Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 980
Filtrar
1.
J Appl Microbiol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138062

RESUMEN

AIM: The aim of this study was to purify proanthocyanidins from areca nut seeds (P-AN) and to investigate the bactericidal activity and mechanism of the purified products against S. mutans. METHODS AND RESULTS: UPLC-Q-TOF-MS, FT-IR, MADLI-TOF-MS and thiolysis experiment were used for P-AN chemical analysis. Time-kill analysis and glycolytic pH drop were used to evaluate the activity of S. mutans in vitro. Meanwhile, the investigation of the bacteriostatic mechanism included membrane protein, fluidity, permeability and integrity tests. The results showed that P-AN was a kind of proanthocyanidins mainly composed of B-type proanthocyanidin and their polymers. Moreover, MADLI-TOF-MS and thiolysis experiments demonstrated that the degree of polymerization (DP) of P-AN was 13. The time-kill analysis showed that P-AN had strong bactericidal activity against S. mutans. P-AN at MIC concentrations was able to induce S. mutans death, while complete lethality occurred at 2 MIC. Glycolysis test showed that P-AN significantly inhibited S. mutans acid production (p < 0.01). The morphological changes of S. mutans were observed by SEM and TEM experiments, which indicated that P-AN destroyed the cellular structure of S. mutans. At the same time, significant changes were observed in membrane proteins, fluidity, permeability and integrity. CONCLUSION: P-AN can effectively inhibit the activity of S. mutans. P-AN can reduce the erosion of the tooth surface by the acid of S. mutans. P-AN could break the structure of cell membrane protein of S. mutans. P-AN could destroy the integrity of membrane, resulting in the death of S. mutans.

2.
Adv Healthc Mater ; : e2401741, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113330

RESUMEN

High level of C (ROS) within the tumor microenvironment (TME) not only damage tumor cells but also diminish the efficacy of immunogenic cell death (ICD) and the activity of tumor-infiltrating T lymphocytes, thereby limiting the effectiveness of immunotherapy. Therefore, precise modulation of ROS level is crucial to effectively eliminate tumor cells and activate ICD-induced immunotherapy. Here, an intelligent yolk shell nanoplatform (SPCCM) that features calcium carbonate shells capable of decomposing under acidic TME conditions, thereby releasing the natural antioxidant proanthocyanidins (PAs) and the photosensitizer Ce6 is designed. PAs scavenge ROS within tumors, extending the survival time of T lymphocytes, while Ce6, as an ICD inducer, generates high ROS concentrations upon laser irradiation, thus reaching the toxic threshold within tumor cells and inducing apoptosis. The resulting apoptotic cells serve as tumor-associated antigens, promoting dendritic cells (DCs) maturation, and activating ICD. By effectively neutralizing ROS in the TME, PAs sustainably reduce ROS level, thereby enhancing DCs activation and restoring antitumor immune cell activity suppressed by ROS (resulting in an eightfold increase in DCs activation). This study demonstrates effective synergistic effects between photodynamic therapy and immunotherapy by precisely modulating ROS level.

3.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000477

RESUMEN

The appearance of new respiratory virus infections in humans with epidemic or pandemic potential has underscored the urgent need for effective broad-spectrum antivirals (BSAs). Bioactive compounds derived from plants may provide a natural source of new BSA candidates. Here, we investigated the novel phytocomplex formulation SP4™ as a candidate direct-acting BSA against major current human respiratory viruses, including coronaviruses and influenza viruses. SP4™ inhibited the in vitro replication of SARS-CoV-2, hCoV-OC43, hCoV-229E, Influenza A and B viruses, and respiratory syncytial virus in the low-microgram range. Using hCoV-OC43 as a representative respiratory virus, most of the antiviral activity of SP4™ was observed to stem primarily from its dimeric A-type proanthocyanidin (PAC-A) component. Further investigations of the mechanistic mode of action showed SP4™ and its PAC-A-rich fraction to prevent hCoV-OC43 from attaching to target cells and exert virucidal activity. This occurred through their interaction with the spike protein of hCoV-OC43 and SARS-CoV-2, thereby interfering with spike functions and leading to the loss of virion infectivity. Overall, these findings support the further development of SP4™ as a candidate BSA of a natural origin for the prevention of human respiratory virus infections.


Asunto(s)
Antivirales , Coronavirus Humano OC43 , Proantocianidinas , SARS-CoV-2 , Replicación Viral , Proantocianidinas/farmacología , Proantocianidinas/química , Antivirales/farmacología , Antivirales/química , Humanos , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Coronavirus Humano OC43/efectos de los fármacos , Animales , Perros , Virus de la Influenza A/efectos de los fármacos , Coronavirus Humano 229E/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Chlorocebus aethiops
4.
Pharmaceutics ; 16(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065613

RESUMEN

(1) Background: Salix species occurring in Finland have not been well studied for their antimicrobial potential, despite their frequent use for lung and stomach problems in traditional medicine. Thus, twig extracts of three species of Salix that are found naturally in Finland and one cultivated species were screened for their antimicrobial properties against human pathogenic bacteria. S. starkeana and S. x pendulina were screened for antibacterial effects for the first time. (2) Methods: An agar diffusion and a microplate method were used for the screenings. Time-kill effects were measured using a plate-count and a microplate method. A DPPH-method using a qualitative TLC-analysis was used to detect antioxidant compounds in antimicrobial extracts. Metabolites from a S. myrsinifolia extract showing good antibacterial effects were identified using UPLC/QTOF-MS. (3) Results: A methanol extract of S. starkeana was particularly active against B. cereus (MIC 625 µg/mL), and a methanol extract of S. myrsinifolia showed good activity against S. aureus and B. cereus (MIC 1250 µg/mL) and showed bactericidal effects during a 24 h incubation of B. cereus. Moreover, a decoction of S. myrsinifolia resulted in good growth inhibition against P. aeruginosa. Our UPLC/QTOF-MS results indicated that proanthocyanidins (PAs), and especially the dimer procyanidin B1 (m/z 577) and other procyanidin derivatives, including highly polymerized proanthocyanidins, were abundant in S. myrsinifolia methanol extracts. Procyanidin B1 and its monomer catechin, as well as taxifolin and p-hydroxycinnamic acid, all present in S. myrsinifolia twigs, effectively inhibited B. cereus (MIC 250 µg/mL). (4) Conclusions: This study indicates that Finnish Salix species contain an abundance of antibacterial condensed tannins, phenolic acids and other polyphenols that deserve further research for the antibacterial mechanisms of action.

5.
Curr Biol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39079534

RESUMEN

Vivipary is a prominent feature of mangroves, allowing seeds to complete germination while attached to the mother plant, and equips propagules to endure and flourish in challenging coastal intertidal wetlands. However, vivipary-associated genetic mechanisms remain largely elusive. Genomes of two viviparous mangrove species and a non-viviparous inland relative were sequenced and assembled at the chromosome level. Comparative genomic analyses between viviparous and non-viviparous genomes revealed that DELAY OF GERMINATION 1 (DOG1) family genes (DFGs), the proteins from which are crucial for seed dormancy, germination, and reserve accumulation, are either lost or dysfunctional in the entire lineage of true viviparous mangroves but are present and functional in their inland, non-viviparous relatives. Transcriptome dynamics at key stages of vivipary further highlighted the roles of phytohormonal homeostasis, proteins stored in mature seeds, and proanthocyanidins in vivipary under conditions lacking DFGs. Population genomic analyses elucidate dynamics of syntenic regions surrounding the missing DFGs. Our findings demonstrated the genetic foundation of constitutive vivipary in Rhizophoraceae mangroves.

6.
J Pharm Biomed Anal ; 249: 116351, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39018720

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that primarily affects mucosa and submucosa of colon and rectum. Although the exact etiology of UC remains elusive, increasing evidence has demonstrated that the gut microbiome and its interaction with host metabolism plays an important role in UC development. The objective of this study was to investigate the therapeutic potential and mechanism of dimeric proanthocyanidins (PAC) enriched from ethyl acetate extract of Ephedra roots on UC from the perspective of gut microbiota and metabolic regulation. In this study, a bio-guided strategy integrating LC-MS analysis, DMAC assay, antioxidant screening, and antiinflammation activity screening was used to enrich dimeric PAC from Ephedra roots, then untargeted metabolomics combined with gut microbiota analysis was performed to investigate the therapeutic mechanism of PRE on UC. This is the first study that combines a bio-guided strategy to enrich dimeric PAC from Ephedra roots and a comprehensive analysis of their effects on gut microbiota and host metabolism. Oral administration of PRE was found to significantly relieve dextran sodium sulfate (DSS)-induced ulcerative colitis symptoms in mice, characterized by the reduced disease activity index (DAI), increased colon length and improved colon pathological damage, together with the down-regulation of colonic inflammatory and oxidative stress levels. In addition, 16 S rRNA sequencing combined with untargeted metabolomics was conducted to reveal the effects of PRE on gut microbiota composition and serum metabolites. PRE improved gut microbiota dysbiosis through increasing the relative abundance of beneficial bacteria Lachnospiraceae_NK4A136_group and decreasing the level of potentially pathogenic bacteria such as Escherichia-Shigella. Serum metabolomics showed that the disturbed tryptophan and glycerophospholipid metabolism in UC mice was restored after PRE treatment. Collectively, PRE was proved to be a promising anti-UC candidate, which deserves further investigation in future research.

7.
Plants (Basel) ; 13(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891249

RESUMEN

The main units of persimmon proanthocyanidins (PAs) are composed of flavan-3-ols including epigallocatechin gallate (EGCG) and gallocatechin gallate (GCG). Precise quantification of GCG is challenging due to its trace amounts in persimmon. In this study, to establish the optimal UHPLC-Q-Exactive Orbitrap/MS technique for the determination of PAs monomer composition in persimmon fruit flesh of different astringency types, mass spectrometry and chromatographic conditions were optimized. The results showed that when operating in negative ion mode, using a T3 chromatographic column (a type of C18 column with high-strength silica), acetonitrile as the organic phase, a 0.1% mobile phase acid content, and a mobile phase flow rate of 0.2 mL/min, the chromatographic peak shape and resolution of the PAs monomer composition improved. Additionally, there was no tailing phenomenon observed in the chromatographic peaks. At the same time, the intra-day and inter-day precision, stability, and recovery of the procedure were good. The relative standard deviation (RSD) of stability was less than 5%. The intra-day precision was in the range of 1.14% to 2.36%, and the inter-day precision ranged from 1.03% to 2.92%, both of which were less than 5%. The recovery rate ranged from 94.43% to 98.59% with an RSD less than 5%. The results showed that the UHPLC-Q-Exactive Orbitrap/MS technique established in this study can not only be used for the quantification of EGCG and GCG in persimmon fruit flesh but also be suitable for analyzing other PAs monomer compositions, providing robust support for the related research on persimmon PAs.

8.
Molecules ; 29(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38893491

RESUMEN

This paper explores the emerging subject of extracting tannins from various plant sources using deep eutectic solvents (DESs). Tannins are widely used in the food and feed industries as they have outstanding antioxidant qualities and greatly enhance the flavor and nutritional content of a wide range of food products. Organic solvents are frequently used in traditional extraction techniques, which raises questions about their safety for human health and the environment. DESs present a prospective substitute because of their low toxicity, adaptability, and environmental friendliness. The fundamental ideas supporting the application of DESs in the extraction of tannins from a range of plant-based materials frequently used in daily life are all well covered in this paper. Furthermore, this paper covers the impact of extraction parameters on the yield of extracted tannins, as well as possible obstacles and directions for future research in this emerging subject. This includes challenges such as high viscosity, intricated recovery of compounds, thermal degradation, and the occurrence of esterification. An extensive summary of the diversity, structure, biosynthesis, distribution, and roles of tannins in plants is given in this paper. Additionally, this paper thoroughly examines various bioactivities of tannins and their metabolites.


Asunto(s)
Disolventes Eutécticos Profundos , Taninos , Taninos/química , Taninos/aislamiento & purificación , Disolventes Eutécticos Profundos/química , Extractos Vegetales/química , Antioxidantes/química , Antioxidantes/farmacología , Plantas/química , Plantas/metabolismo , Solventes/química
9.
Adv Food Nutr Res ; 110: 327-398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38906590

RESUMEN

Condensed tannins are considered nutritionally undesirable, because they precipitate proteins, inhibit digestive enzymes, and can affect the absorption of vitamins and minerals. From the consumer's point of view, they impart astringency to foods. Yet, they are viewed as a double-edged sword, since they possess antioxidant and anti-inflammatory activities. Intake of a small quantity of the right kind of tannins may in fact be beneficial to human health. This chapter reports on the chemical structure of condensed tannins, their content in plants and food of plant origin, how they are extracted, and methods for their determination. A description of the effects of processing on condensed tannins is discussed and includes soaking, dehulling, thermal processing (i.e., cooking, boiling, autoclaving, extrusion), and germination. The astringency of condensed tannins is described in relation to their interactions with proteins. Finally, details about the biological properties of condensed tannins, including their antimicrobial, anti-inflammatory, anticancer, anti-diabetic, and anti-obesity activities, are reviewed.


Asunto(s)
Antioxidantes , Manipulación de Alimentos , Proantocianidinas , Antioxidantes/farmacología , Antioxidantes/química , Proantocianidinas/farmacología , Proantocianidinas/química , Humanos , Manipulación de Alimentos/métodos , Plantas Comestibles/química , Antiinflamatorios/farmacología
10.
Food Chem ; 454: 139776, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824782

RESUMEN

To efficiently harness resources from Pinus koraiensis seed scales, a type of forestry waste, rigorous studies on the extraction, purification, stability, and free radical scavenging capacity of the proanthocyanidins derived from these seed scales were conducted. Kinetic models showed that under ultrasonic conditions, the proanthocyanidins content reached 2.66 mg/g within 0.5 h. The optimal storage parameters include darkness, 4 °C, and pH 4. The degrees of polymerization of the mixture and the high- and low-polymer components were 4.89, 7.42 and 3.07, respectively, with the low-polymer component exhibiting the highest radical scavenging activity. Through HPLC-QE-MS/MS, 1H NMR, and FT-IR analyses, we identified proanthocyanidin B1, proanthocyanidin B2, (-)-epicatechin, and polymeric trimer esters. The Pinus koraiensis proanthocyanidins exhibited a high molecular weight, a complex internal molecular structure, and commendable stability, with crystallization requiring elevated temperatures. Therefore, the proanthocyanidins from Pinus koraiensis seed scales have emerged as highly promising novel natural antioxidants.


Asunto(s)
Depuradores de Radicales Libres , Pinus , Polimerizacion , Proantocianidinas , Semillas , Proantocianidinas/química , Proantocianidinas/aislamiento & purificación , Pinus/química , Semillas/química , Cinética , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Peso Molecular , Estructura Molecular , Espectrometría de Masas en Tándem
11.
Int J Biol Macromol ; 272(Pt 1): 132741, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825292

RESUMEN

Wound healing in diabetic patients presents significant challenges in clinical wound care due to high oxidative stress, excessive inflammation, and a microenvironment prone to infection. In this study, we successfully developed a multifunctional tandem dynamic covalently cross-linked hydrogel dressing aimed at diabetic wound healing. This hydrogel was constructed using cyanoacetic acid functionalized dextran (Dex-CA), 2-formylbenzoylboric acid (2-FPBA) and natural oligomeric proanthocyanidins (OPC), catalyzed by histidine. The resulting Dex-CA/OPC/2-FPBA (DPOPC) hydrogel can be dissolved triggered by cysteine, thereby achieving "controllable and non-irritating" dressing change. Furthermore, the incorporation of OPC as a hydrogel building block endowed the hydrogel with antioxidant and anti-inflammatory properties. The cross-linked network of the DPOPC hydrogel circumvents the burst release of OPC, enhancing its biosafety. In vivo studies demonstrated that the DPOPC hydrogel significantly accelerated the wound healing process in diabetic mice compared to a commercial hydrogel, achieving an impressive wound closure rate of 98 % by day 14. The DPOPC hydrogel effectively balanced the disrupted inflammatory state during the healing process. This dynamic hydrogel based on natural polyphenols is expected to be an ideal candidate for dressings intended for chronic wounds.


Asunto(s)
Diabetes Mellitus Experimental , Hidrogeles , Proantocianidinas , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Proantocianidinas/química , Proantocianidinas/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Masculino , Reactivos de Enlaces Cruzados/química , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Dextranos/química
12.
J Ethnopharmacol ; 333: 118471, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38901680

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In Brazil, the leaves of Hancornia speciosa Gomes have a traditional use for treating hypertension and diabetes. Experimental investigations have confirmed the anti-hypertensive and hypoglycemic properties of extracts derived from H. speciosa leaves across various experimental models. These biological activities have been mostly ascribed to its major constituent, bornesitol, along with other cyclitols, flavonoids, and cinnamic acid derivatives. AIM OF STUDY: The objective of this study was to characterize the chemical structure of proanthocyanidins from H. speciosa leaves and explore their in vitro activity on the release of pro-inflammatory cytokines and oxidative stress. MATERIAL AND METHODS: The acetone/water (7:3) extract of H. speciosa leaves (HsE) was prepared by percolation and fractionated by column chromatography over Sephadex LH20 to afford the proanthocyanidin-rich fraction HsFr3. Structure characterization of the proanthocyanidins constituents of HsFr3 was accomplished by extensive UPLC-DAD-ESI-MS/MS analysis coupled to degradation reaction through thiolysis. The effect of HsE, HsFr3, and bornesitol on the release of TNF, IL-1ß and IL-6 in LPS-stimulated THP-1 cells was assayed by ELISA. The effect of the samples on oxidative stress induced by LPS in THP-1 cell was investigated using a DCFH-DA fluorescent assay. RESULTS: Fractionation of HsE afforded HsFr3, primarily composed of six proanthocyanidins. Their chemical structures were characterized as dimeric (4 isomers) and trimeric (2 isomers) procyanidins C-glycosides of the B-type. HsE, HsFr3, and bornesitol reduced the release of pro-inflammatory cytokines TNF and IL-1ß in LPS-stimulated THP-1 cells, while no significant effect was observed on IL-6. All samples reduced the oxidative stress induced by LPS in THP-1 cells, whereas bornesitol, tested at lower concentrations, induced an equivalent response to HsE and HsFr3. CONCLUSIONS: Our findings provide additional evidence to support the ethnomedical use of H. speciosa in managing hypertension and hyperglycemia, due to the direct association of oxidative stress, TNF, and IL-1ß with the maintenance and aggravation of these deleterious conditions. The dimeric and trimeric procyanidin C-glycosides, characterized in the species, contribute to diminish oxidative stress and the release or pro-inflammatory cytokines, whereas bornesitol was shown to induce similar effect at lower concentrations.


Asunto(s)
Citocinas , Estrés Oxidativo , Extractos Vegetales , Hojas de la Planta , Proantocianidinas , Proantocianidinas/farmacología , Proantocianidinas/química , Proantocianidinas/aislamiento & purificación , Hojas de la Planta/química , Estrés Oxidativo/efectos de los fármacos , Humanos , Citocinas/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células THP-1 , Supervivencia Celular/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación
13.
Toxicol Appl Pharmacol ; 489: 117016, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925514

RESUMEN

To elucidate the impact of CYP3A4 activity inhibition and genetic polymorphism on the metabolism of crizotinib. Enzymatic incubation systems for crizotinib were established, and Sprague-Dawley rats were utilized for in vivo experiments. Analytes were quantified using LC-MS/MS. Upon screening 122 drugs and natural compounds, proanthocyanidins emerged as inhibitor of crizotinib metabolism, exhibiting a relative inhibition rate of 93.7%. The IC50 values were 24.53 ± 0.32 µM in rat liver microsomes and 18.24 ± 0.12 µM in human liver microsomes. In vivo studies revealed that proanthocyanidins markedly affected the pharmacokinetic parameters of crizotinib. Co-administration led to a significant reduction in the AUC(0-t), Cmax of PF-06260182 (the primary metabolite of crizotinib), and the urinary metabolic ratio. This interaction is attributed to the mixed-type inhibition of liver microsome activity by proanthocyanidins. CYP3A4, being the principal metabolic enzyme for crizotinib, has its genetic polymorphisms significantly influencing crizotinib's pharmacokinetics. Kinetic data showed that the relative metabolic rates of crizotinib across 26 CYP3A4 variants ranged from 13.14% (CYP3A4.12, 13) to 188.57% (CYP3A4.33) when compared to the wild-type CYP3A4.1. Additionally, the inhibitory effects of proanthocyanidins varied between CYP3A4.12 and CYP3A4.33, when compared to the wild type. Our findings indicate that proanthocyanidins coadministration and CYP3A4 genetic polymorphism can significantly influence crizotinib metabolism.


Asunto(s)
Crizotinib , Citocromo P-450 CYP3A , Interacciones Farmacológicas , Microsomas Hepáticos , Polimorfismo Genético , Ratas Sprague-Dawley , Crizotinib/farmacocinética , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Animales , Humanos , Masculino , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/efectos de los fármacos , Ratas , Piridinas/farmacocinética , Pirazoles/farmacocinética , Pirazoles/farmacología
14.
Phytochem Anal ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860343

RESUMEN

INTRODUCTION: Winegrape varieties Kotsifali, Limnio, and Vradiano OBJECTIVE: The aim of this study was to develop a liquid chromatographic quadrupole time-of-flight tandem mass spectrometric (LC-QTOF-MS/MS) method for the investigation of the anthocyanin and proanthocyanidin content of Greek grape varieties employing target and suspect screening strategies. METHODOLOGY: A novel LC-QTOF-MS/MS method was developed and validated to assess the anthocyanin content of Kotsifali, Limnio, and Vradiano grape varieties. Sixteen grape samples were collected from the main growing areas of each variety in Greece. The influence of the grape variety on the anthocyanin and proanthocyanidin composition of three Greek winegrapes was investigated using chemometrics. RESULTS: Excellent linearity (R2 > 0.99) was achieved for all the target analytes, and recoveries ranged between 90.1% and 119.1%. The limits of quantification (LOQs) and limits of detection (LODs) were calculated over the range of 0.020-0.40 mg/g and 0.010-0.13 mg/g, respectively. The RSD% was lower than 9.1% and 7.3% for intra-day and inter-day studies, respectively, indicating satisfactory trueness and precision. Target and suspect screening resulted in the identification of 5 and 26 anthocyanins, respectively. CONCLUSIONS: Kotsifali variety exhibited a higher concentration of anthocyanins compared with Vradiano and Limnio. Higher levels of mean degree of polymerization (mDp) and different percentage levels of prodelphinidins (%P) were established among the varieties.

15.
Food Chem X ; 22: 101422, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38756474

RESUMEN

Carbon dots (CDs) with different structures were prepared by electrolysis (PE-CDs) and hydrothermal (PH-CDs) methods using proanthocyanidins as precursors. The smaller size and lower zeta potential enabled the PE-CDs treated rice seedlings to exhibit greater resistance to salt stress. The fresh weight of rice seedlings under salt stress was significantly increased by spraying CDs every other day for two weeks. PE-CDs treated group exhibited a faster electron transport rate, and the SOD activity and flavonoid content were 2.5-fold and 0.23-fold higher than those of the salt stress-treated group. Furthermore, the metabolomics and transcriptomics analysis revealed that the PsaC gene of photosystem I was significantly up-regulated under PE-CDs treatment, which accelerated electron transfer in photosystem I. The up-regulation of BX1 and IGL genes encoding indole synthesis allowed rice to enhance stress tolerance through tryptophan and benzoxazine biosynthesis pathways. These findings offer help in purposefully synthesizing CDs and boosting food production.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38761010

RESUMEN

Lotus seed skin extract is rich in flavonoids, making it a promising candidate for developing health products. In a previous study, we found that proanthocyanidins from lotus seed skin, particularly proanthocyanidin B1 (PB1), can indirectly activate the Nrf2 signaling pathway, exerting an antioxidant effect. In this study, we isolate proanthocyanidins from lotus seed skin (PLS) using ethanol extraction and RP-HPLC identification, and investigate its effects on glycolipid metabolism both in vivo and in vitro. Our results demonstrate that PLS reduces body weight in high-fat diet (HFD) mice by decreasing feed efficiency. PLS also normalizes serum glucose, insulin secretion, glycosylated hemoglobin (HbA1c), and intraperitoneal glucose tolerance (IPGTT). Furthermore, PLS significantly improves blood lipid parameters and inhibits the expressions of six proinflammatory factors, including IL-1α, IL-1ß, IL-3, IL-6, IFN-γ and TNF-α in HFD mice. Additionally, analysis of fresh liver tissues reveals that PLS and PB1 induce the expressions of antioxidant proteins such as HO-1 and NQO1 by activating the p38-Nrf2 signaling pathway and inhibiting the NF-κB signaling pathway. In conclusion, proanthocyanidins from lotus seed skin regulate glycolipid metabolism disorders by targeting the p38/Nrf2/NF-κB signaling pathway. Our study offers a new approach for the high-value comprehensive utilization of lotus seed skin by-products and precise dietary intervention for metabolic syndrome.

17.
Antioxidants (Basel) ; 13(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38790658

RESUMEN

Sour cherry (Prunus cerasus L.) is a deciduous tree belonging to the Rosaceae Juss. family. Cherry leaves are an underutilized source of biologically active compounds. The aim of this study was to determine the composition of the phenolic compounds, as well as the total antioxidant activity, in leaf samples of P. cerasus cultivars and to elucidate the cultivars with particular phytochemical compositions. The phytochemical profiles of P. cerasus leaves vary significantly in a cultivar-dependent manner. The total content of identified phenolic compounds varied from 8.254 to 16.199 mg/g in the cherry leaves. Chlorogenic acid ranged between 1413.3 µg/g ('North Star') and 8028.0 µg/g ('Note'). The total content of flavonols varied from 4172.5 µg/g ('Vytenu zvaigzde') to 9030.7 µg/g ('Tikhonovskaya'). The total content of identified proanthocyanidins varied from 122.3 µg/g ('Note') to 684.8 µg/g ('Kelleris'). The highest levels of phloridzin (38.1 ± 0.9 µg/g) were found in samples of 'Molodezhnaya', while the lowest level of this compound was determined in the leaf samples of 'Turgenevka' (6.7 ± 0.2). The strongest antiradical (138.0 ± 4.0 µmol TE/g, p < 0.05) and reducing (364.9 ± 10.5 µmol TE/g, p < 0.05) activity in vitro was exhibited by the cultivar 'Vytenu zvaigzde' cherry leaf sample extracts. 'Kelleris', 'Note', and 'Tikhonovskaya' distinguish themselves with peculiar phytochemical compositions.

18.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731985

RESUMEN

The effect of UV-B radiation exposure on transgenerational plasticity, the phenomenon whereby the parental environment influences both the parent's and the offspring's phenotype, is poorly understood. To investigate the impact of exposing successive generations of rice plants to UV-B radiation on seed morphology and proanthocyanidin content, the local traditional rice variety 'Baijiaolaojing' was planted on terraces in Yuanyang county and subjected to enhanced UV-B radiation treatments. The radiation intensity that caused the maximum phenotypic plasticity (7.5 kJ·m-2) was selected for further study, and the rice crops were cultivated for four successive generations. The results show that in the same generation, enhanced UV-B radiation resulted in significant decreases in grain length, grain width, spike weight, and thousand-grain weight, as well as significant increases in empty grain percentage and proanthocyanidin content, compared with crops grown under natural light conditions. Proanthocyanidin content increased as the number of generations of rice exposed to radiation increased, but in generation G3, it decreased, along with the empty grain ratio. At the same time, biomass, tiller number, and thousand-grain weight increased, and rice growth returned to control levels. When the offspring's radiation memory and growth environment did not match, rice growth was negatively affected, and seed proanthocyanidin content was increased to maintain seed activity. The correlation analysis results show that phenylalanine ammonialyase (PAL), cinnamate-4-hydroxylase (C4H), dihydroflavonol 4-reductase (DFR), and 4-coumarate:CoA ligase (4CL) enzyme activity positively influenced proanthocyanidin content. Overall, UV-B radiation affected transgenerational plasticity in seed morphology and proanthocyanidin content, showing that rice was able to adapt to this stressor if previous generations had been continuously exposed to treatment.


Asunto(s)
Oryza , Proantocianidinas , Rayos Ultravioleta , Proantocianidinas/metabolismo , Oryza/efectos de la radiación , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Semillas/efectos de la radiación , Semillas/metabolismo , Grano Comestible/efectos de la radiación , Grano Comestible/metabolismo , Fenotipo
19.
Molecules ; 29(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38792040

RESUMEN

Proanthocyanidins, natural polyphenolic compounds abundantly present in plants, exhibit diverse bioactivities, including antioxidative, anti-inflammatory, and antibacterial effects. These bioactivities are intricately linked to the degree of polymerization of these compounds. Through a comprehensive analysis of recent domestic and international research, this article synthesizes the latest advancements in the extraction process, degradation methods, as well as the biological activities and underlying mechanisms of proanthocyanidins. Furthermore, future research endeavors should prioritize the refinement of extraction techniques, the elucidation of bioactive mechanisms, and the development of formulations with enhanced potency. This will maximize the utilization of proanthocyanidins across diverse applications.


Asunto(s)
Antiinflamatorios , Antioxidantes , Proantocianidinas , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proantocianidinas/química , Proantocianidinas/aislamiento & purificación , Proantocianidinas/farmacología
20.
J Food Sci ; 89(6): 3494-3505, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38700357

RESUMEN

The abilities of Chinese quince free proanthocyanidins (FP) and bound proanthocyanidins (BP) at different levels (0.1%, 0.15%, and 0.3%) to mitigate heterocyclic aromatic amine (HAA) formation in fried chicken patties were investigated for the first time and compared with vitamin C (Vc). FP and BP reduced HAAs in a dose-dependent manner. Significantly, high concentrations of FP (0.3%) resulted in a reduction of PhIP, harman, and norharman levels by 59.84%, 22.91%, and 38.21%, respectively, in chicken patties. The addition of proanthocyanidins significantly (p < 0.05) reduced the weight loss of fried chicken patties. Furthermore, a positive correlation was observed among pH, weight loss, and total HAA formation in all three groups (FP, BP, and Vc). Multivariate analysis showed that FP had a more pronounced effect than BP from the perspective of enhancing the quality of fried chicken patties and reducing the formation of HAAs. These results indicate that proanthocyanidins, both BP and FP, but especially FP, from Chinese quince can inhibit the formation of carcinogenic HAAs when added to protein-rich foods that are subsequently fried.


Asunto(s)
Aminas , Pollos , Culinaria , Proantocianidinas , Proantocianidinas/análisis , Proantocianidinas/farmacología , Animales , Aminas/química , Culinaria/métodos , Compuestos Heterocíclicos/química , Rosaceae/química , Pueblos del Este de Asia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA