Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928124

RESUMEN

Yield in many crops is affected by abscission during the early stages of fruitlet development. The reasons for fruitlet abscission are often unclear but they may include genetic factors because, in some crops, self-pollinated fruitlets are more likely to abscise than cross-pollinated fruitlets. Pollen parentage can also affect final fruit size and fruit quality. Here, we aimed to understand the effects of pollen parentage on fruitlet retention and nut quality in orchards of macadamia (Macadamia integrifolia Maiden & Betche). We identified the pollen parent of macadamia 'cultivar '816' embryos by analysing single nucleotide polymorphisms (SNPs) in their DNA using customised MassARRAY and Single Allele Base Extension Reaction (SABER) methods. This allowed us to determine the proportions of self-fertilised and cross-fertilised progeny during premature fruit drop at 6 weeks and 10 weeks after peak anthesis, as well as at nut maturity. We determined how pollen parentage affected nut-in-shell (NIS) mass, kernel mass, kernel recovery, and oil concentration. Macadamia trees retained cross-fertilised fruitlets rather than self-fertilised fruitlets. The percentage of progeny that were cross-fertilised increased from 6% at 6 weeks after peak anthesis to 97% at nut maturity, with each tree producing on average 22 self-fertilised nuts and 881 cross-fertilised nuts. Three of the four cross-pollen parents provided fruit with significantly higher NIS mass, kernel mass, or kernel recovery than the few remaining self-fertilised fruit. Fruit that were cross-fertilised by '842', 'A4', or 'A203' had 16-29% higher NIS mass and 24-44% higher kernel mass than self-fertilised fruit. Nuts that were cross-fertilised by 'A4' or 'A203' also had 5% or 6% higher kernel recovery, worth approximately $US460-540 more per ton for growers than self-fertilised nuts. The highly selective abscission of self-fertilised fruitlets and the lower nut quality of self-fertilised fruit highlight the critical importance of cross-pollination for macadamia productivity.


Asunto(s)
Frutas , Macadamia , Polimorfismo de Nucleótido Simple , Macadamia/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Autofecundación , Polen/genética , Polen/crecimiento & desarrollo , Polen/efectos de los fármacos , ADN de Plantas/genética , Nueces/genética , Nueces/crecimiento & desarrollo , Polinización
2.
Front Plant Sci ; 15: 1371123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721332

RESUMEN

We aimed to evaluate the facilitation effects of an aluminum (Al) hyperaccumulator species bearing cluster roots, Gevuina avellana, on the seedling growth and performance of an Al-intolerant and phosphorus (P)-deficient-sensitive plant, Vaccinium corymbosum. For this, seedlings of G. avellana and V. corymbosum were grown alone or together as follows: i) two G. avellana seedlings, ii) one G. avellana + one V. corymbosum and iii) two V. corymbosum, in soil supplemented with Al (as Al2(SO4)3) and in the control (without Al supplementation). We determined relative growth rate (RGR), photosynthetic rate, chlorophyll concentration, lipid peroxidation and Al and nutrient concentration [Nitrogen (N), P, potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), and sulfur (S)] in leaves and roots of both species. The results showed that, in general, G. avellana did not assist V. corymbosum to enhance its RGR nor reduce its Al uptake. However, G. avellana assisted V. corymbosum in enhanced N acquisition and, consequently, to increase its chlorophyll concentration and photosynthetic rate. Besides, V. corymbosum had lower lipid peroxidation in leaves when grown in the soil with high Al supplementation in association with G. avellana. Our results suggest a facilitating effect of G. avellana to V. corymbosum when grown in soils with high Al concentration, by enhancing chlorophyll concentrations and photosynthetic rate, and decreasing the oxidative damage to lipids.

3.
Antioxidants (Basel) ; 12(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38001805

RESUMEN

In recent decades, natural plant-based foods have been increasingly used to improve human health due to unhealthy modern dietary patterns, such as the consumption of foods high in sugar and fat. Many indigenous species have been used by Aboriginal peoples for their food and therapeutic properties. Thus, it is important to understand the health-enhancing bioactive profile of Australian indigenous species. The Proteaceae family, such as the genera of Protea, Macadamia, and Grevillea, have been commercially used in the horticulture and food industries. Researchers have reported some findings about Persoonia species, one of the genera in the Proteaceae family. The aim of this review was to provide an overview of the family Proteaceae and the genus Persoonia, including distribution, traditional and commercial uses, phytochemicals, bioactive properties, potential opportunities, and challenges. In this review, bioactive compounds and their properties related to the health benefits of the Proteaceae family, particularly the Persoonia genus, were reviewed for potential applications in the food industry.

4.
Chem Biodivers ; 20(11): e202301112, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37726205

RESUMEN

Natural products isolation studies of eight endemic Tasmanian Proteaceae species - Agastachys odorata, Persoonia juniperina, Hakea megadenia, Hakea epiglottis, Orites diversifolius, Orites acicularis, Orites revolutus, and Telopea truncata - and three endemic Australian Proteaceae species Banksia serrata, Banksia praemorsa, and Banksia marginata were undertaken. Two previously unreported glycoside-derived natural products were identified, in addition to four other tremendously rare arbutin esters. The results of this study provide further evidence consistent with the proposal that these distinctive arbutin esters represent markers that can provide valuable insights into the chemical evolution of plant species within the family Proteaceae.


Asunto(s)
Productos Biológicos , Proteaceae , Australia , Arbutina , Glicósidos
5.
Front Plant Sci ; 14: 1150116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152164

RESUMEN

The frequency and intensity of drought events are predicted to increase because of climate change, threatening biodiversity and terrestrial ecosystems in many parts of the world. Drought has already led to declines in functionally important tree species, which are documented in dieback events, shifts in species distributions, local extinctions, and compromised ecosystem function. Understanding whether tree species possess the capacity to adapt to future drought conditions is a major conservation challenge. In this study, we assess the capacity of a functionally important plant species from south-eastern Australia (Banksia marginata, Proteaceae) to adapt to water-limited environments. A water-manipulated common garden experiment was used to test for phenotypic plasticity and genetic adaptation in seedlings sourced from seven provenances of contrasting climate-origins (wet and dry). We found evidence of local adaptation relating to plant growth investment strategies with populations from drier climate-origins showing greater growth in well-watered conditions. The results also revealed that environment drives variation in physiological (stomatal conductance, predawn and midday water potential) and structural traits (wood density, leaf dry matter content). Finally, these results indicate that traits are coordinated to optimize conservation of water under water-limited conditions and that trait coordination (phenotypic integration) does not constrain phenotypic plasticity. Overall, this study provides evidence for adaptive capacity relating to drought conditions in B. marginata, and a basis for predicting the response to climate change in this functionally important plant species.

6.
Ann Bot ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37076271

RESUMEN

BACKGROUND AND AIMS: The prevailing view from the areocladogenesis of molecular phylogenies is that the iconic South African Cape Proteaceae (subfamily Proteoideae) arrived from Australia across the Indian Ocean in the Upper Cretaceous (100‒65 million years ago, Ma). Since fossil pollen indicates that the family probably arose in North-West Africa during the early Cretaceous, an alternative view is that it migrated to the Cape from North-Central Africa. The plan therefore was to collate fossil pollen records throughout Africa to determine if they are consistent with an African (para-autochthonous) origin for the Cape Proteaceae, and to seek further support from other paleo-disciplines. METHODS: Palynology (identity, date and location of records), molecular phylogeny and chronogram preparation, biogeography of plate tectonics, and paleo-atmospheric and ocean circulation models. KEY RESULTS: Our collation of the rich assemblage of Proteaceae palynomorphs stretching back to 107 Ma (Triorites africaensis) in North-West Africa showed its progressive overland migration to the Cape by 75‒65 Ma. No key palynomorphs recorded in Australia-Antarctica have morphological affinities with African fossils but specific clade assignment of the preMiocene records is not currently possible. The Cape Proteaceae encompass three molecular-based clades (tribes) whose most-recent apparent ancestors are sisters to those in Australia. However, our chronogram shows that the major Adenanthos/Leucadendron-related clade, originating 54‒34 Ma, would have 'arrived' too late as species with Proteaceae affinities were already present ~20 My earlier. The Franklandia/Protea-related clade arose 118‒81 Ma so its distinctive pollen should have been the foundation for the scores of palynomorphs recorded at 100‒80 Ma but it was not. Also, the prevailing winds and ocean currents trended away from South Africa rather than towards, as the 'out-of-Australia' hypothesis requires. Based on the evidence assembled here, we list three points favouring an Australian origin and nine against; four points favouring an Antarctic origin and seven against; and nine points favouring a North-Central African origin and three against. CONCLUSIONS: We conclude that a gradual migration of the Proteaceae from North-Central Africa southeast→south→southwest to the Cape and surrounds occurred via adaptation and speciation during the period 90‒70 Ma. We caution that incorrect conclusions may be drawn from literal interpretations of molecular phylogenies that neglect the fossil record and do not recognize the possible confounding effects of selection under matched environments leading to parallel evolution and extinction of bona fide sister clades.

7.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36355487

RESUMEN

Ten phenolic constituents, including three new macrocyclic glycosides (1-3), a new phenolic glycoside (5), a new biphenyl glycoside (6), and five known compounds (4, 7-10), were isolated from a 70% MeOH extract of the leaves of Heliciopsis terminalis by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-guided molecular networking. The chemical structures of new compounds 1-3, 5 and 6 were established based on comprehensive spectroscopic data analysis, including 1D and 2D NMR and HRESIMS techniques. All isolated compounds (1-10) were evaluated for their stimulation of glucose uptake in differentiated 3T3-L1 adipocytes using 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-d-glucose (2-NBDG) as a fluorescent glucose analog. Compounds 3, 6 and 8 showed stimulatory effects on the uptake of 2-NBDG in 3T3-L1 adipocyte cells. Among them, compounds 3 and 6 activated the AMPK signaling pathway in differentiated C2C12 myoblasts.

8.
Ecol Evol ; 12(11): e9474, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36381388

RESUMEN

The South American temperate forests were subjected to drastic topographic and climatic changes during the Pliocene-Pleistocene as a consequence of the Andean orogeny and glacial cycles. Such changes are common drivers of genetic structure and adaptation. Embothrium coccineum (Proteaceae) is an emblematic tree of the South American temperate forest (around 20°S of latitude) that has strongly been affected by topographic and climatic events. Previous studies have shown a marked genetic structure in this species, and distinct ecotypes have been described. Yet, little is known about their adaptive genetic responses. The main goal of this study was to investigate the effects of historical and contemporary landscape features affecting the genetic diversity and connectivity of E. coccineum throughout its current natural distribution. Using over 2000 single nucleotide polymorphisms (SNPs), we identified two genetic groups (a Northern and a Central-Southern group) that diverged around 2.8 million years ago. The level of genetic structure was higher among populations within the Northern genetic group than within the Central-Southern group. We propose that these differences in genetic structure may be due to differences in the assemblages of pollinators and in the evolutionary histories of the two genetic groups. Moreover, the data displayed a strong pattern of isolation by the environment in E. coccineum, suggesting that selection could have led to adaptive divergence among localities. We propose that in the Chilean temperate forest, the patterns of genetic variation in E. coccineum reflect both a Quaternary phylogenetic imprint and signatures of selection as a consequence of a strong environmental gradient.

9.
Ecol Evol ; 12(11): e9500, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36381400

RESUMEN

Thousands of plants produce both extrafloral nectaries (EFNs) on their leaves and nutrient-rich appendages on their diaspores (elaiosomes). Although their individual ecology is well-known, any possible functional link between these structures has almost always been ignored. Here, we recognized their co-presence in the shrub, Adenanthos cygnorum (Proteaceae), and studied their function and interaction. We observed that the same ants frequently visit both structures, seeds are attractive to vertebrate granivores but are released into a leafy cup from where they are harvested by ants and taken to their nests, from which seeds, lacking elaiosomes, germinate after fire. We showed that juvenile plants do not produce EFNs and are not visited by ants. We conclude that EFNs are not just an indirect adaptation to minimize herbivory via aggressive ant visitors (the role of a minority) but specifically enhance reproductive success in two ways: First, by inducing ants to visit the plant as a reliable food source throughout the year. Second, by promoting discovery of the seasonally available, elaiosome-bearing seeds for transport to their nests (the majority of visitors), so avoiding the risk of granivory should seeds instead fall to the ground. Parasitoid wasps play a supporting role in controlling the main insect herbivore whose larvae devour the reproductive apices. Thus, the EFN-elaiosome relationship has three components that enhance species fitness: foliage protection, seed transport, and granivore escape. A similar system has been described only once before (in an unrelated biome) and, consistent with the objectives of ecology as an integrative science, deserves wider study.

10.
Am J Bot ; 109(10): 1652-1671, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36164832

RESUMEN

PREMISE: Understanding evolutionary history and classifying discrete units of organisms remain overwhelming tasks, and lags in this workload concomitantly impede an accurate documentation of biodiversity and conservation management. Rapid advances and improved accessibility of sensitive high-throughput sequencing tools are fortunately quickening the resolution of morphological complexes and   thereby improving the estimation of species diversity. The recently described and critically endangered Banksia vincentia is morphologically similar to the hairpin banksia complex (B. spinulosa s.l.), a group of eastern Australian flowering shrubs whose continuum of morphological diversity has been responsible for taxonomic controversy and possibly questionable conservation initiatives. METHODS: To assist conservation while testing the current taxonomy of this group, we used high-throughput sequencing to infer a population-scale evolutionary scenario for a sample set that is comprehensive in its representation of morphological diversity and a 2500-km distribution. RESULTS: Banksia spinulosa s.l. represents two clades, each with an internal genetic structure shaped through historical separation by biogeographic barriers. This structure conflicts with the existing taxonomy for the group. Corroboration between phylogeny and population statistics aligns with the hypothesis that B. collina, B. neoanglica, and B. vincentia should not be classified as species. CONCLUSIONS: The pattern here supports how morphological diversity can be indicative of a locally expressed suite of traits rather than relationship. Oversplitting in the hairpin banksias is atypical since genomic analyses often reveal that species diversity is underestimated. However, we show that erring on overestimation can yield negative consequences, such as the disproportionate prioritization of a geographically anomalous population.


Asunto(s)
Proteaceae , Australia , Filogenia , Proteaceae/genética , Evolución Biológica , Biodiversidad
11.
Plants (Basel) ; 11(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35807702

RESUMEN

Protea cynaroides (king protea) is a flowering plant that belongs to the Proteaceae family. This multi-stemmed shrub is the national flower of South Africa and has important economic and medicinal values. Traditionally, the main therapeutic benefits of this plant species include the treatment of cancer, bladder, and kidney ailments. There are very limited reports on the isolation of phytochemicals and their biological evaluation from P. cynaroides. In this study, the leaves of P. cynaroides were air-dried at room temperature, powdered, and extracted with 80% methanol followed by solvent fractionation (hexane, dichloromethane, ethyl acetate, and butanol). The ethyl acetate and butanol extracts were chromatographed and afforded four new (1-4) and four known (5-8) compounds, whose structures were characterized accordingly as 3,4-bis(4-hydroxybenzoyl)-1,5-anhydro-D-glucitol (1), 4-hydroxybenzoyl-1,5-anhydro-D-glucitol (2), 2-(hydroxymethyl)-4-oxo-4H-pyran-3-yl-6-O-benzoate-ß-D-glucopyranoside (3), 3-hydroxy-7,8-dihydro-ß-ionone 3-O-ß-D-glucopyranoside (4), 4-hydroxybenzoic acid (5), 1,5-anhydro-D-glucitol (6), 3,4-dihydroxybenzoic acid (7), and 3-hydroxykojic acid (8). The structural elucidation of the isolated compounds was determined based on 1D and 2D NMR, FTIR, and HRMS spectroscopy, as well as compared with the available literature data. The tyrosinase inhibitory activities of the extracts and isolated compounds were also determined. According to the results, compounds 7 and 8 exhibited potent competitive tyrosinase inhibitory activity against L-tyrosine substrates with IC50 values of 0.8776 ± 0.012 and 0.7215 ± 0.090 µg/mL compared to the control (kojic acid, IC50 = 0.8347 ± 0.093), respectively. This study is the first chemical investigation of compounds 1-4 from a natural source and the first report of the biological evaluation of compounds 1-5 against the tyrosinase enzyme. The potent anti-tyrosinase activity exhibited by P. cynaroides constituents will support future exploration of the plant in the cosmetic field upon further biological and clinical investigations.

12.
Ann Bot ; 129(2): 135-146, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34473241

RESUMEN

BACKGROUND AND AIMS: Pollen limitation is most prevalent among bee-pollinated plants, self-incompatible plants and tropical plants. However, we have very little understanding of the extent to which pollen limitation affects fruit set in mass-flowering trees despite tree crops accounting for at least 600 million tons of the 9200 million tons of annual global food production. METHODS: We determined the extent of pollen limitation in a bee-pollinated, partially self-incompatible, subtropical tree by hand cross-pollinating the majority of flowers on mass-flowering macadamia (Macadamia integrifolia) trees that produce about 200 000-400 000 flowers. We measured tree yield and kernel quality and estimated final fruit set. We genotyped individual kernels by MassARRAY to determine levels of outcrossing in orchards and assess paternity effects on nut quality. KEY RESULTS: Macadamia trees were pollen-limited. Supplementary cross-pollination increased nut-in-shell yield, kernel yield and fruit set by as much as 97, 109 and 92 %, respectively. The extent of pollen limitation depended upon the proximity of experimental trees to trees of another cultivar because macadamia trees were highly outcrossing. Between 84 and 100 % of fruit arose from cross-pollination, even at 200 m (25 rows) from orchard blocks of another cultivar. Large variations in nut-in-shell mass, kernel mass, kernel recovery and kernel oil concentration were related to differences in fruit paternity, including between self-pollinated and cross-pollinated fruit, thus demonstrating pollen-parent effects on fruit quality (i.e. xenia). CONCLUSIONS: This study is the first to demonstrate pollen limitation in a mass-flowering tree. Improved pollination led to increased kernel yield of 0.31-0.59 tons ha-1, which equates currently to higher farm-gate income of approximately $US3720-$US7080 ha-1. The heavy reliance of macadamia flowers on cross-pollination and the strong xenia effects on kernel mass demonstrate the high value that pollination services can provide to food production.


Asunto(s)
Proteaceae , Árboles , Animales , Flores , Macadamia/genética , Polen , Polinización , Reproducción
13.
Plant Direct ; 5(12): e364, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938939

RESUMEN

Macadamia, a recently domesticated expanding nut crop in the tropical and subtropical regions of the world, is one of the most economically important genera in the diverse and widely adapted Proteaceae family. All four species of Macadamia are rare in the wild with the most recently discovered, M. jansenii, being endangered. The M. jansenii genome has been used as a model for testing sequencing methods using a wide range of long read sequencing techniques. Here, we report a chromosome level genome assembly, generated using a combination of Pacific Biosciences sequencing and Hi-C, comprising 14 pseudo-molecules, with a N50 of 52 Mb and a total genome assembly size of 758 Mb of which 56% is repetitive. Completeness assessment revealed that the assembly covered -97.1% of the conserved single copy genes. Annotation predicted 31,591 protein coding genes and allowed the characterization of genes encoding biosynthesis of cyanogenic glycosides, fatty acid metabolism, and anti-microbial proteins. Re-sequencing of seven other genotypes confirmed low diversity and low heterozygosity within this endangered species. Important morphological characteristics of this species such as small tree size and high kernel recovery suggest that M. jansenii is an important source of these commercial traits for breeding. As a member of a small group of families that are sister to the core eudicots, this high-quality genome also provides a key resource for evolutionary and comparative genomics studies.

14.
BMC Genomics ; 22(1): 858, 2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34837949

RESUMEN

BACKGROUND: The presence of geminivirus sequences in a preliminary analysis of sRNA sequences from the leaves of macadamia trees with abnormal vertical growth (AVG) syndrome was investigated. RESULTS: A locus of endogenous geminiviral elements (EGE) in the macadamia genome was analysed, and the sequences revealed a high level of deletions and/or partial integrations, thus rendering the EGE transcriptionally inactive. The replication defective EGE in the macadamia genome indicates its inability to be the source of new viral infections and thus cause AVG or any other disease in macadamia. The EGE sequences were detected in two edible Macadamia species that constitute commercial cultivars and the wild germplasm of edible and inedible species of Macadamia. This strongly suggests that the integration preceded speciation of the genus Macadamia. A draft genome of a locus of EGE in Macadamia was developed. The findings of this study provide evidence to suggest the endogenization of the geminiviral sequences in the macadamia genome and the ancestral relationship of EGE with Macadamia in the Proteaceae family. Random mutations accumulating in the EGE inform that the sequence is evolving. CONCLUSIONS: The EGE in Macadamia is inactive and thus not a direct cause of any diseases or syndromes including AVG in macadamia. The insertion of the EGE in the macadamia genome preceded speciation of the genus Macadamia.


Asunto(s)
Genoma , Macadamia , Macadamia/genética
15.
Elife ; 102021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34726596

RESUMEN

Differences between males and females are usually more subtle in dioecious plants than animals, but strong sexual dimorphism has evolved convergently in the South African Cape plant genus Leucadendron. Such sexual dimorphism in leaf size is expected largely to be due to differential gene expression between the sexes. We compared patterns of gene expression in leaves among 10 Leucadendron species across the genus. Surprisingly, we found no positive association between sexual dimorphism in morphology and the number or the percentage of sex-biased genes (SBGs). Sex bias in most SBGs evolved recently and was species specific. We compared rates of evolutionary change in expression for genes that were sex biased in one species but unbiased in others and found that SBGs evolved faster in expression than unbiased genes. This greater rate of expression evolution of SBGs, also documented in animals, might suggest the possible role of sexual selection in the evolution of gene expression. However, our comparative analysis clearly indicates that the more rapid rate of expression evolution of SBGs predated the origin of bias, and shifts towards bias were depleted in signatures of adaptation. Our results are thus more consistent with the view that sex bias is simply freer to evolve in genes less subject to constraints in expression level.


Asunto(s)
Evolución Biológica , Expresión Génica , Genes de Plantas , Proteaceae/genética , Hojas de la Planta/metabolismo , Especificidad de la Especie
16.
Phytochemistry ; 192: 112931, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34478991

RESUMEN

The cylindrical conflorescences of the Banksia spinulosa Sm complex have several different colour types, i.e., black, red, maroon, lemon, and yellow. It is unknown if colour variation is due to extrinsic factors, importantly soil pH. Recent morphological observations have indicated that style colour are not contiguous, so follow-up chemical and soil analysis was conducted to further characterize the colour difference with respect to putative taxa and abiotic factors. Conflorescences of all known colours were sampled from across the eastern Australian distribution of B. spinulosa, and the respective soils were sampled and analysed for pH and total nitrogen. Regression analyses of this data demonstrated that pH and nitrogen gave nil and limited predictability for style colour respectively, i.e., only the taxa with black styles demonstrated a correlation, which was to a soil with slightly higher nitrogen content (p < 0.05). Furthermore, differences of pH were more often between taxa with conflorescences of the same colour. For chemical characterisation, the coloured styles were removed from conflorescences, extracted, and analysed by liquid chromatography-mass spectrometry (HPLC-MS/MS-DAD). Ten anthocyanin and twelve flavonol monoglycosides were identified by mass spectral fragmentation patterns (MS1 and MS2) and retention times. The data demonstrates that style colour differences are caused by the concentration of anthocyanins and their specific chemistry. It remains to be determined if the differences of anthocyanin expression are caused by other abiotic factors, or if it is intrinsic to the respective taxon.


Asunto(s)
Antocianinas , Proteaceae , Australia , Color , Flavonoles , Concentración de Iones de Hidrógeno , Suelo , Espectrometría de Masas en Tándem
17.
Evol Lett ; 5(3): 277-289, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34136275

RESUMEN

Processes driving the divergence of floral traits may be integral to the extraordinary richness of flowering plants and the assembly of diverse plant communities. Several models of pollinator-mediated floral evolution have been proposed; floral divergence may (i) be directly involved in driving speciation or may occur after speciation driven by (ii) drift or local adaptation in allopatry or (iii) negative interactions between species in sympatry. Here, we generate predictions for patterns of trait divergence and community assembly expected under these three models, and test these predictions in Hakea (Proteaceae), a diverse genus in the Southwest Australian biodiversity hotspot. We quantified functional richness for two key floral traits (pistil length and flower color), as well as phylogenetic distances between species, across ecological communities, and compared these to patterns generated from null models of community assembly. We also estimated the statistical relationship between rates of trait evolution and lineage diversification across the phylogeny. Patterns of community assembly suggest that flower color, but not floral phenology or morphology, or phylogenetic relatedness, is more divergent in communities than expected. Rates of lineage diversification and flower color evolution were negatively correlated across the phylogeny and rates of flower colour evolution were positively related to branching times. These results support a role for diversity-dependent species interactions driving floral divergence during the Hakea radiation, contributing to the development of the extraordinary species richness of southwest Australia.

18.
Mol Ecol Resour ; 21(6): 2125-2144, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33955186

RESUMEN

We used long read sequencing data generated from Knightia excelsa, a nectar-producing Proteaceae tree endemic to Aotearoa (New Zealand), to explore how sequencing data type, volume and workflows can impact final assembly accuracy and chromosome reconstruction. Establishing a high-quality genome for this species has specific cultural importance to Maori and commercial importance to honey producers in Aotearoa. Assemblies were produced by five long read assemblers using data subsampled based on read lengths, two polishing strategies and two Hi-C mapping methods. Our results from subsampling the data by read length showed that each assembler tested performed differently depending on the coverage and the read length of the data. Subsampling highlighted that input data with longer read lengths but perhaps lower coverage constructed more contiguous, kmers and gene-complete assemblies than short read length input data with higher coverage. The final genome assembly was constructed into 14 pseudochromosomes using an initial flye long read assembly, a racon/medaka/pilon combined polishing strategy, salsa2 and allhic scaffolding, juicebox curation, and Macadamia linkage map validation. We highlighted the importance of developing assembly workflows based on the volume and read length of sequencing data and established a robust set of quality metrics for generating high-quality assemblies. Scaffolding analyses highlighted that problems found in the initial assemblies could not be resolved accurately by Hi-C data and that assembly scaffolding was more successful when the underlying contig assembly was of higher accuracy. These findings provide insight into how quality assessment tools can be implemented throughout genome assembly pipelines to inform the de novo reconstruction of a high-quality genome assembly for nonmodel organisms.


Asunto(s)
Genoma de Planta , Genómica , Proteaceae , Secuenciación de Nucleótidos de Alto Rendimiento , Nueva Zelanda , Proteaceae/genética , Análisis de Secuencia de ADN
19.
Chemosphere ; 275: 130135, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33984915

RESUMEN

Rhizoremediation potential of different wild plant species for total (aliphatic) petroleum hydrocarbon (TPH)-contaminated soils was investigated. Three-week-old seedlings of Acacia inaequilatera, Acacia pyrifolia, Acacia stellaticeps, Banksia seminuda, Chloris truncata, Hakea prostrata, Hardenbergia violacea, and Triodia wiseana were transplanted in a soil contaminated with diesel and engine oil as TPH at pollution levels of 4,370 (TPH1) and 7,500 (TPH2) mg kg-1, and an uncontaminated control (TPH0). After 150 days, the presence of TPH negatively affected the plant growth, but the growth inhibition effect varied between the plant species. Plant growth and associated root biomass influenced the activity of rhizo-microbiome. The presence of B. seminuda, C. truncata, and H. prostrata significantly increased the TPH removal rate (up to 30% compared to the unplanted treatment) due to the stimulation of rhizosphere microorganisms. No significant difference was observed between TPH1 and TPH2 regarding the plant tolerance and rhizoremediation potentials of the three plant species. The presence of TPH stimulated cluster root formation in B. seminuda and H. prostrata which was associated with enhanced TPH remediation of these two members of Proteaceae family. These results indicated that B. seminuda, C. truncata, and H. prostrata wild plant species could be suitable candidates for the rhizoremediation of TPH-contaminated soil.


Asunto(s)
Petróleo , Proteaceae , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
20.
Front Plant Sci ; 12: 636056, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679850

RESUMEN

Southern South American Proteaceae thrive on young volcanic substrates, which are extremely low in plant-available phosphorus (P). Most Proteaceae exhibit a nutrient-acquisition strategy based on the release of carboxylates from specialized roots, named cluster roots (CR). Some Proteaceae colonize young volcanic substrates which has been related to CR functioning. However, physiological functioning of other Proteaceae on recent volcanic substrates is unknown. We conducted an experiment with seedlings of five Proteaceae (Gevuina avellana, Embothrium coccineum, Lomatia hirsuta, L. ferruginea, and L. dentata) grown in three volcanic materials. Two of them are substrates with very low nutrient concentrations, collected from the most recent deposits of the volcanoes Choshuenco and Calbuco (Chile). The other volcanic material corresponds to a developed soil that exhibits a high nutrient availability. We assessed morphological responses (i.e., height, biomass, and CR formation), seed and leaf macronutrient and micronutrient concentrations and carboxylates exuded by roots. The results show that G. avellana was less affected by nutrient availability of the volcanic substrate, probably because it had a greater nutrient content in its seeds and produced large CR exuding carboxylates that supported their initial growth. Embothrium coccineum exhibited greater total plant height and leaf P concentration than Lomatia species. In general, in all species leaf macronutrient concentrations were reduced on nutrient-poor volcanic substrates, while leaf micronutrient concentrations were highly variable depending on species and volcanic material. We conclude that Proteaceae from temperate rainforests differ in their capacity to grow and acquire nutrients from young and nutrient-poor volcanic substrates. The greater seed nutrient content, low nutrient requirements (only for G. avellana) and ability to mobilize nutrients help explain why G. avellana and E. coccineum are better colonizers of recent volcanic substrates than Lomatia species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA