Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.607
Filtrar
1.
Ecol Evol ; 14(8): e70098, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100204

RESUMEN

The 'landscape of fear' concept offers valuable insights into wildlife behaviour, yet its practical integration into habitat management for conservation remains underexplored. In this study, conducted in the subtropical monsoon grasslands of Bardia National Park, Nepal, we aimed to bridge this gap through a multi-year, landscape-scale experimental investigation in Bardia National Park, Nepal. The park has the highest density of tigers (with an estimated density of ~7 individuals per 100 km2) in Nepal, allowing us to understand the effect of habitat management on predation risk and resource availability especially for three cervid species: chital (Axis axis), swamp deer (Rucervus duvaucelii) and hog deer (Axis porcinus). We used plots with varying mowing frequency (0-4 times per year), size (ranging from small: 49 m2 to large: 3600 m2) and artificial fertilisation type (none, phosphorus, nitrogen) to assess the trade-offs between probable predation risk and resources for these cervid species, which constitute primary prey for tigers in Nepal. Our results showed distinct responses of these deer to perceived predation risk within grassland habitats. Notably, these deer exhibited heightened use of larger plots, indicative of a perceived sense of safety, as evidenced by the higher occurrence of pellet groups in the larger plots (mean = 0.1 pellet groups m-2 in 3600 m2 plots vs. 0.07 in 400 m2 and 0.05 in 49 m2 plots). Furthermore, the level of use by the deer was significantly higher in larger plots that received mowing and fertilisation treatments compared to smaller plots subjected to similar treatments. Of particular interest is the observation that chital and swamp deer exhibited greater utilisation of the centre (core) areas within the larger plots (mean = 0.21 pellet groups m-2 at the centre vs. 0.13 at the edge) despite the edge (periphery) also provided attractive resources to these deer. In contrast, hog deer did not display any discernible reaction to the experimental treatments, suggesting potential species-specific variations in response to perceived predation risk arising from management interventions. Our findings emphasise the importance of a sense of security as a primary determinant of habitat selection for medium-sized deer within managed grassland environments. These insights carry practical implications for park managers, providing a nuanced understanding of integrating the 'landscape of fear' into habitat management strategies. This study emphasises that the 'landscape of fear' concept can and should be integrated into habitat management to maintain delicate predator-prey dynamics within ecosystems.

2.
Behav Processes ; 221: 105083, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094759

RESUMEN

Predator-prey interactions are the interspecific relationships of greatest interest in ecology. Spiders are among the most diverse and ubiquitous terrestrial predators on the planet. Their large dietary breadth is often linked with the development of specific predatory behaviors and morphological adaptations. However, studies on the predatory behavior of spiders have mostly focused on specialist species, leaving behind the ethological variability occurring in generalist species that allow them to respond to the different prey types. For three species of generalist wandering spiders, we searched images of predation events on the Internet to determine the most common prey. Subsequently, the focal predator species were then used in behavioral experiments. Using high-speed videos, handling patterns for different prey types (spider and cricket) were analyzed. Our results show a notable difference in handling patterns between prey types. We found that the spider prey was often rotated around the axis allowing the predator to bite in the ventral region of the prey and thus avoid a counterattack. Contrary, crickets were arbitrarily rotated. Our work may be an indication that these three species of generalist spiders have a preference for manipulating prey differently with a preference to rotate spiders, allowing them to exploit prey with various defensive mechanisms.

3.
Proc Natl Acad Sci U S A ; 121(35): e2407876121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39159378

RESUMEN

Coevolution between predator and prey plays a central role in shaping the pelagic realm and may have significant implications for marine ecosystems and nutrient cycling dynamics. The siliceous diatom frustule is often assumed to have coevolved with the silica-lined teeth of copepods, but empirical evidence of how this relationship drives natural selection and evolution is still lacking. Here, we show that feeding on diatoms causes significant wear and tear on copepod teeth and that this leads to copepods becoming selective feeders. Teeth from copepods feeding on thick-shelled diatoms were more likely to be broken or cracked than those feeding on a dinoflagellate. When fed a large diatom, all analyzed teeth had visible wear. Our results underscore the importance of the predator-prey arms race as a driving force in planktonic evolution and diversity.


Asunto(s)
Evolución Biológica , Copépodos , Diatomeas , Plancton , Animales , Copépodos/fisiología , Plancton/fisiología , Conducta Predatoria/fisiología , Ecosistema , Dióxido de Silicio , Diente
4.
Glob Chang Biol ; 30(8): e17478, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39162001

RESUMEN

Changes in phenology are occurring from global climate change, yet the impacts of other types of global change on the phenology of animals remain less appreciated. Understanding the potential for synergistic effects of different types of global change on phenology is needed, because changing climate regimes can have cascading effects, particularly on invasive species that vary in their thermal tolerances. Using 25 years of data from 5963 nests and 4675 marked individuals across the entire US breeding range of an endangered predator, the snail kite (Rostrhamus sociabilis plumbeus), we isolated the effects of an invasion of novel prey and warming temperatures on breeding phenology and its demographic consequences. Over this time period, breeding season length doubled, increasing by approximately 14 weeks. Both temperature and the establishment of invasive prey interacted to explain the timing of nest initiation. Temperature and invasive prey played distinct roles: earlier nest initiation occurred with increasing temperatures, whereas late nesting increased with invasion. Ultimately, both nest survival and juvenile survival declined later in the year, such that effects from invasive prey, but not warming temperatures, have the apparent potential for mistiming in breeding phenology by some individuals. Nonetheless, relatively few nesting events occurred during late fall when nest survival was very low, and seasonal declines in nest survival were weaker and renesting was more frequent in invaded wetlands, such that total reproductive output increased with invasion. Variation in demographic effects illustrate that considering only particular components of demography (e.g., nest survival rates) may be inadequate to infer the overall consequences of changes in phenology, particularly the potential for mistiming of phenological events. These results emphasize that species invasions may profoundly alter phenology of native species, such effects are distinct from climate effects, and both interact to drive population change.


Asunto(s)
Cambio Climático , Especies en Peligro de Extinción , Falconiformes , Especies Introducidas , Estaciones del Año , Animales , Falconiformes/fisiología , Reproducción , Temperatura , Conducta Predatoria , Caracoles/fisiología , Comportamiento de Nidificación , Femenino , Estados Unidos
5.
Mar Environ Res ; 201: 106675, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39146804

RESUMEN

Predator-prey interactions are important in shaping ecosystem structure. Consequently, impacts of accelerating global warming on predators will have notable implications. Effects are likely to be particularly marked for tropical organisms which are anticipated to be sensitive to further thermal stress. Here, we investigated effects of future ocean warming on the predatory dogwhelk Reishia clavigera and its predation of Saccostrea cucullata. Mortality of the predators rapidly increased under the extreme elevated temperature, while those exposed to moderate elevated temperature displayed similar mortality as the ambient. Predators that survived moderate temperature increases altered their oxygen consumption patterns, increased average feeding rates, and functional responses, although condition index and energy reserves were unchanged. Overall, we show extreme ocean warming scenarios can remove predators and their consumption of prey from an ecosystem, whereas moderate warming can intensify predator-prey interactions. Such temperature-dependent alterations to predator-prey interactions would lead to fundamental changes of ecosystem structure as the ocean warms.

6.
R Soc Open Sci ; 11(6): 231735, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39100152

RESUMEN

Aposematic animals rely on diverse secondary metabolites for defence. Various hypotheses, such as competition, life history and multifunctionality, have been posited to explain defence variability and diversity. We investigate the compound selectivity hypothesis using large milkweed bugs, Oncopeltus fasciatus, to determine if distinct cardenolides vary in toxicity to different predators. We quantify cardenolides in the bug's defensive secretions and body tissues and test the individual compounds against predator target sites, the Na+/K+-ATPases, that are predicted to differ in sensitivity. Frugoside, gofruside, glucopyranosyl frugoside and glucopyranosyl gofruside were the dominant cardenolides in the body tissues of the insects, whereas the two monoglycosidic cardenolides-frugoside and gofruside-were the most abundant in the defensive fluid. These monoglycosidic cardenolides were highly toxic (IC50 < 1 µM) to an invertebrate and a sensitive vertebrate enzyme, in comparison to the glucosylated compounds. Gofruside was the weakest inhibitor for a putatively resistant vertebrate predator. Glucopyranosyl calotropin, found in only 60% of bugs, was also an effective inhibitor of sensitive vertebrate enzymes. Our results suggest that the compounds sequestered by O. fasciatus probably provide consistency in protection against a range of predators and underscore the need to consider predator communities in prey defence evolution.

7.
R Soc Open Sci ; 11(6): 240308, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39100169

RESUMEN

Substantial research exists on predation and its ecology. Most research has focused on durophagous fishes, brachyuran crabs, and lobsters. Data are lacking, however, on soft-bodied predators like anemones, and their contribution to overall levels of predation remains largely unevaluated. Here, we compared predation rates of the durophagous predator, the crab C. maenas and the soft-bodied predator, the anemone Actinia equina on 15 intertidal shores around Anglesey, north Wales, UK. We employed a novel approach to assess predation based on measuring faecal output from recently collected individuals and converting it to food consumed using absorption efficiencies (AEs) measured using potential prey species inhabiting the same shores. Anemone mean abundance was 8.21 (± 0.27, s.e.) individuals.m-2, whereas for C. maenas it was 0.23 (± 0.02, s.e.) individuals.m-2. AEs when fed mussel tissue, a polychaete worm, or a shrimp were 92.8-94.0% in C. maenas and 40.5-95.8% in A. equina. This difference in values reflected the different feeding modes of the two predators. Unexpectedly, A. equina consumed 3.5-7 times more prey than C. maenas. The consumption of larger amounts of prey by an anemone than the dominant durophagous predator has important consequences for calculating energy flows in food webs, understanding predation controls in assemblages, and potentially for wider predation trends.

8.
R Soc Open Sci ; 11(5): 231511, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39100626

RESUMEN

It is imperative for individuals to exhibit flexible behaviour according to ecological context, such as available resources or predation threat. Manipulative studies on responses to threat often focus on behaviour in the presence of a single indicator for the potential of predation, whereas in the wild perception of threat will probably be more nuanced. Here, we examine the collective behaviour of eastern mosquitofish (Gambusia holbrooki) subject to five differing threat scenarios relating to the presence and hunger state of a jade perch (Scortum barcoo). Across threat scenarios, groups exhibit unique behavioural profiles that differ in the durations that particular collective states are maintained, the probability of transitions between states, the size and duration of persistence of spatially defined subgroups, and the patterns of collective order of these subgroups. Under the greatest level of threat, subgroups of consistent membership persist for longer durations. Group-level behaviours, and their differences, are interconnected with differences in estimates of the underlying rules of interaction thought to govern collective motion. The responses of the group are shown to be specific to the details of a potential threat, rather than a binary response to the presence or absence of some form of threat.

9.
BMC Biol ; 22(1): 161, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075553

RESUMEN

BACKGROUND: Snake venoms can exhibit remarkable inter- and intraspecific variation. While diverse ecological and environmental factors are theorised to explain this variation, only a handful of studies have attempted to unravel their precise roles. This knowledge gap not only impedes our understanding of venom evolution but may also have dire consequences on snakebite treatment. To address this shortcoming, we investigated the evolutionary ecology of venoms of Russell's viper (Daboia russelii) and spectacled cobra (Naja naja), India's two clinically most important snakes responsible for an alarming number of human deaths and disabilities. METHODOLOGY: Several individuals (n = 226) of D. russelii and N. naja belonging to multiple clutches (n = 9) and their mothers were maintained in captivity to source ontogenetic stage-specific venoms. Using various in vitro and in vivo assays, we assessed the significance of prey, ontogeny and sex in driving venom composition, function, and potency. RESULTS: Considerable ontogenetic shifts in venom profiles were observed in D. russelii, with the venoms of newborns being many times as potent as juveniles and adults against mammalian (2.3-2.5 ×) and reptilian (2-10 ×) prey. This is the first documentation of the ontogenetic shift in viperine snakes. In stark contrast, N. naja, which shares a biogeographic distribution similar to D. russelii, deployed identical biochemical cocktails across development. Furthermore, the binding kinetics of cobra venom toxins against synthetic target receptors from various prey and predators shed light on the evolutionary arms race. CONCLUSIONS: Our findings, therefore, provide fascinating insights into the roles of ecology and life history traits in shaping snake venoms.


Asunto(s)
Evolución Biológica , Animales , India , Femenino , Masculino , Daboia , Naja naja , Mordeduras de Serpientes , Venenos Elapídicos/química , Venenos de Víboras/química
10.
Evol Appl ; 17(7): e13750, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39040812

RESUMEN

Species distribution models (SDMs) are often built upon the "niche conservatism" assumption, such that they ignore the possibility of "evolutionary rescue" and may underestimate species' future range limits under climate change. We select aphids and ladybirds as model species and develop an eco-evolutionary model to explore evolutionary rescue in a predator-prey system under climate change. We model the adaptive change of species' thermal performances, accounting for biotic interactions. Our study suggests that, without considering evolutionary adaptation, the warming climate will result in a reduction in aphid populations and the extinction of ladybirds in large parts of the United States. However, when incorporating evolutionary adaptation into the model, aphids can adapt to climate change, whereas ladybirds demonstrate geographic variation in their evolutionary rescue potential. Specifically, ladybirds in southern regions are more likely to be rescued than those in the north. In certain northern regions, ladybirds do not avoid extinction due to severe warming trends and seasonality of the climate. While higher warming trends do prompt stronger evolutionary changes in phenotype, they also lead to reduced aphid population abundance such that ecology constrains ladybird population growth. Higher seasonality induces an ecological effect by limiting the length of reproductive season, thereby reducing the capacity for evolutionary rescue. Together, these findings reveal the complex interplay between ecological and evolutionary dynamics in the context of evolutionary adaptation to climate change.

11.
Ecol Evol ; 14(7): e70062, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39041021

RESUMEN

Lions and their prey are threatened across most of their range and especially in West and Central Africa. Prey availability influences carnivore densities, social structure, prey preference and home ranges, and changes in prey are important for carnivore management. Scarcity of large prey in many West and Central African ecosystems has been described as leading to a preference for hunting smaller prey in smaller groups. Here we investigated the changes in prey selection of lions in Zakouma National Park (Chad), a protected area in Central Africa that showed significant recovery in wildlife numbers, by collecting feeding data through observations of lions on kills during monitoring drives and GPS cluster points of lion collars. Compared to similar data collected prior to this significant recovery, lions preferred larger prey and fed in larger groups. Our results show that diet shifts due to prey losses can be reversed with restoration of prey populations thanks to improved management, and we speculate that this may be true across large carnivores and across regions.

12.
J Math Biol ; 89(3): 28, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009712

RESUMEN

This paper aims to establish the existence of traveling wave solutions connecting different equilibria for a spatial eco-epidemiological predator-prey system in advective environments. After applying the traveling wave coordinates, these solutions correspond to heteroclinic orbits in phase space. We investigate the existence of the traveling wave solution connecting from a boundary equilibrium to a co-existence equilibrium by using a shooting method. Different from the techniques introduced by Huang, we directly prove the convergence of the solution to a co-existence equilibrium by constructing a special bounded set. Furthermore, the Lyapunov-type function we constructed does not need the condition of bounded below. Our approach provides a different way to study the existence of traveling wave solutions about the co-existence equilibrium. The existence of traveling wave solutions between co-existence equilibria are proved by utilizing the qualitative theory and the geometric singular perturbation theory. Some other open questions of interest are also discussed in the paper.


Asunto(s)
Ecosistema , Cadena Alimentaria , Conceptos Matemáticos , Modelos Biológicos , Dinámica Poblacional , Conducta Predatoria , Animales , Dinámica Poblacional/estadística & datos numéricos , Simulación por Computador
13.
Oecologia ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009889

RESUMEN

Intense disturbances such as hurricanes may drastically affect ecosystems, producing both acute and long-term changes along coastlines. By disrupting human activities (e.g., fishing), hurricanes can provide an opportunity to quantify the effects of these activities on coastal ecosystems. We performed predator-exclusion experiments on oyster reefs in 2016, one-year before a category-4 hurricane ("Harvey") and again in 2018 one-year post-hurricane where the storm made landfall. Additionally, we examined 8 years (2011-2018) of fisheries-independent data to gauge how fishing pressure and fish populations were affected by the storm in three locations that varied in storm impacts. In the month following Hurricane Harvey, fishing effort dropped by 90% in the area with wind and flooding damage, and predatory fish species commonly targeted by anglers were 300% more abundant than the year prior to the hurricane. The locations without damage to fishing infrastructure did not experience declines in fishing pressure or changes in fish abundance, regardless of flooding disturbance. Reef fish and invertebrate communities directly affected by the storm were significantly different after the hurricane and were ~ 30% more diverse. With low fishing pressure, sportfish CPUE were 1.7-6.9 × higher immediately after the hurricane. Intermediate consumers, such as crabs that prey on oysters, were 45% less abundant and 10% smaller. These results indicate that hurricanes can temporarily disrupt human-ecosystem linkages and reconstitute top-down control by sportfish in estuarine food webs. Disturbance events that interrupt or weaken those interactions may yield indirect ecological benefits and provide insights into the effects of human activities on food webs.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39041313

RESUMEN

The aim of this study was to develop a feeding protocol for the larviculture of Apistogramma cacatuoides, using the histological approach to larval nutrition conditions. For this, three experiments were carried out. Experiment 1 was carried out in a randomized design to determine the optimal amount of Artemia nauplii (AN) per larva, and three treatments were evaluated: P1-feeding with 25 A. nauplii per larva (AN/L) during the first 5 days, followed by 50 AN/L from the 6th to the 10th day and 100 AN/L from the 11th to the 20th day; P2 and P3-37 and 50 AN/L during the first 5 days, 75 and 100 AN/L from the 6th to the 10th day and 150 and 200 AN/L from the 11th to the 20th day. Experiment 2 was carried out in a randomized design to determine the daily frequency of feeding and evaluated four feeding frequencies: F1-feeding only once a day (09:00); (F2)-feeding twice a day (09:00 and 17:00); F3-feeding three times a day (09:00, 11:30 and 17:00); and F4-feeding four times a day (09:00, 11: 30, 14:00 and 17:00). Experiment 3 lasted 40 days and was conducted in a randomized design to evaluate three periods for the beginning of the feeding transition: WE10:AN for 10 days, followed by 3 days of co-feeding and commercial feed until the end of the experimental period; WE15:AN for 15 days, followed by 3 days of co-feeding and commercial feed; WE20:AN for 20 days, followed by 3 days of co-feeding and commercial feed. The results of this study showed that, for the best development of the larvae, they should receive the feeding protocol 50-100-200 AN/L (P3) until the 20th day of exogenous feeding. From the 21st day, the transition to inert food should begin with 3 days of co-feeding, and feeding during larviculture should be carried out at a frequency of twice a day; this protocol provided a good nutritional status for the larvae, as shown by the histological approach.

15.
Ecol Evol ; 14(7): e70024, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39026960

RESUMEN

Research on predator-prey interactions between sharks and cetaceans remain limited. Here, we report on a video of a shortfin mako shark circling a finless porpoise with a damaged caudal fin in the Seto Inland Sea, Japan. The finless porpoise was neither emaciated nor inactive, but unable to swim effectively due to the complete lack of a caudal fin. Some circumstantial evidence, including a bite mark on the porpoise's head, strongly suggests that the mako shark attacked it. Furthermore, the possible time difference between the two injuries the porpoise sustained may reflect the shark's hunting tactics. While mako sharks primarily feed on small fish and cephalopods, this observation suggests they also may prey on live cetaceans more often than previously thought.

16.
Elife ; 122024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046781

RESUMEN

Predator-prey arms races have led to the evolution of finely tuned disguise strategies. While the theoretical benefits of predator camouflage are well established, no study has yet been able to quantify its consequences for hunting success in natural conditions. We used high-resolution movement data to quantify how barn owls (Tyto alba) conceal their approach when using a sit-and-wait strategy. We hypothesized that hunting barn owls would modulate their landing force, potentially reducing noise levels in the vicinity of prey. Analysing 87,957 landings by 163 individuals equipped with GPS tags and accelerometers, we show that barn owls reduce their landing force as they approach their prey, and that landing force predicts the success of the following hunting attempt. Landing force also varied with the substrate, being lowest on man-made poles in field boundaries. The physical environment, therefore, affects the capacity for sound camouflage, providing an unexpected link between predator-prey interactions and land use. Finally, hunting strike forces in barn owls were the highest recorded in any bird, relative to body mass, highlighting the range of selective pressures that act on landings and the capacity of these predators to modulate their landing force. Overall, our results provide the first measurements of landing force in a wild setting, revealing a new form of motion-induced sound camouflage and its link to hunting success.


Asunto(s)
Conducta Predatoria , Estrigiformes , Animales , Estrigiformes/fisiología , Conducta Predatoria/fisiología , Sonido , Movimiento (Física)
17.
Ecol Evol ; 14(7): e70081, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39050653

RESUMEN

Movement is a key behaviour to better understand how individuals respond to their environment. Movement behaviours are affected by both extrinsic factors that individuals face, such as weather conditions, and intrinsic factors, such as sex and experience. Because of the energy costs it entails, movement behaviours can have direct consequences on an individual's demographic parameters-and ultimately on population dynamics. However, the relationship between extrinsic factors, intrinsic factors, daily movement behaviour and demographic parameters such as breeding performance is poorly known, in particular for central place forager territorial species. We investigated here the link between movement behaviours and breeding performance of the French population of Bonelli's eagle (Aquila fasciata), a territorial and sedentary long-lived raptor, and how this link may depend on extrinsic and intrinsic factors. By using data from annual monitoring of breeding performance for the population and GPS tracking of 48 individuals (26 males and 22 females), we found that the breeding performance of this population was mainly driven by whether a new individual was recruited into the territory, and only slightly by weather conditions. Movement behaviours (proportion of time in flight, range of movement and straightness of trajectories) showed large between-individual variation. Those behaviours were related with weather conditions (wind and rainfall) at a daily scale, as well as with individual's experience. We found only one significant correlation between movements and breeding performance: male Bonelli's eagles spending more time flying during chick-rearing phase had lower productivity. Movement behaviours and breeding performance were also indirectly linked through individual's experience, with more experienced birds having better breeding success and a shorter range of movement and spent less time in flight. This suggests that experienced individuals progressively acquire knowledge of their breeding territory, are more efficient in finding prey, and adapt their foraging strategies to weather conditions to minimise energy costs, allowing them higher breeding performance.

18.
bioRxiv ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39005425

RESUMEN

Social predation is a common strategy used by predators to subdue and consume prey. Animals that use this strategy have many ways of finding each other, organizing behaviors and consuming prey. There is wide variation in the extent to which these behaviors are coordinated and the stability of individual roles. This study characterizes social predation by the nudibranch mollusc, Berghia stephanieae, which is a specialist predator that eats only the sea anemone, Exaiptasia diaphana. A combination of experimental and modeling approaches showed that B. stephanieae does predate upon E. diaphana in groups. The extent of social feeding was not altered by length of food deprivation, suggesting that animals are not shifting strategies based on internal state. It was unclear what cues the individual Berghia used to find each other; choice assays testing whether they followed slime trails, were attracted to injured anemones, or preferred conspecifics feeding did not reveal any cues. Individuals did not exhibit stable roles, such as leader or follower, rather the population exhibited fission-fusion dynamics with temporary roles during predation. Thus, the Berghia provides an example of a specialist predator of dangerous prey that loosely organizes social feeding, which persists across hunger states and uses temporary individual roles; however, the cues that it uses for aggregation are unknown.

19.
Biol Lett ; 20(7): 20240065, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39016002

RESUMEN

Nematomorph parasites manipulate terrestrial arthropods to enter streams where the parasites reproduce. These manipulated arthropods become a substantial prey subsidy for stream salmonids, causing cross-ecosystem energy flow. Diverse nematomorph-arthropod associations underlie the energy flow, but it remains unknown whether they can mediate the magnitude and temporal attributes of the energy flow. Here, we investigated whether distinct phylogenetic groups of nematomorphs manipulate different arthropod hosts and mediate seasonal prey subsidy for stream salmonids. The results of our molecular-based diagnoses show that Gordionus and Gordius nematomorphs infected ground beetle and orthopteran hosts, respectively. The presumable ground beetle hosts subsidized salmonid individuals in spring, whereas the presumable orthopteran hosts did so in autumn. Maintaining the two distinct nematomorph-arthropod associations thus resulted in the parasite-mediated prey subsidy in both spring and autumn in the study streams. Manipulative parasites are common, and often associated with a range of host lineages, suggesting that similar effects of phylogenetic variation in host-parasite associations on energy flow might be widespread in nature.


Asunto(s)
Ecosistema , Interacciones Huésped-Parásitos , Estaciones del Año , Animales , Salmonidae/parasitología , Filogenia , Helmintos/fisiología , Escarabajos/parasitología , Escarabajos/fisiología , Ríos
20.
Anim Sci J ; 95(1): e13982, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39030775

RESUMEN

Brown rats (Rattus norvegicus), roof rats (Rattus rattus), and house mice (Mus musculus) are considered to be important pests on livestock farms. Although the diel activity patterns of rodents are key to their control, information on this aspect of their ecology is limited. Furthermore, the effect of carnivores on rodent activity patterns as well as the carnivore species present on livestock farms is unclear. Here, we set camera traps in an open-type cow barn and in an enclosed pig barn on the same livestock farm in Japan from August through October 2021. The only rodents observed in both barns were roof rats, and the carnivore species observed were dogs (Canis familiaris), cats (Felis catus), and Japanese weasels (Mustela itatsi). Roof rats showed different patterns of activity and behavior between the barns. However, because the pattern in both barns was nocturnal, the activity patterns of roof rats and carnivores showed a moderate to high degree of overlap. Therefore, roof rats did not appear to shift their activity patterns to avoid nocturnal carnivores. Taken together, the present study provides valuable information for rodent control on livestock farms in Japan.


Asunto(s)
Granjas , Ganado , Animales , Japón , Ratas , Gatos , Ratones , Perros , Vivienda para Animales , Control de Roedores , Bovinos , Conducta Animal , Mustelidae , Carnívoros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA