Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 413: 131467, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260730

RESUMEN

Wastewater resources can be used to produce microbial protein for animal feed or organic fertiliser, conserving food chain resources. This investigation hasemployed thefermented sewage to photoheterotrophically grown purple non-sulfur bacteria (PNSB) in a 2.5 m3 pilot-scaleraceway-pond with infrared light to produce proteinaceous biomass. Fermented sewage with synthetic media consisting of sodium acetate and propionic acids at a surface-to-volume (S/V) ratio of 10 m2/m3 removed 89%, 93%, and 81% of chemical oxygen demand, ammonium nitrogen, and orthophosphate, respectively; whereas respective removal in fermented sewage alone without synthetic media was 73%, 73%, and 72% during batch operation of 120 h. The biomass yield of 0.88-0.95 g CODbiomass /g CODremoved with protein content of 40.3 ± 0.3%-43.9 ± 0.2% w/w was obtained for fermented sewage with synthetic media. The results revealed enhanced possibility of scaling-up the raceway reactor to recover resources from municipal wastewater and enable simultaneous high-rate PNSB single-cell protein production.

2.
Chemosphere ; 353: 141535, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403121

RESUMEN

Recovering resources from wastewater to alleviate the energy crisis has become the prevailing trend of technological development. Purple phototrophic bacteria (PPB), a group of fast-growing microbes, have been widely noticed for their potential in producing value-added products from waste streams. However, saline contents in these waste streams, such as food processing wastewater pose a big challenge, which not only restrain the pollutant removal efficiency, but also hinder the growth of functional microbes. To overcome this, a photo anaerobic membrane bioreactor cultivating PPB (PPB-MBR) was constructed and its performance upon long-term salinity stress was investigated. PPB-MBR achieved desirable pollutants removal performance with the average COD and NH4+ removal efficiency being 87% (±8%, n = 87) and 89% (±10%, n = 87), respectively during long-term exposure to salinity stress of 1-80 g NaCl L-1. PPB were predominant during the entire operation period of 87 days (60%-80%), obtaining maximum biomass yield of 0.67 g biomass g-1 CODremoved and protein productivity of 0.18 g L-1 d-1 at the salinity level of 20 g NaCl L-1 and 60 g NaCl L-1, respectively. The sum of value-added products in proportion to the biomass reached 58% at maximum at the salinity level of 60 g NaCl L-1 with protein, pigments and trehalose contributing to 44%, 8.7%, and 5%, respectively. Based on economic analysis, the most cost-saving scenario treating food processing wastewater was revealed at salinity level of around 20 g NaCl L-1. However, more optimization tools are needed to boost the production efficiency so that the profit from value-added products can outweigh the additional cost by excess salinity in the future implication.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Proteobacteria , Eliminación de Residuos Líquidos , Bacterias , Cloruro de Sodio , Reactores Biológicos/microbiología , Bacterias Anaerobias , Salinidad
3.
Sci Total Environ ; 912: 168899, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38029992

RESUMEN

The versatile capacity of purple phototrophic bacteria (PPB) for producing valuable bioproducts has gathered renewed interest in the field of resource recovery and waste valorisation. However, greater knowledge regarding the viability of applying PPB technologies in outdoor, large-scale systems is required. This study assessed, for the first time, the upscaling of the phototrophic polyhydroxyalkanoate (PHA) production technology in a pilot-scale system operated in outdoor conditions. An integrated system composed of two up-flow anaerobic sludge blanket (UASB) reactors (for fermentation of wastewater with molasses), and two high-rate algal ponds retrofitted into PPB ponds, was operated in a wastewater treatment plant under outdoor conditions. UASB's adaptation to the outdoor temperatures involved testing different operational settings, namely hydraulic retention times (HRT) of 48 and 72 h, and molasses fermentation in one or two UASBs. Results have shown that the fermentation of molasses in both UASBs with an increased HRT of 72 h was able to ensure a suitable operation during colder conditions, achieving 3.83 ± 0.63 g CODFermentative Products/L, compared to the 3.73 ± 0.85 g CODFermentative Products/L achieved during warmer conditions (molasses fermentation in one UASB; HRT 48 h). Furthermore, the PPB ponds were operated under a light-feast/dark-aerated-famine strategy and fed with the fermented wastewater and molasses from the two UASBs. The best PHA production was obtained during the summer of 2018 and spring of 2019, attaining 34.7 % gPHA/gVSS with a productivity of 0.11 gPHA L-1 day-1 and 36 % gPHA/gVSS with a productivity of 0.14 gPHA L-1 day-1, respectively. Overall, this study showcases the first translation of phototrophic PHA production technology from an artificially illuminated laboratory scale system into a naturally illuminated, outdoor, pilot-scale system. It also addresses relevant process integration aspects with UASBs for pre-fermenting wastewater with molasses, providing a novel operational strategy to achieve photosynthetic PHA production in outdoor full-scale systems.


Asunto(s)
Polihidroxialcanoatos , Aguas Residuales , Estanques , Aguas del Alcantarillado/microbiología , Bacterias , Reactores Biológicos
4.
Microorganisms ; 11(9)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37764168

RESUMEN

This work shows the potential of a new way of co-treatment of domestic wastewater (DWW) and a liquid stream coming from the thermal hydrolysis of the organic fraction of municipal solid waste (OFMSW) mediated by a mixed culture of purple phototrophic bacteria (PPB) capable of assimilating carbon and nutrients from the medium. The biological system is an open single-step process operated under microaerophilic conditions at an oxidative reduction potential (ORP) < 0 mV with a photoperiod of 12/24 h and fed during the light stage only so the results can be extrapolated to outdoor open pond operations by monitoring the ORP. The effluent mostly complies with the discharge values of the Spanish legislation in COD and p-values (<125 mg/L; <2 mg/L), respectively, and punctually on values in N (<15 mg/L). Applying an HRT of 3 d and a ratio of 100:7 (COD:N), the presence of PPB in the mixed culture surpassed 50% of 16S rRNA gene copies, removing 78% of COD, 53% of N, and 66% of P. Furthermore, by increasing the HRT to 5 d, removal efficiencies of 83% of COD, 65% of N, and 91% of P were achieved. In addition, the reactors were further operated in a membrane bioreactor, thus separating the HRT from the SRT to increase the specific loading rate. Very satisfactory removal efficiencies were achieved by applying an HRT and SRT of 2.3 and 3 d, respectively: 84% of COD, 49% of N, and 93% of P despite the low presence of PPB due to more oxidative conditions, which step-by-step re-colonized the mixed culture until reaching >20% of 16S rRNA gene copies after 49 d of operation. These results open the door to scaling up the process in open photobioreactors capable of treating urban wastewater and municipal solid waste in a single stage and under microaerophilic conditions by controlling the ORP of the system.

5.
Front Microbiol ; 14: 1115956, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992932

RESUMEN

The climate crisis requires rethinking wastewater treatment to recover resources, such as nutrients and energy. In this scenario, purple phototrophic bacteria (PPB), the most versatile microorganisms on earth, are a promising alternative to transform the wastewater treatment plant concept into a biorefinery model by producing valuable protein-enriched biomass. PPB are capable of interacting with electrodes, exchanging electrons with electrically conductive materials. In this work, we have explored for mobile-bed (either stirred or fluidized) cathodes to maximize biomass production. For this purpose, stirred-electrode reactors were operated with low-reduced (3.5 e-/C) and high-reduced (5.9 e-/C) wastewater under cathodic polarization (-0.4 V and -0.8 V vs. Ag/AgCl). We observed that cathodic polarization and IR irradiation can play a key role in microbial and phenotypic selection, promoting (at -0.4 V) or minimizing (at -0.8 V) the presence of PPB. Then, we further study how cathodic polarization modulates PPB biomass production providing a fluid-like electrode as part of a so-called photo microbial electrochemical fluidized-bed reactor (photoME-FBR). Our results revealed the impact of reduction status of carbon source in wastewater to select the PPB photoheterotrophic community and how electrodes drive microbial population shifts depending on the reduction status of such carbon source.

6.
Water Res ; 229: 119401, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36450178

RESUMEN

The economic feasibility of purple phototrophic bacteria (PPB) for resource recovery relies on using enriched-mixed cultures and sunlight. This work presents an extended Photo-Anaerobic Model (ePAnM), considering: (i) the diverse metabolic capabilities of PPB, (ii) microbial clades interacting with PPB, and (iii) varying environmental conditions. Key kinetic and stoichiometric parameters were either determined experimentally (with dedicated tests), calculated, or gathered from literature. The model was calibrated and validated using different datasets from an outdoors demonstration-scale reactor, as well as results from aerobic and anaerobic batch tests. The ePAnM was able to predict the concentrations of key compounds/components (e.g., COD, volatile fatty acids, and nutrients), as well as microbial communities (with anaerobic systems dominated by fermenters and PPB). The results underlined the importance of considering other microbial clades and varying environmental conditions. The model predicted a minimum hydraulic retention time of 0.5 d-1. A maximum width of 10 cm in flat plate reactors should not be exceeded. Simulations showed the potential of a combined day-anaerobic/night-aerobic operational strategy to allow efficient continuous operation.


Asunto(s)
Proteobacteria , Aguas Residuales , Reactores Biológicos/microbiología , Cinética , Ácidos Grasos Volátiles
7.
Trends Biotechnol ; 41(1): 106-119, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35843758

RESUMEN

Purple non-sulfur bacteria (PNSB) show great potential for environmental and industrial biotechnology, producing microbial protein, biohydrogen, polyhydroxyalkanoates (PHAs), pigments, etc. When grown photoheterotrophically, the carbon source is typically more reduced than the PNSB biomass, which leads to a redox imbalance. To mitigate the excess of electrons, PNSB can exhibit several 'electron sinking' strategies, such as CO2 fixation, N2 fixation, and H2 and PHA production. The lack of a comprehensive (over)view of these redox strategies is hindering the implementation of PNSB for biotechnology applications. This review aims to present the state of the art of redox homeostasis in phototrophically grown PNSB, presenting known and theoretically expected strategies, and discussing them from stoichiometric, thermodynamic, metabolic, and economic points of view.


Asunto(s)
Polihidroxialcanoatos , Proteobacteria , Proteobacteria/metabolismo , Biotecnología , Oxidación-Reducción , Homeostasis
8.
Lett Appl Microbiol ; 75(5): 1275-1285, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35938312

RESUMEN

Purple non-sulphur bacteria (PNSB) are an emerging group of microbes attractive for applied microbiology applications such as wastewater treatment, plant biostimulants, microbial protein, polyhydroxyalkanoates and H2 production. These photoorganoheterotrophic microbes have the unique ability to grow selectively on organic carbon in anaerobic photobioreactors. This so-called selectivity implies that the microbial community will have a low diversity and a high abundance of a particular PNSB species. Recently, it has been shown that certain PNSB strains can produce antimicrobials, yet it remains unclear whether these contribute to competitive inhibition. This research aimed to understand which type of antimicrobial PNSB produce and identify whether these compounds contribute to their selective growth. Mining 166 publicly-available PNSB genomes using the computational tool BAGEL showed that 59% contained antimicrobial encoding regions, more specifically biosynthetic clusters of bacteriocins and non-ribosomal peptide synthetases. Inter- and intra-species inhibition was observed in agar spot assays for Rhodobacter blasticus EBR2 and Rhodopseudomonas palustris EBE1 with inhibition zones of, respectively, 5.1 and 1.5-5.7 mm. Peptidomic analysis detected a peptide fragment in the supernatant (SVLQLLR) that had a 100% percentage identity match with a known non-ribosomal peptide synthetase with antimicrobial activity.


Asunto(s)
Antiinfecciosos , Bacteriocinas , Polihidroxialcanoatos , Proteobacteria/metabolismo , Agar , Carbono/metabolismo , Péptido Sintasas , Fragmentos de Péptidos
9.
Microorganisms ; 10(5)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35630403

RESUMEN

Halorhodospira (Hlr.) species are the most halophilic and alkaliphilic of all purple bacteria. Hlr. halochloris exhibits the lowest LH1 Qy transition energy among phototrophic organisms and is the only known triply extremophilic anoxygenic phototroph, displaying a thermophilic, halophilic, and alkaliphilic phenotype. Recently, we reported that electrostatic charges are responsible for the unusual spectroscopic properties of the Hlr. halochloris LH1 complex. In the present work, we examined the effects of salt and pH on the spectroscopic properties and thermal stability of LH1-RCs from Hlr. halochloris compared with its mesophilic counterpart, Hlr. abdelmalekii. Experiments in which the photocomplexes were subjected to different levels of salt or variable pH revealed that the thermal stability of LH1-RCs from both species was largely retained in the presence of high salt concentrations and/or at alkaline pH but was markedly reduced by lowering the salt concentration and/or pH. Based on the amino acid sequences of LH1 polypeptides and their composition of acidic/basic residues and the Hofmeister series for cation/anion species, we discuss the importance of electrostatic charge in stabilizing the Hlr. halochloris LH1-RC complex to allow it to perform photosynthesis in its warm, hypersaline, and alkaline habitat.

10.
Talanta ; 246: 123490, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35500519

RESUMEN

PPB carotenoids are usually measured through spectrophotometric analysis, measuring total carotenoids (TCs) which has low accuracy and cannot identify individual carotenoids or isomers. Here, we developed an ultra-performance liquid chromatography method with ultraviolet and high-resolution mass spectrometry detection (UPLC-UV-HRMS) to quantify neurosporene, lycopene, and bacteriochlorophyll a contents in PPB cultures. The method exhibited satisfactory recoveries for individual pigments (between 82.1% and 99.5%) and was applied to a range of mixed PPB cultures. The use of a C30 column also enabled the detection of three different isomers of lycopene. In addition, a method for anaerobic photoheterotrophic PPB cultivation to acquire live-cell spectrophotometric information was developed and tested by modifying a standard microbial culture microplate system. A rapid, and relatively low effort principal component analysis (PCA) based decomposition of the whole-cell spectra for pigment analysis in the microplates was also developed. Analysing whole-cell spectra via PCA allowed more accurate prediction of individual pigments compared to absorption methods, and can be done non-destructively, during live-cell growth, but requires calibration for new media and microbial matrices.


Asunto(s)
Carotenoides , Cromatografía Líquida de Alta Presión , Licopeno , Espectrometría de Masas , Espectrofotometría
11.
Water Res ; 216: 118327, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35339970

RESUMEN

To make purple phototrophic bacteria (PPB)-based technologies a reality for resource recovery, research must be demonstrated outdoors, using scaled reactors. In this study, a 10 m long PPB-enriched flat plate photobioreactor (FPPBR) with a volume of 0.95 m3 was operated for 253 days, fed with poultry processing wastewater. Different operational strategies were tested, including varying influent types, retention times, feeding strategies, and anaerobic/aerobic conditions in a novel mixed metabolic mode concept. The overall results show that regardless of the fermented wastewater fed (raw or after solid removal via dissolved air flotation) and the varying environmental conditions (e.g., light exposure and temperatures), the FPPBR provided effective volatile fatty acids (VFAs), N, and P removals (average efficiencies of >90%, 34-77%, and 28-45%, respectively). The removal of N and P was limited by the availability of biodegradable COD. Biomass (C, N and P) could be harvested at ∼90% VS/TS ratio, 58% crude protein content and a suitable amino acid profile for potential feed applications. During fully anaerobic operation with semicontinuous/day-only feeding, the FPPBR showed biomass productivities between 25 and 84 g VS m-2 d-1 (high due to solid influx; the productivities estimated from COD removal rates were 6.0-24 g VS•m-2•d-1 (conservative values)), and soluble COD removal rates of up to 1.0 g•L-1•d-1 (overall average of 0.34 ± 0.16 g•L-1•d-1). Under these conditions, the relative abundance of PPB in the harvested biomass was up to 56%. A minimum overall HRT of 2-2.4 d (1.0-1.2 d when only fed during the day) is recommended to avoid PPB washout, assuming no biomass retention. A combined daily-illuminated-anaerobic/night-aerobic operation (supplying air during night-time) exploiting photoheterotrophy during the day and aerobic chemoheterotrophy of the same bacteria at night improved the overall removal performance, avoiding VFA accumulation during the night. However, while enabling enhanced treatment, this resulted in a lower relative abundance of PPB and reduced biomass productivities, highlighting the need to balance resource recovery and treatment goals.


Asunto(s)
Fotobiorreactores , Proteobacteria , Bacterias , Biomasa , Reactores Biológicos , Aguas Residuales
12.
Bioresour Technol ; 348: 126806, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35131464

RESUMEN

Purple non-sulfur bacteria (PNSB) form an interesting group of microbes for resource recovery from wastewater. Solid/liquid separation is key for biomass and value-added products recovery, yet insights into PNSB aggregation are thus far limited. This study explored the effects of organic loading rate (OLR), hydraulic retention time (HRT) and water composition on the aggregation of Rhodobacter capsulatus in an anaerobic upflow photobioreactor. Between 2.0 and 14.6 gCOD/(L.d), the optimal OLR for aggregation was 6.1 gCOD/(L.d), resulting in a sedimentation flux of 5.9 kgTSS/(m2.h). With HRT tested between 0.04 and 1.00 d, disaggregation occurred at the relatively long HRT (1 d), possibly due to accumulation of thus far unidentified heat-labile metabolites. Chemical oxygen demand (COD) to nitrogen ratios (6-35 gCOD/gN) and the nitrogen source (ammonium vs. glutamate) also impacted aggregation, highlighting the importance of the type of wastewater and its pre-treatment. These novel insights to improve purple biomass separation pave the way for cost-efficient PNSB applications.


Asunto(s)
Fotobiorreactores , Proteobacteria , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Fotobiorreactores/microbiología , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Agua
13.
Water Res ; 214: 118194, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196622

RESUMEN

Resource recovery from wastewater, preferably as high value products, has become an integral part of modern wastewater treatment. This work presents the potential to produce single cell protein (SCP) from pre-settled piggery wastewater (PWW) and meat chicken processing wastewater (CWW), utilising anaerobic purple phototrophic bacteria (PPB). PPB were grown as biofilm in outdoors 60 L, 80 L and 100 L flat-plate reactors, operated in sequential batch mode. PPB biofilm was recovered from reactor walls at a total solid (TS) content ∼90 g•L - 1, and the harvested biomass (depending on the wastewater) had a consistent quality, with high protein contents (50-65%) and low ash, potentially applicable as SCP. The COD, N and P removal efficiencies were 71±5.3%, 22±6.6%, 65±5.6% for PWW and 78±1.8%, 67±2.7% and 37±4.0% for CWW, respectively, with biofilm areal productivities up to 14 g TS•m - 2•d - 1. This was achieved at ammonium-N concentrations over 1.0 g•L - 1 and temperatures up to 55 °C and down to 6 °C (daily fluctuations of 20-30 °C). The removal performances and biomass productivities were mostly dependent on the bioavailable COD in the form of volatile fatty acids (VFA). At sufficient VFA availability, the irradiance became limiting, capping biofilm formation. Harvesting of the suspended fraction resulted in increased productivities and recovery efficiencies, but lowered the product quality (e.g., containing undesired inerts). The optimum between quantity and quality of product is dependent on the wastewater characteristics (i.e., organic degradable fraction) and potential pre-treatment. This study shows the potential to utilise sunlight to treat agri-industrial wastewaters while generating protein-rich PPB biomass to be used as a feed, feed additive or feed supplement.

14.
Environ Sci Technol ; 55(12): 8278-8286, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34085818

RESUMEN

Purple non-sulfur bacteria (PNSB) show potential for microbial protein production on wastewater as animal feed. They offer good selectivity (i.e., low microbial diversity and high abundance of one species) when grown anaerobically in the light. However, the cost of closed anaerobic photobioreactors is prohibitive for protein production. Although open raceway reactors are cheaper, their feasibility to selectively grow PNSB is thus far unexplored. This study developed operational strategies to boost PNSB abundance in the biomass of a raceway reactor fed with volatile fatty acids. For a flask reactor run at a 2 day sludge retention time (SRT), matching the chemical oxygen demand (COD) loading rate to the removal rate in the light period prevented substrate availability during the dark period and increased the PNSB abundance from 50-67 to 88-94%. A raceway reactor run at a 2 day SRT showed an increased PNSB abundance from 14 to 56% when oxygen supply was reduced (no stirring at night). The best performance was achieved at the highest surface-to-volume ratio (10 m2 m-3 increased light availability) showing productivities up to 0.2 g protein L-1 day-1 and a PNSB abundance of 78%. This study pioneered in PNSB-based microbial protein production in raceway reactors, yielding high selectivity while avoiding the combined availability of oxygen, COD, and darkness.


Asunto(s)
Proteobacteria , Aguas Residuales , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Fotobiorreactores , Aguas del Alcantarillado
15.
Chemosphere ; 278: 130464, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33845437

RESUMEN

Oil pollution which results from industrial activities, especially oil and gas industry, has become a serious issue. Cinder beats (CB), coconut fiber (CF) and polyurethane foam (PUF) are promising immobilization carriers for crude oil biodegradation because they are inexpensive, nontoxic, and non-polluting. The present investigation was aimed to evaluate this advanced technology and compare the efficiency of these immobilization carriers on supporting purple phototrophic bacterial (PPB) strains in hydrocarbon biodegradation of crude oil contaminated seawater. The surface of these biocarriers was supplemented with crude oil polluted seawater and immobilized by PPB strains, Rhodopseudomonas sp. DD4, DQ41 and FO2. Through scanning electron microscopy (SEM), the bacterial cells were shown to colonize and attach strongly to these biocarriers. The bacteria-driven carrier systems degraded over 84.2% supplemented single polycyclic aromatic hydrocarbons (PAHs). The aliphatic and aromatic components in crude oil that treated with carrier-immobilized consortia were degraded remarkably after 14 day-incubation. Among the three biocarriers, removal of the crude oil by CF-bacteria system was the highest (nearly 100%), followed by PUF-bacteria (89.5%) and CB-bacteria (86.3%) with the initial crude oil concentration was 20 g/L. Efficiency of crude oil removal by CB-bacteria and PUF-bacteria were 86.3 and 89.5%, respectively. Till now, the studies on crude oil degradation by mixture species biofilms formed by PPB on different carriers are limited. The present study showed that the biocarriers of an oil-degrading consortium could be made up of waste materials that are cheap and eco-friendly as well as augment the biodegradation of oil-contaminated seawater.


Asunto(s)
Contaminación por Petróleo , Petróleo , Biodegradación Ambiental , Petróleo/análisis , Contaminación por Petróleo/análisis , Proteobacteria , Aguas Residuales
16.
Microorganisms ; 9(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668742

RESUMEN

Bioelectrochemical systems are a promising technology capable of reducing CO2 emissions, a renewable carbon source, using electroactive microorganisms for this purpose. Purple Phototrophic Bacteria (PPB) use their versatile metabolism to uptake external electrons from an electrode to fix CO2. In this work, the effect of the voltage (from -0.2 to -0.8 V vs. Ag/AgCl) on the metabolic CO2 fixation of a mixed culture of PPB under photoheterotrophic conditions during the oxidation of a biodegradable carbon source is demonstrated. The minimum voltage to fix CO2 was between -0.2 and -0.4 V. The Calvin-Benson-Bassham (CBB) cycle is the main electron sink at these voltages. However, lower voltages caused the decrease in the current intensity, reaching a minimum at -0.8 V (-4.75 mA). There was also a significant relationship between the soluble carbon uptake in terms of chemical oxygen demand and the electron consumption for the experiments performed at -0.6 and -0.8 V. These results indicate that the CBB cycle is not the only electron sink and some photoheterotrophic metabolic pathways are also being affected under electrochemical conditions. This behavior has not been tested before in photoheterotrophic conditions and paves the way for the future development of photobioelectrochemical systems under heterotrophic conditions.

17.
Bioresour Technol ; 327: 124820, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33578354

RESUMEN

The increasing volume of waste streams require new biological technologies that can address pollution concerns while offering sustainable products. Purple phototrophic bacteria (PPB) are very versatile organisms that present a unique metabolism that allows them to adapt to a variety of environments, including the most complex waste streams. Their successful adaptation to such demanding conditions is partly the result of internal polymers accumulation which can be stored for electron/energy balance or as carbon and nutrients reserves for deprivation periods. Polyhydroxyalkanoates, glycogen, sulphur and polyphosphate are examples of polymers produced by PPB that can be economically explored due to their applications in the plastic, energy and fertilizers sectors. Their large-scale production implies the outdoor operation of PPB systems which brings new challenges, identified in this review. An overview of the current PPB polymer producing technologies and prospects for their future development is also provided.


Asunto(s)
Bacterias , Polihidroxialcanoatos , Biopolímeros , Color , Proteobacteria
18.
Environ Sci Pollut Res Int ; 28(8): 10262-10282, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33442801

RESUMEN

Economic growth and the rapid increase in the world population has led to a greater need for natural resources, which in turn, has put pressure on said resources along with the environment. Water, food, and energy, among other resources, pose a huge challenge. Numerous essential resources, including organic substances and valuable nutrients, can be found in wastewater, and these could be recovered with efficient technologies. Protein recovery from waste streams can provide an alternative resource that could be utilized as animal feed. Membrane separation, adsorption, and microbe-assisted protein recovery have been proposed as technologies that could be used for the aforementioned protein recovery. This present study focuses on the applicability of different technologies for protein recovery from different wastewaters. Membrane technology has been proven to be efficient for the effective concentration of proteins from waste sources. The main emphasis of the present short communication is to explore the possible strategies that could be utilized to recover or restore proteins from different wastewater sources. The presented study emphasizes the applicability of the recovery of proteins from various waste sources using membranes and the combination of the membrane process. Future research should focus on novel technologies that can help in the efficient extraction of these high-value compounds from wastes. Lastly, this short communication will evaluate the possibility of integrating membrane technology. This study will discuss the important proteins present in different industrial waste streams, such as those of potatoes, poultry, dairy, seafood and alfalfa, and the possible state of the art technologies for the recovery of these valuable proteins from the wastewater.


Asunto(s)
Aguas Residuales , Purificación del Agua , Animales , Residuos Industriales , Tecnología , Eliminación de Residuos Líquidos , Agua
19.
Bioresour Technol ; 319: 124192, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33039841

RESUMEN

Aerobic heterotrophic bacteria (AHB) and purple non-sulfur bacteria (PNSB) are typically explored as two separate types of microbial protein, yet their properties as respectively a bulk and added-value feed ingredient make them appealing for combined use. The feasibility of cocultivation in a sequential photo- and chemotrophic approach was investigated. First, mapping the chemotrophic growth kinetics for four Rhodobacter, Rhodopseudomonas and Rhodospirillum species on different carbon sources showed a preference for fructose (µmax 2.4-3.9 d-1 28 °C; protein 36-59%DW). Secondly, a continuous photobioreactor inoculated with Rhodobacter capsulatus (VFA as C-source) delivered the starter culture for an aerobic batch reactor (fructose as C-source). This two-stage system showed an improved nutritional quality compared to AHB production: higher protein content (45-71%DW), more attractive amino/fatty acid profile and contained up to 10% PNSB. The findings strengthen protein production with cocultures and might enable the implementation of the technology for resource recovery on streams such as wastewater.


Asunto(s)
Proteobacteria , Rhodopseudomonas , Cinética , Rhodobacter , Aguas Residuales
20.
Biotechnol Rep (Amst) ; 28: e00563, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304839

RESUMEN

Anoxygenic phototrophic bacteria (APB) are a phylogenetically diverse group of organisms that can harness solar energy for their growth and metabolism. These bacteria vary broadly in terms of their metabolism as well as the composition of their photosynthetic apparatus. Unlike oxygenic phototrophic bacteria such as algae and cyanobacteria, APB can use both organic and inorganic electron donors for light-dependent fixation of carbon dioxide without generating oxygen. Their versatile metabolism, ability to adapt in extreme conditions, low maintenance cost and high biomass yield make APB ideal for wastewater treatment, resource recovery and in the production of high value substances. This review highlights the advantages of APB over algae and cyanobacteria, and their applications in photo-bioelectrochemical systems, production of poly-ß-hydroxyalkanoates, single-cell protein, biofertilizers and pigments. The ecology of ABP, their distinguishing factors, various physiochemical parameters governing the production of high-value substances and future directions of APB utilization are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA