMEN
BACKGROUND: Metabolic flexibility is the responsiveness to heterogeneous physiological conditions, such as food ingestion. A key unresolved question is how inflammation affects metabolic flexibility. OBJECTIVES: Our study objective was to compare metabolic flexibility, specifically the metabolomic response to a standardized meal, by fasting inflammation status. METHODS: Participants in Guatemala (n = 302, median age 44 y, 43.7% men) received a standardized, mixed-macronutrient liquid meal. Plasma samples (fasting, 2 h postmeal) were assayed by dual-column LC [reverse phase (C18) and hydrophilic interaction LC (HILIC)] with ultra-high-resolution MS, for concentrations of 6 inflammation biomarkers: high-sensitivity C-reactive protein (hsCRP), leptin, resistin, IL-10, adiponectin, and soluble TNF receptor II (TNFsR). We summed the individual inflammation biomarker z-scores, after reverse-coding of anti-inflammation biomarkers. We identified features with peak areas that differed between fasting and postmeal (false discovery rate-adjusted q <0.05) and compared median log2 postprandial/fasting peak area ratios by inflammation indicators. RESULTS: We found 1397 C18 and 974 HILIC features with significant postprandial/fasting feature ratios (q <0.05). Overall inflammation z-score was directly associated with the postprandial/fasting feature ratios of arachidic acid, and inversely associated with the feature ratio of lysophosphatidic acid (LPA), adjusting for age and sex (all P < 0.05). The postprandial/fasting ratio of arachidic acid was negatively correlated with resistin, IL-10, adiponectin, and TNFsR concentrations (all P < 0.05). Feature ratios of several fatty acids-myristic acid [m/z 227.2018, retention time (RT) 229], heptadecanoic acid (m/z 269.2491, RT 276), linoleic acid (m/z 280.2358, RT 236)-were negatively correlated with fasting plasma concentrations of leptin (nanograms per milliliter) and adiponectin (micrograms per milliliter), respectively (all P < 0.05). The postprandial/fasting ratio of LPA was positively correlated with IL-10 and adiponectin (both P < 0.05); and the ratio of phosphatidylinositol was positively correlated with hsCRP (P < 0.05). CONCLUSIONS: Postprandial responses of fatty acids and glycerophospholipids are associated with fasting inflammation status in adults in Guatemala.