Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 948: 174697, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019280

RESUMEN

The fate of black biodegradable mulch film (MF) based on starch and poly(butylene-adipate-co-terephthalate) (PBAT) in agricultural soil is investigated herein. Pristine (BIO-0) and UV-aged film samples (BIO-A192) were buried for 16 months at an experimental field in southern Italy. Visual, physical, chemical, morphological, and mechanical analyses were carried out before and after samples burial. Film residues in the form of macro- and microplastics in soil were analyzed at the end of the trial. Progressive deterioration of both pristine and UV-aged samples, with surface loss and alterations in mechanical properties, occurred from 42 days of burial. After 478 days, the apparent surface of BIO-0 and BIO-A192 films decreased by 57 % and 66 %, respectively. Burial determined a rapid depletion of starch from the polymeric blend, especially for the BIO-A192, while the degradation of the polyester phase was slower. Upon burial, an enrichment of aromatic moieties of PBAT in the film residues was observed, as well as microplastics release to soil. The analysis of the MF degradation products extracted from soil (0.006-0.008 % by mass in the soil samples) revealed the predominant presence of adipate moieties. After 478 days of burial, about 23 % and 17 % of the initial amount of BIO-0 and BIO-A192, respectively, were extracted from the soil. This comprehensive study underscores the complexity of biodegradation phenomena that involve the new generation of mulch films in the field. The different biodegradability of the polymeric components, the climate, and the soil conditions that did not strictly meet the parameters required for the standard test method devised for MFs, have significantly influenced their degradation rate. This finding further emphasizes the importance of implementing field experiments to accurately assess the real effects of biodegradable MFs on soil health and overall agroecosystem sustainability.

2.
J Hazard Mater ; 476: 135042, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944996

RESUMEN

Tires are a major source of synthetic and natural rubber particles, metals and organic compounds, in which several compounds are linked to negative environmental impact. Recent advances in material technology, coupled with focus on sustainability, have introduced a new range of tires, sold as "green, sustainable, and eco-friendly". Although these "green" tires may have lower impact on the environment on a global scale, there is no current knowledge about the chemical composition of "green" tires, and whether they are more eco-friendly when considering the release of tire wear particles or tire-associated chemicals. Here we have investigated the chemical composition of nine "green" vehicle tires, one "green" bike tire and seven "conventional" vehicle tires. No significant difference was found between "green" and "conventional" tires tested in this study. For N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), the average concentration in "green" tires were higher (16 ± 7.8 µg/mg) compared to "conventional" tires (8.7 ± 4.5 µg/mg). The relationship between metals, selected organic compounds and rubbers demonstrated large variation across brands, and lower variability between tires grouped according to their seasonal use. This study indicates that more work is needed to understand how the shift towards sustainable tires might change the chemical composition of tires.

3.
Anal Chim Acta ; 1314: 342754, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38876512

RESUMEN

The unique properties of per- and polyfluoroalkyl substances (PFAS) have led to their extensive use in consumer products, including ski wax. Based on the risks associated with PFAS, and to align with PFAS regulations, the international ski federation (FIS) implemented a ban on products containing "C8 fluorocarbons/perfluorooctanoate (PFOA)" at all FIS events from the 2021/2022 season, leading manufactures to shift their formulations towards short-chain PFAS chemistries. To date, most studies characterising PFAS in ski waxes have measured a suite of individual substances using targeted analytical approaches. However, the fraction of total fluorine (TF) in the wax accounted for by these substances remains unclear. In this study, we sought to address this question by applying a multi-platform, fluorine mass balance approach to a total of 10 commercially available ski wax products. Analysis of TF by combustion ion chromatography (CIC) revealed concentrations of 1040-51700 µg F g-1 for the different fluorinated waxes. In comparison, extractable organic fluorine (EOF) determined in methanol extracts by CIC (and later confirmed by inductively-coupled plasma-mass spectrometry and 19F- nuclear magnetic resonance spectroscopy) ranged from 92 to 3160 µg g-1, accounting for only 3-8.8 % of total fluorine (TF). Further characterisation of extracts by cyclic ion mobility-mass spectrometry (IMS) revealed 15 individual PFAS with perfluoroalkyl carboxylic acid concentrations up to 33 µg F g-1, and 3 products exceeding the regulatory limit for PFOA (0.025 µg g-1) by a factor of up to 100. The sum of all PFAS accounted for only 0.01-1.0 % of EOF, implying a high percentage of unidentified PFAS, thus, pyrolysis gas chromatography-mass spectrometry was used to provide evidence of the nature of the non-extractable fluorine present in the ski wax products.


Asunto(s)
Flúor , Fluorocarburos , Ceras , Fluorocarburos/análisis , Fluorocarburos/química , Flúor/análisis , Flúor/química , Ceras/química , Ceras/análisis , Caprilatos/análisis , Caprilatos/química
4.
Sci Total Environ ; 934: 173219, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750738

RESUMEN

Although seaweeds rank among the most productive vegetated habitats globally, their inclusion within Blue Carbon frameworks is at its onset, partially because they usually grow in rocky substrates and their organic carbon (Corg) is mostly exported and stored beyond their habitat and thus, demonstrating its long-term storage is challenging. Here, we studied the sedimentary Corg storage in macroalgal forests dominated by Gongolaria barbata and in adjacent seagrass Cymodocea nodosa mixed with Caulerpa prolifera algae meadows, and bare sand habitats in Mediterranean shallow coastal embayments. We characterized the biogeochemistry of top 30 cm sedimentary deposits, including sediment grain-size, organic matter and Corg contents, Corg burial rates and the provenance of sedimentary Corg throughout stable carbon isotopes (δ13Corg) and pyrolysis analyses. Sediment Corg stocks and burial rates (since 1950) in G. barbata forests (mean ± SE, 3.5 ± 0.2 kg Corg m-2 accumulated at 15.5 ± 1.6 g Corg m-2 y-1) fall within the range of those reported for traditional Blue Carbon Ecosystems. Although the main species contributing to sedimentary Corg stocks in all vegetated habitats examined was C. nodosa (36 ± 2 %), macroalgae contributed 49 % (19 ± 2 % by G. barbata and 30 ± 3 % by C. prolifera) based on isotope mixing model results. Analytical pyrolysis confirmed the presence of macroalgae-derived compounds in the sediments, including N-compounds and α-tocopherol linked to G. barbata and C. prolifera, respectively. The sedimentary Corg burial rate linked to macroalgae within the macroalgal forests examined ranged from 5.4 to 9.5 g Corg m-2 y-1 (7.4 ± 2 g Corg m-2 y-1). This study provides empirical evidence for the long-term (∼70 years) sequestration of macroalgae-derived Corg within and beyond seaweed forests in Mediterranean shallow coastal embayments and thereby, supports the inclusion of macroalgae in Blue Carbon frameworks.


Asunto(s)
Bosques , Algas Marinas , Secuestro de Carbono , Carbono/análisis , Mar Mediterráneo , Monitoreo del Ambiente , Ecosistema , Sedimentos Geológicos/química
5.
Toxicol Sci ; 200(2): 235-240, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38745431

RESUMEN

The ubiquitous existence of microplastics and nanoplastics raises concerns about their potential impact on the human reproductive system. Limited data exists on microplastics within the human reproductive system and their potential consequences on sperm quality. Our objectives were to quantify and characterize the prevalence and composition of microplastics within both canine and human testes and investigate potential associations with the sperm count, and weights of testis and epididymis. Using advanced sensitive pyrolysis-gas chromatography/mass spectrometry, we quantified 12 types of microplastics within 47 canine and 23 human testes. Data on reproductive organ weights, and sperm count in dogs were collected. Statistical analyses, including descriptive analysis, correlational analysis, and multivariate linear regression analyses were applied to investigate the association of microplastics with reproductive functions. Our study revealed the presence of microplastics in all canine and human testes, with significant inter-individual variability. Mean total microplastic levels were 122.63 µg/g in dogs and 328.44 µg/g in humans. Both humans and canines exhibit relatively similar proportions of the major polymer types, with PE being dominant. Furthermore, a negative correlation between specific polymers such as PVC and PET and the normalized weight of the testis was observed. These findings highlight the pervasive presence of microplastics in the male reproductive system in both canine and human testes, with potential consequences on male fertility.


Asunto(s)
Epidídimo , Microplásticos , Recuento de Espermatozoides , Testículo , Masculino , Perros , Animales , Testículo/efectos de los fármacos , Testículo/metabolismo , Microplásticos/toxicidad , Microplásticos/análisis , Epidídimo/efectos de los fármacos , Epidídimo/metabolismo , Humanos , Tamaño de los Órganos/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas
6.
Heliyon ; 10(10): e31059, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803888

RESUMEN

This study monitored the process and investigated the quality of compost obtained from different biomasses. Five blends of agri-food waste were composted by a laboratory pilot plant named COMPOSTER, that is designed to optimize biodegradation, and produce compost efficiently. The COMPOSTER consists of two 35-liter nearly adiabatic, aerated bioreactors that simulate an industrial process involving the typical sequence of mesophilic-thermophilic-mesophilic phases. It continuously monitors and records temperature, internal pressure, and biomass weight, while controlling and quantifying oxygen consumption and carbon dioxide emissions resulting from aerobic biodegradation. All composts were characterized for their main chemical, physical, and molecular features, as well as their suppressiveness against Fusarium oxysporum f.sp. lycopersici (FOL), tested on tomato seedlings. Optimized biodegradation yielded 50-60 % mature compost with a cumulative oxygen consumption ranging from 282 to 456 gO2 per kg of dry matter, with peaks of 2.55 gO2 per kg of volatile solids per hour, and carbon dioxide emissions of 22-36 % of the initial carbon content, with peaks of 5.89 g CO2 per kg of volatile solids per hour. Blends containing more ligno-cellulosic ingredients showed higher yields and lower CO2 emissions. Most of the nitrogen present initially was retained in the final compost; indeed, all mixtures exhibited an apparent nitrogen concentration increase due to carbon loss. Composting determined deep modifications in the molecular structure of the organic matter. 13C CPMAS-NMR and off-line thermochemolysis GC-MS analyses highlighted decomposition degree of polysaccharides and peptidic moieties, selective preservation of aliphatic and aromatic recalcitrant compounds, and optimal ongoing humification. All composts were non-phytotoxic, except for that including pepper crop residues, and all resulted rich in macro- and micro-elements for plant nutrition and proved to be active in controlling FOL disease. Compost comprising 81.2 % tomato crop waste exhibited the best growth performance and pathogen control on tomato. Mature, non-phytotoxic, nutrient-rich, and suppressive composts represent promising by-products that can be successfully recycled in agriculture, including high-value applications, leading to lower use of fertilizers and pesticides.

7.
Environ Pollut ; 351: 124088, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697250

RESUMEN

The contamination of freshwater with microplastics (MPs) has been established globally. While the analysis of MPs has predominantly involved spectroscopic methods for revealing particle numbers, the potential of employing spectroscopy for mass estimation has been underutilized. Consequently, there is a need to enhance our understanding of the mass loads of MPs and ensure the complementarity and comparability of various techniques for accurate quantification. This study presents the first comparative results on urban water samples using micro Fourier-transform infrared (µ-FTIR) imaging and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) to identify and quantify MPs in both particle numbers and mass concentration. Two sampling campaigns in summer and winter were conducted at 11 locations within the Amsterdam canal network. An advanced in-situ volume-reducing sampling pump was employed to collect MPs from the surface water within the size fraction of 10-300 µm. The analysis revealed MP concentrations within the range of 16-107 MP/m3, estimated to be 2.0-789 µg/m3 by µ-FTIR imaging and 8.5-754 µg/m3 by Py-GC-MS. The results of the two analysis techniques showed good comparability in terms of the general trends of MP abundances, with variations in polymer compositions due to the inherent inter-methodological differences. Elevated MP concentrations were observed in the city center compared to the suburban areas. In addition, seasonal differences in MP abundances were noted at the locations with high human activity.


Asunto(s)
Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Microplásticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Microplásticos/análisis , Países Bajos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Ciudades , Agua Dulce/química
8.
Sci Total Environ ; 927: 171927, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556006

RESUMEN

Rivers are important transport pathways for microplastics into the ocean, but they can also be potential sinks due to microplastic deposition in the sediments of the river bed and adjacent floodplains. In particular, floods can (re)mobilise microplastics from sediments and floodplains, (re)deposit and relocate them depending on the floodplain topography. The knowledge about fluvial microplastic input to floodplains, their spatial distribution and their fate in floodplain soils is limited. To investigate this topic, we sampled soil at a depth of 5-20 cm along three transects in three different Rhine floodplains. We analysed the soil samples in tandem with pyrolysis GC/MS and ATR- & µ-FPA-FTIR for their microplastic abundance and mass concentrations. To study the influence of flood frequency on the microplastic abundance in the three floodplains, we fitted a hydrodynamic flood model (MIKE 21, DHI, Hørsholm, Denmark) and related the results to the respective spatial microplastic distribution. We found similar microplastic distribution patterns in each floodplain. The highest microplastic abundance (8516-70,124 microplastics kg-1) and mass concentration (46.2-141.6 mg kg-1) were consistently found in the farthest transects from the Rhine in a topographical depression. This microplastic distribution pattern is detectable with both, pyrolysis GC/MS and FTIR. The strongest correlation between the results of both methods was found for small, abundant microplastic particles. Our results suggest that the spatial distribution of microplastics in floodplains is related to the combination of flood frequency and local topography, that ought to be explicitly considered in future studies conducted in floodplains. Finally, our results indicate that pyrolysis GC/MS and FTIR data are comparable under certain conditions, which may help in the decision for the analytical method and sampling design in future studies.

9.
Glob Chang Biol ; 30(2): e17175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38337156

RESUMEN

The increasing concentration of CO2 in the atmosphere is perturbing the global carbon (C) cycle, altering stocks of organic C, including soil organic matter (SOM). The effect of this disturbance on soils in arid ecosystems may differ from other ecosystems due to water limitation. In this study, we conducted a density fractionation on soils previously harvested from the Nevada Desert FACE Facility (NDFF) to understand how elevated atmospheric CO2 (eCO2 ) affects SOM stability. Soils from beneath the perennial shrub, Larrea tridentata, and from unvegetated interspace were subjected to a sodium polytungstate density fractionation to separate light, particulate organic matter (POM, <1.85 g/cm3 ) from heavier, mineral associated organic matter (MAOM, >1.85 g/cm3 ). These fractions were analyzed for organic C, total N, δ13 C and δ15 N, to understand the mechanisms behind changes. The heavy fraction was further analyzed by pyrolysis GC/MS to assess changes in organic compound composition. Elevated CO2 decreased POM-C and MAOM-C in soils beneath L. tridentata while interspace soils exhibited only a small increase in MAOM-N. Analysis of δ13 C revealed incorporation of new C into both POM and MAOM pools indicating eCO2 stimulated rapid turnover of both POM and MAOM. The largest losses of POM-C and MAOM-C observed under eCO2 occurred in soils 20-40 cm in depth, highlighting that belowground C inputs may be a significant driver of SOM decomposition in this ecosystem. Pyrolysis GC/MS analysis revealed a decrease in organic compound diversity in the MAOM fraction of L. tridentata soils, becoming more similar to interspace soils under eCO2 . These results provide further evidence that MAOM stability may be compromised under disturbance and that SOC stocks in arid ecosystems are vulnerable under continued climate change.


Asunto(s)
Carbono , Ecosistema , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Suelo , Minerales , Compuestos Orgánicos/metabolismo
10.
Waste Manag ; 178: 135-143, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401427

RESUMEN

Whether plastic packaging waste is disposed of in different bins (source separation, S) or in a single bin (post source separation, P) is generally assumed to impact the waste stream's quality. To elucidate this question, we evaluated the quality of LDPE, HDPE, and PP plastic waste from both separation systems (S and P) through a concise analytical strategy. The materials received similar treatment after collection (e.g., washing, NIR-sorting). A multivariate approach to ATR-FTIR spectroscopy was developed to assess their material composition and the effect of washing. Results were complemented by TGA, DSC, and py-GC/MS analysis. The material performance was investigated by a lab-scale extrusion and granulation, followed by an assessment of the mechanical properties and the melt volume rate. Our study reveals the HDPE materials to be of good quality, regardless of their source. For LDPE and PP, the P-materials are fractionally more contaminated after washing. Both PP-materials display poor material performance with highly fluctuating elongations-at-break (between 30% and 380%). S-LDPE was found to contain more polymeric impurities than P-LDPE. We conclude that the quality depends strongly on the material type and on the treatment after collection (washing, sorting). The multivariate approach to FTIR data evaluation we propose aims at simplifying the quality evaluation of polyolefin waste plastics and may serve as a basis for future work in this field.


Asunto(s)
Plásticos , Reciclaje , Polietileno , Espectroscopía Infrarroja por Transformada de Fourier , Polímeros , Embalaje de Productos
11.
Physiol Plant ; 176(1): e14219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380723

RESUMEN

Nitrogen can be taken up by trees in the form of nitrate, ammonium and amino acids, but the influence of the different forms on tree growth and development is poorly understood in angiosperm species like Populus. We studied the effects of both organic and inorganic forms of nitrogen on growth and wood formation of hybrid aspen trees in experimental conditions that allowed growth under four distinct steady-state nitrogen levels. Increased nitrogen availability had a positive influence on biomass accumulation and the radial dimensions of both xylem vessels and fibers, and a negative influence on wood density. An optimal level of nitrogen availability was identified where increases in biomass accumulation outweighed decreases in wood density. None of these responses depended on the source of nitrogen except for shoot biomass accumulation, which was stimulated more by treatments complemented with nitrate than by ammonium alone or the organic source arginine. The most striking difference between the nitrogen sources was the effect on lignin composition, whereby the abundance of H-type lignin increased only in the presence of nitrate. The differential effect of nitrate is possibly related to the well-known role of nitrate as a signaling compound. RNA-sequencing revealed that while the lignin-biosynthetic genes did not significantly (FDR <0.01) respond to added NO3 - , the expression of several laccases, catalysing lignin polymerization, was dependent on N-availability. These results reveal a unique role of nitrate in wood formation and contribute to the knowledge basis for decision-making in utilizing hybrid aspen as a bioresource.


Asunto(s)
Compuestos de Amonio , Populus , Madera/metabolismo , Árboles/fisiología , Lignina/metabolismo , Nitratos/farmacología , Nitratos/metabolismo , Nitrógeno/metabolismo , Populus/metabolismo , Compuestos de Amonio/metabolismo
12.
J Hazard Mater ; 467: 133679, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325093

RESUMEN

Focusing on the relatively unexplored presence of micro- and nano-plastic aerosol particles, this study quantitatively assessed the emission of nano-plastic particles during the machining of carbon fiber reinforced plastic (CFRP) in the working environment. Measurements of aerosol particles smaller than 1 µm in size were performed by aerosol mass spectrometry. The findings revealed that concentrations of carbonous aerosol particles (organic aerosol and refractory black carbon (rBC)) were higher during working hours than during non-working hours. Positive matrix factorization identified CFRP particles as a significant source, contributing an average of approximately 30% of concentration of carbonous aerosol particles during working hours. This source apportionment was corroborated by the presence of bisphenol A and F fragments, principal components of the epoxy resins used in CFRP, and was corroborated by similarities to the carbon cluster ion distribution observed in rBC during CFRP pipe-cutting operations. Further, the particle size distribution suggested the existence of plastic aerosol particles smaller than 100 nm. This study established the method to quantitatively distinguish nano-plastic aerosol particles from other aerosol particles in high temporal resolution and these techniques are useful for accurately assessing exposure to nano-plastic aerosol particles in working environments.

13.
Sci Total Environ ; 914: 169737, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199339

RESUMEN

Plastics are ubiquitous in virtually every environment on earth. While the specific sources of plastics entering wastewater are not well known, growing evidence suggests sewage sludge (biosolids) can be a sink for plastics. One potential source could be the sewerage pipe materials used to transport sewage between premises and wastewater treatment plants (WWTPs). To evaluate the significance of sewerage piping as a source of biosolids plastics concentrations, we compared the proportion of the total network (by length and surface area) of polyethylene (PE), polyvinylchloride (PVC), and polypropylene (PP) pipes from 10 WWTPs against their biosolids mass concentrations (mg plastic/g biosolid). Among the 10 catchments, the percentage of the network consisting of PP piping ranged from 0 to 1 %, with 0.8-21 % for PE, and 8-73 % for PVC. Biosolids plastics concentrations ranged from 0.09 to 8.62 mg/g (mg plastic/g biosolid) for PP and PE, respectively. For all three plastics, there was no significant Pearson correlation (r < 0.4) between the biosolids concentration (dry weight mg/g) and the proportion of the network material of the sewerage piping as plastic (either length or surface area). A comparison of trade waste entering a subset of 6 WWTP showed the highest biosolid principal components analysis (PCA) associations between loads of plastics (g/day) and automotive wash bays, general manufacturing, hospitals, laboratories, food manufacturing, laundry and dry cleaning, and cooling towers. A stepwise regression analysis indicated pipe length and surface area, as well as automotive wash bays and food manufacturing may be significant. While our data gave mixed results on the attribution of the sources of plastics entering WWTPs, it suggests that sewerage infrastructure and trade waste may play some role. Future studies should investigate the leachability of sewerage infrastructure and contributions from specific trade waste categories to determine their significance in plastics entering WWTPs.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Aguas del Alcantarillado/química , Biosólidos , Contaminantes Químicos del Agua/análisis , Aguas Residuales , Polipropilenos , Polietileno , Plásticos/análisis , Eliminación de Residuos Líquidos
14.
Sci Total Environ ; 916: 170320, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38278278

RESUMEN

In environmental analysis, the detection of water-soluble synthetic polymers (WSSP) presents considerable challenges. Thus, a precise and reproducible analytical method was developed using continuous-flow off-line pyrolysis with gas chromatography/mass spectrometry (GC/MS) to simultaneously identify multiple water-soluble polymers from a single environmental sample. WSSP are widely used in multiple industries as hydrogels due to their hydrophilic character and potential biocompatibility. This adaptability of hydrogels is reflected in their ability to provide customized formulations for specific needs, such as in the development of personal care products, medicine, and pharmaceuticals. Specifically, polyvinylpyrrolidone (PVP), poly(N-vinylcaprolactam) (PNVCL), and polyethyleneimine (PEI) were targeted for analysis in wastewater, employing unique pyrolysis products for identification. These polymers require careful assessment in wastewater to evaluate potential environmental risks associated with their release. PVP and PNVCL were identified through two pyrolysis products, while six pyrolysis products were utilized for the identification of PEI. The validated method demonstrated very good linearity and reproducibility, with correlation coefficients ranging from 0.94 to 0.99 and relative standard deviation (RSD) values between 3 % and 36 % for the targeted compounds. The limit of quantification (LOQ) for the three polymers ranged from 1 to 10 µg L-1. Moreover, the average recovery rates for these polymers, determined from artificial water samples, were approx. 85 %. Utilizing the validated method, water samples from seven wastewater treatment plants in Germany were successfully analyzed, confirming the presence of these polymers at elevated concentrations in the µg L-1 range. Notably, untreated influent waters exhibited higher polymer levels compared to treated influents and effluents, underscoring their significant contribution to overall polymer content. The developed analytical method provides an efficient tool for the simultaneous identification and quantification of PVP, PNVCL, and PEI in wastewater samples. The results highlighted the prevalent presence of PVP, PNVCL, and PEI in the tested wastewater samples, indicating their significant abundance.

15.
J Hazard Mater ; 465: 133301, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141300

RESUMEN

This study aims to examine tire and road wear particle (TRWP) emissions under realistic conditions in order to provide some valuable insights into understanding their sources and fate in the environment. TRWP emissions were evaluated with a fully instrumented vehicle driving on five representative road types: urban, ring road, suburban, highway, and rural. Multiple vehicle dynamic variables were recorded to assess the factors influencing these emissions. For the first time, emitted particles were collected on filters and analyzed by means of pyrolysis coupled with gas chromatography-mass spectrometry to determine the polymeric content of tires, in specifically quantifying styrene-butadiene rubber (SBR) and butadiene rubber (BR) pyrolytic markers. The measurements obtained from the five road types revealed similar size distributions for SBR + BR emissions, with maxima found in the (ultra)fine fraction (< 0.39 µm). Upon applying an SBR + BR-to-TRWP conversion factor, (ultra)fine fraction TRWP emissions proved to be the highest for suburban (64 ± 5 µg/km), followed by highway, urban, ring road and rural routes. The output represents up to 480 tons of TRWP per year emitted in the EU27, thus suggesting a widely impregnated atmospheric compartment capable of threatening human health. Furthermore, an analysis of variables revealed that acceleration, tire constraints, and constant sustained driving factors had specific impacts on TRWP emissions.

16.
Methods Mol Biol ; 2722: 201-226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37897609

RESUMEN

Lignin is a group of cell wall localised heterophenolic polymers varying in the chemistry of the aromatic and aliphatic parts of its units. The lignin residues common to all vascular plants have an aromatic ring with one para hydroxy group and one meta methoxy group, also called guaiacyl (G). The terminal function of the aliphatic part of these G units, however, varies from alcohols, which are generally abundant, to aldehydes, which represent a smaller proportion of lignin monomers. The proportions of aldehyde to alcohol G units in lignin are, nevertheless, precisely controlled to respond to environmental and development cues. These G aldehyde to alcohol unit proportions differ between each cell wall layer of each cell type to fine-tune the cell wall biomechanical and physico-chemical properties. To precisely determine changes in lignin composition, we, herein, describe the various methods to detect and quantify the levels and positions of G aldehyde units, also called coniferaldehyde residues, of lignin polymers in ground plant samples as well as in situ in histological cross-sections.


Asunto(s)
Acroleína , Lignina , Lignina/metabolismo , Acroleína/metabolismo , Aldehídos/metabolismo , Polímeros/química , Pared Celular/química
17.
J Hazard Mater ; 463: 132933, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-37951177

RESUMEN

Nanoplastics, owing to their small particle size, pose a significant threat to creatures, deserving heightened attention. Numerous studies have investigated microplastics pollution and their removal efficiency in drinking water treatment plants, none of which have involved nanoplastics due to lacking a suitable analytical method. This study introduced a feasible method of combing AFM-IR and Pyr-GC/MS to identify and quantify nanoplastics (20-1000 nm) for a preliminary understanding of their fate during drinking water treatment processes. Resolving of chemical functional groups and pyrolysis products from AFM-IR and Pyr-GC/MS data demonstrated the presence of PE and PVC nanoplastics in this drinking water treatment plant. The initial influent abundances of PE and PVC nanoplastics were 0.86 µg/L and 137.31 µg/L, with subsequent increase to 4.49 µg/L and 208.64 µg/L in ozonation contact tank unit. Then a gradual decreasing was observed along water process, achieving 98.4% removal of PE nanoplastics and 44.0% removal of PVC nanoplastics, respectively. Although this drinking water treatment plant has exhibited a certain level of nanoplastics removal efficiency, particular attention should be directed to the oxidation unit, which appears to be a significant source of nanoplastics. This study will lay a foundation for revealing nanoplastics pollution in the environment.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
18.
Biopolymers ; 114(12): e23566, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37795978

RESUMEN

Lignin, the second most abundant biopolymer on earth and with a predominantly aromatic structure, has the potential to be a raw material for valuable chemicals and other bio-based chemicals. In industry, lignin is underutilized by being used mostly as a fuel for producing thermal energy. Valorization of lignin requires knowledge of the structure and different linkages in the isolated lignin, making the study of structure of lignin important. In this article, lignin samples isolated from two types of reactors (autoclave reactor and displacement reactor) were analyzed by FT-IR, size exclusion chromatography, thermogravimetric analysis (TGA), and Py-GC-MS. The average molecular mass of the organosolv lignins isolated from the autoclave reactor decreased at higher severities, and FT-IR showed an increase in free phenolic content with increasing severity. Except for molecular mass and molecular mass dispersity, there were only minor differences between lignins isolated from the autoclave reactor and lignins isolated from the displacement reactor. Carbohydrate analysis, Py-GC-MS and TGA showed that the lignin isolated using either of the reactor systems is of high purity, suggesting that organosolv lignin is a good candidate for valorization.


Asunto(s)
Lignina , Polímeros , Lignina/química , Espectroscopía Infrarroja por Transformada de Fourier , Peso Molecular , Calor
19.
Environ Sci Technol ; 57(43): 16541-16551, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37853526

RESUMEN

Microplastics (MP) including tire wear particles (TWP) are ubiquitous. However, their mass loads, transport, and vertical behavior in water bodies and overlying air are never studied simultaneously before. Particularly, the sea surface microlayer (SML), a ubiquitous, predominantly organic, and gelatinous film (<1 mm), is interesting since it may favor MP enrichment. In this study, a remote-controlled research catamaran simultaneously sampled air, SML, and underlying water (ULW) in Swedish fjords of variable anthropogenic impacts (urban, industrial, and rural) to fill these knowledge gaps in the marine-atmospheric MP cycle. Polymer clusters and TWP were identified and quantified with pyrolysis-gas chromatography-mass spectrometry. Air samples contained clusters of polyethylene terephthalate, polycarbonate, and polystyrene (max 50 ng MP m-3). In water samples (max. 10.8 µg MP L-1), mainly TWP and clusters of poly(methyl methacrylate) and polyethylene terephthalate occurred. Here, TWP prevailed in the SML, while the poly(methyl methacrylate) cluster dominated the ULW. However, no general MP enrichment was observed in the SML. Elevated anthropogenic influences in urban and industrial compared to the rural fjord areas were reflected by enhanced MP levels in these areas. Vertical MP movement behavior and distribution were not only linked to polymer characteristics but also to polymer sources and environmental conditions.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Agua , Plásticos/análisis , Agua de Mar/análisis , Agua de Mar/química , Tereftalatos Polietilenos , Polimetil Metacrilato , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
20.
Sci Total Environ ; 903: 166470, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625724

RESUMEN

Traffic pollution has been linked to high levels of metals and organic contaminants in road-side soils, largely due to abrasion of tires, brake pads and the road surface. Although several studies have demonstrated correlations between different pollutants and various traffic variables, they mainly focused on roads with medium to high traffic density (>30,000 vehicles per day). In this study we have focused on investigating tire wear particles and road-related metals (zinc, copper, lead, chromium, nickel, and the metalloid arsenic) in the soils of low traffic roads in rural areas (650-14,250 vehicles per day). Different explanatory factors were investigated, such as traffic density, speed, % heavy vehicles, organic matter content, annual precipitation, soil types and roadside slope profiles. The results show high levels of tire wear particles, from 2000 to 26,400 mg/kg (0.2-2.6 % tire wear in d.w. soil), which is up to five times higher compared to previously reported values in roadside soils of high traffic density areas. A weak but significant correlation was found between tire wear particles, traffic speed and the annual precipitation. No significant relationship was found between tire wear particles metals. The concentrations of metals were comparable to previous studies of high traffic areas of Norway, as well as both urban and rural soils in other countries. For the metals, all factors together explained 45 % of the variation observed, with traffic density (11 %) and organic matter content (10 %) as the most important single variables. The analysis of tire wear particles in soils using Pyrolysis Gas chromatography Mass Spectrometry is challenging, and the results presented demonstrate the need for pretreatment to remove organic matter from the samples before analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA