Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3912-3923, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099365

RESUMEN

In this study, we delved into the prototypical components and metabolites of Platycodonis Radix extracts(PRE) from Tongcheng city in plasma, urine and feces of rats, and revealed its metabolic pathways and metabolic rules in vivo. The prototypical components and metabolites of PRE in rats were characterized and identified by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and mass defect filter(MDF). The biological samples were analyzed by ACQUITY UPLC BEH C_(18)(2.1 mm×100 mm, 1.7 µm), with 0.1% formic acid water(A)-0.1% formic acid acetonitrile(B) as mobile phase, and the biological samples were analyzed in negative ion mode by electrospray ionization mass spectrometry(ESI-MS). Twelve prototypical saponins and twenty-seven metabolites were detected in plasma, urine and feces of rats treated with PRE by oral administration. Eleven prototypical components and nine metabolites were detected in plasma, eleven prototypical components and eight metabo-lites were detected in urine, and ten prototypical components and twenty metabolites were detected in feces. Further studies showed that the metabolic pathways of PRE in rats mainly include oxidation, reduction, acetylation, stepwise hydrolytic deglycosylation, glucuronidation and so on. This study provides a scientific basis for clarifying the pharmacological basis and mechanism of PRE from Tongcheng city.


Asunto(s)
Medicamentos Herbarios Chinos , Redes y Vías Metabólicas , Platycodon , Ratas Sprague-Dawley , Animales , Ratas , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Masculino , Cromatografía Líquida de Alta Presión , Platycodon/química , Heces/química , Espectrometría de Masa por Ionización de Electrospray , Saponinas/metabolismo , China
2.
J Tradit Chin Med ; 44(4): 722-733, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39066533

RESUMEN

OBJECTIVE: To analyze the serum metabolic targets of the "Zhibian (BL54) through Shuidao (ST28)" acupuncture technique in cyclophosphamide (CTX)-induced premature ovarian insufficiency (POI) model rats and to elucidate the potential molecular mechanism of acupuncture in improving POI. METHODS: We used an intraperitoneal injection of CTX to establish the POI rat model (POI group) and compared serum hormone levels and ovarian histopathological changes to evaluate the effect of the Zhibian (BL54) through Shuidao (ST28) technique (ZS + POI group) on ovarian function. Then, nontargeted metabolomics was performed using rat serum by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). RESULTS: After acupuncture intervention, the serum hormone levels and ovarian pathological morphology of POI rats were effectively improved. Moreover, UPLC-Q-TOF/MS results showed that the ZS + POI group showed a significant reversal of the levels of 6 differential metabolites. Among them, the levels of four serum metabolic markers, divanillyltetrahydrofuran ferulate, trans-ferulic acid, tryptamine, and neuraminic acid, increased significantly. Further analysis of biological effects showed that all metabolites were involved in the regulation of reproductive hormone levels and antioxidant and antiapoptotic effects. CONCLUSIONS: The "Zhibian (BL54) through Shuidao (ST28)" acupuncture method may improve the ovarian function of POI rats by regulating serum metabolite markers to exert antioxidant and antiapoptotic effects, which provides a theoretical basis for the clinical application of acupuncture in the treatment of POI.


Asunto(s)
Terapia por Acupuntura , Metabolómica , Insuficiencia Ovárica Primaria , Animales , Insuficiencia Ovárica Primaria/terapia , Insuficiencia Ovárica Primaria/sangre , Insuficiencia Ovárica Primaria/metabolismo , Femenino , Ratas , Humanos , Ratas Sprague-Dawley , Puntos de Acupuntura , Ovario/metabolismo , Modelos Animales de Enfermedad
3.
J Chromatogr A ; 1731: 465164, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39043100

RESUMEN

Weifuchun, a Chinese medicinal prescription made from herbs of natural origin including Hongshen (Ginseng Radix et Rhizoma Rubra), Xiangchacai (Rabdosia Amethystoides), and Zhiqiao (Aurantii Fructus), has attracted increasing attention for clinically treating chronic atrophic gastritis, which is characterized by the chronic inflammation of the gastric mucosa leading to progressive loss of gastric glandular cells. To investigate the active ingredients and potential mechanisms of WFC, it was analyzed using a novel multi-component, multi-target, and multi-pathway prediction method. High/ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC/UPLC-Q-TOF-MS) was employed to separate and profile the chemical constituents of WFC with high precision and efficiency. Network analysis and molecular docking were used to predict bioactive compounds and their interactions with biological targets. The results highlight 42 significant compounds potentially contributing to the therapeutic effects of WFC by effecting on several key pathways, including proved PI3K/Akt, NF-κB, and JAK/STAT signaling pathways. This study showcases the efficacy of combining advanced chromatographic techniques with computational methods to elucidate the pharmacological mechanisms of complex botanical drugs.

4.
J Sep Sci ; 47(11): e2400127, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38819762

RESUMEN

Hua-ju-hong (HJH) is a Chinese medicinal material obtained from Citrus grandis 'Tomentosa' (CGT) and Citrus grandis (L.) Osbeck (CG) with various commercial specifications. It is known for relieving cough and dispelling phlegm. To reveal the quality marker for distinguishing the various HJH, 215 batches of commercial HJH were studied systematically using multidimensional chemical analysis. Ten major components were identified by high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry and quantified via high-performance liquid chromatography coupled with diode array detection. In this study, a rapid, efficient, and low-cost chromatographic method was established. Total coumarin-hemiterpene and total coumarin-monoterpene were first classified and analyzed in HJH. The result indicated that the main component, naringin, was not the quality marker for differentiating CGT from CG. For reflecting the unique medicinal and food value of HJH, coumarins should be the more potential quality markers. Flavonoids were the possible quality markers for distinguishing two growth stages of fruit-exocarp and young fruit. For the first time, two chemotypes of HJH were identified in CG. This study provides a convenient yet reliant chromatographic method and novel yet systematic strategies for overall quality control of commercial HJH.


Asunto(s)
Citrus , Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/química , Citrus/química , Cumarinas/análisis , Cumarinas/química , Espectrometría de Masas , Control de Calidad , Estructura Molecular
5.
Artículo en Inglés | MEDLINE | ID: mdl-38714089

RESUMEN

The lack of individual pure standard has hampered the application of therapeutic drug monitoring (TDM) for multi-component antibiotics in clinical laboratories. Here, we aimed to develop an integrated identification-quantification (ID-Quant) workflow based on ultra-high-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UHPLC-QTOF-MS) to enable the comprehensive determination of all teicoplanin components without needing pure standards. The workflow comprises three steps. First, non-targeted MSE full scanning was used to detect and identify all potential ingredients. Then, characteristic product ions were selected to generate a quantitative time-of-flight multiple reaction monitoring (Tof-MRM) method. Finally, the constituent composition of teicoplanin injection was determined and utilized as an alternative reference standard to monitor the teicoplanin ingredients in human serum samples. As a result, nine teicoplanin analogs were identified from teicoplanin injection (Sanofi-Aventis, France). The overall performance of the Tof-MRM method was satisfactory in terms of linearity, precision, accuracy, and limits of detection. Utilizing the drug as standard, the individual concentrations for each component in patient serum were determined to be 0.120 µg/mL (A3-1), 0.020 µg/mL (N-1), 0.550 µg/mL (N-2), 0.730 µg/mL (A2-1), 4.26 µg/mL (A2-2,3), 4.79 µg/mL (A2-4,5), and 0.290 µg/mL (N-3), respectively. The distribution pattern of teicoplanin components was also discovered to differ from that in the drug injection. Overall, this integrated ID-Quant workflow based on UHPLC-QTOF-MS enables the robust quantitation of all teicoplanin analogs without the need for individual pure standard. This approach could help address the standard unavailability problem in the TDM of multi-component antibiotics.


Asunto(s)
Antibacterianos , Monitoreo de Drogas , Límite de Detección , Espectrometría de Masas , Teicoplanina , Teicoplanina/química , Teicoplanina/sangre , Teicoplanina/análisis , Cromatografía Líquida de Alta Presión/métodos , Antibacterianos/sangre , Antibacterianos/análisis , Antibacterianos/química , Monitoreo de Drogas/métodos , Humanos , Reproducibilidad de los Resultados , Modelos Lineales , Espectrometría de Masas/métodos , Flujo de Trabajo
6.
Food Sci Anim Resour ; 44(3): 651-661, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38765279

RESUMEN

Chicken broth has a taste of umami, and the stewing time has an important effect on the quality of chicken broth, but there are fewer studies on the control of the stewing time. Based on this, the study was conducted to analyze the effects of different stewing times on the sensory, small molecular metabolites, free fatty acids, and volatile flavor compounds contents in chicken broths by liquid chromatography-quadrupole/time-of-flight mass spectrometry, gas chromatography-mass spectrometry, headspace solid-phase microextraction, and gas chromatography-mass spectrometry. Eighty-nine small molecular metabolites, 15 free fatty acids, and 86 volatile flavor compounds were detected. Palmitic and stearic acids were the more abundant fatty acids, and aldehydes were the main volatile flavor compounds. The study found that chicken broth had the best sensory evaluation, the highest content of taste components, and the richest content of volatile flavor components when the stewing time was 2.5 h. This study investigated the effect of stewing time on the quality of chicken broth to provide scientific and theoretical guidance for developing and utilizing local chicken.

7.
Se Pu ; 42(5): 432-444, 2024 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-38736386

RESUMEN

Amphotericin B (AmB) is a polyene-macrolide antimicrobial drug with a broad antibacterial spectrum and remarkable efficacy against deep fungal infections. It binds to ergosterol on the fungal cell membrane and alters its permeability, thereby destroying the membrane. AmB is a multicomponent antimicrobial medication that contains a wide range of impurities, rendering quality analysis extremely difficult. In the current Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3), high performance liquid chromatography (HPLC) is applied to examine related substances in AmB. However, this technique presents a number of issues. For instance, the mobile phases used in the HPLC method described in both references contain nonvolatile inorganic salts, which cannot be coupled with a mass spectrometry (MS) detector. In addition, because the mobile phases used have a low pH, the component/impurities of AmB drug can easily be degraded or interconverted during the analytical process, leading to reduced analytical accuracy. Therefore, the accuracy and sensitivity of this method must be improved. In this study, a method based on on-line two-dimensional high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (2D HPLC-Q TOF/MS) was developed to analyze the impurity profile of AmB in accordance with the Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3). The method combines on-line dilution and a multiple-capture HPLC system to achieve the efficient separation of AmB component/impurities. It also resolves the issue of poor solvent compatibility in 2D HPLC, increases the analytical flux, enhances the automation capability, reduces the mutual conversion of AmB and its impurities during the analytical process, and increases the detection sensitivity of the method. MS was also used to determine the structural inference of unstable components and impurities. An XBridge Shield C18 column (250 mm×4.6 mm, 3 µm) was used for first-dimensional-liquid chromatography with gradient elution using methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (10∶30∶60, v/v/v, pH 4.7) as mobile phase A and methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (12∶68∶20, v/v/v, pH 3.9) as mobile phase B. An Xtimate C8 column (10 mm×2.1 mm, 5 µm) was used as the trap column, and trapping and desalting were performed using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v). An Xtimate C8 column (250 mm×2.1 mm, 5 µm) was used for second-dimensional-liquid chromatography with gradient elution using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v) and 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (5∶95, v/v) as mobile phases. The data were collected in positive-ion mode. In this study, the structures of six impurities in amphotericin B were inferred, according to the fragmentation, the MS and MS2 spectra of each impurity. The developed method can be used to quickly and sensitively analyze the impurity profile of AmB. Furthermore, the research results on impurity profiles can be applied to guide improvements in AmB production.


Asunto(s)
Anfotericina B , Contaminación de Medicamentos , Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Anfotericina B/análisis , Anfotericina B/química , Espectrometría de Masas/métodos
8.
Phytochem Anal ; 35(6): 1457-1471, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38741027

RESUMEN

INTRODUCTION: Traditional and some scientific literature document the antidiabetic effects of the Ziziphi Spinosae Semen (ZSS). However, the bioactive compounds of ZSS responsible for the antidiabetic effects are not well known. OBJECTIVES: This study aimed to investigate the material basis of the antidiabetic effects of ZSS by inhibiting α-amylase. METHODOLOGY: An online analysis platform was established and optimized using an ultra-performance liquid chromatography-photo-diode array-quadrupole-time-of-flight-mass spectrometry-α-amylase-fluorescence detector (UHPLC-PDA-Q-TOF-MS-α-amylase-FLD) system to screen α-amylase inhibitors in ZSS rapidly. The inhibitory effect of these compounds was confirmed by molecular docking screening. and the molecular interactions between α-amylase and active compounds were evaluated, which strongly supported the experimental results. RESULTS: Seventy-eight compounds were identified in the ZSS extract, eleven of which were screened to have significant α-amylase binding activity. CONCLUSION: This study demonstrated the feasibility of using an established platform to screen for effective components in ZSS, providing a practical method for the rapid screening of potential antidiabetic active ingredients in traditional Chinese medicine.


Asunto(s)
Simulación del Acoplamiento Molecular , alfa-Amilasas , alfa-Amilasas/antagonistas & inhibidores , Cromatografía Líquida de Alta Presión/métodos , Ziziphus/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Espectrometría de Masas/métodos
9.
Phytochem Anal ; 35(5): 1221-1248, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38639073

RESUMEN

INTRODUCTION: The active constituents in Aurantii Fructus sourced from different regions within Hunan Province exhibit variations, with certain samples demonstrating substandard quality. OBJECTIVES: The aim of this study is to conduct a comparative analysis of the chemical composition and quality of Aurantii Fructus from various sources, establish a robust methodology for quality evaluation, and determine the optimal harvesting period. MATERIALS AND METHODS: The components of Aurantii Fructus were qualitatively analyzed using a non-targeted metabolomics approach. Multivariate statistical analyses were conducted to identify potential markers, enabling qualitative and quantitative evaluation of the quality and optimal harvest period of Aurantii Fructus. RESULTS: Overall, 155 compounds were identified in Aurantii Fructus, with Huangpi exhibiting the highest number of components. Eleven potential markers were selected to assess the quality of Aurantii Fructus. The average content of Huangpi was the highest, indicating a high level of similarity. The samples' overall scores were ordered as follows: Huangpi > Xiangcheng > Choucheng > Daidai. Anren and Changde's Huangpi exhibited high contents, being rich in chemical components, resulting in favorable scores. Similarly, Changde's Xiangcheng displayed significant medicinal value. As the harvest time was delayed, there was an increase in fruit size, accompanied by thinner peels and a continuous decrease in the contents of potential markers. The best harvest period of Aurantii Fructus was within 1 week before and after the Lesser Heat. CONCLUSION: The present study establishes a precise and efficient method for evaluating the quality of Aurantii Fructus, thereby providing more comprehensive insights into its composition. This research lays the foundation for subsequent development and utilization of Aurantii Fructus.


Asunto(s)
Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Control de Calidad , Citrus/química , Frutas/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Metabolómica/métodos
10.
Se Pu ; 42(4): 368-379, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38566426

RESUMEN

Pesticide residues may be present in olive oil because pesticides are applied to olive trees during their cultivation and growth for pest prevention and some of these pesticides are not easily degraded. Studies on pesticide residues in olive oil have mainly focused on the detection of single types of pesticide residues, and reports on the simultaneous detection of multiple pesticide residues are limited. At present, hundreds of pesticides with different polarities and chemical properties are used in practice. In this study, an analytical method based on fully automatic QuEChERS pretreatment instrument coupled with gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) was established for the rapid determination of 222 pesticide residues in olive oil. The effects of acetonitrile acidification concentration, n-hexane volume, oscillation time, centrifugation temperature, and purification agent on the determination of the 222 pesticide residues were investigated. First, ions with good responses and no obvious interference were selected for quantification and characterization. The purification process was then developed by setting the parameters of the fully automatic QuEChERS pretreatment instrument to optimal values. The sample was extracted with acetonitrile containing 2% formic acid, and the supernatant was purified by centrifugation in a centrifuge tube containing 400 mg N-propylethylenediamine (PSA), 400 mg octadecylsilane-bonded silica gel (C18), and 1200 mg anhydrous magnesium sulfate. The purified solution was blown dry with nitrogen and then fixed with ethyl acetate for instrumental analysis. Finally, a matrix standard solution was used for quantification. The method was validated in terms of matrix effects, linear ranges, limits of detection (LODs) and quantification (LOQs), accuracies, and precisions. The results showed that 86.04% of the 222 pesticides had linear ranges of 0.02-2.00 µg/mL, 10.81% had linear ranges of 0.10-2.00 µg/mL, and 3.15% had linear ranges of 0.20-2.00 µg/mL. The pesticide residues showed good relationships within their respective linear ranges, and the correlation coefficients (R2) were greater than 0.99. The LODs of all tested pesticides ranged from 0.002 to 0.050 mg/kg, and their LOQs ranged from 0.007 to 0.167 mg/kg. Among the 222 pesticides determined, 170 pesticides had LOQs of 0.007 mg/kg while 21 pesticides had LOQs of 0.017 mg/kg. At the three spiked levels of 0.2, 0.5, and 0.8 mg/kg, 79.58% of all tested pesticides had average recoveries of 70%-120% while 65.92% had average recoveries of 80%-110%. In addition, 93.54% of all tested pesticides had relative standard deviations (RSDs, n=6)<10% while 98.35% had RSDs (n=6)<20%. The method was applied to 14 commercially available olive oil samples, and seven pesticides were detected in the range of 0.0044-0.0490 mg/kg. The residues of fenbuconazole, chlorpyrifos, and methoprene did not exceed the maximum limits stated in GB 2763-2021. The maximum residual limits of molinate, monolinuron, benalaxyl, and thiobencarb have not been established. The method utilizes the high mass resolution capability of TOF-MS, which can improve the detection throughput while ensuring good sensitivity. In addition, high-resolution and accurate mass measurements render the screening results more reliable, which is necessary for the high-throughput detection of pesticide residues. The use of a fully automatic QuEChERS instrument in the pretreatment step reduces personnel errors and labor costs, especially when a large number of samples must be processed, thereby offering significant advantages over other approaches. Moreover, the method is simple, rapid, sensitive, highly automatable, accurate, and precise. Thus, it meets requirements for the high-throughput detection of pesticide residues in olive oil and provides a reference for the development of detection methods for pesticide residues in other types of oils as well as the automatic pretreatment of complex matrices.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Residuos de Plaguicidas/análisis , Aceite de Oliva , Espectrometría de Masas en Tándem/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Plaguicidas/análisis , Acetonitrilos/análisis
11.
Drug Test Anal ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38459837

RESUMEN

N-Ethyl-N-propyltryptamine (EPT), 4-hydroxy-N-ethyl-N-propyltryptamine (4-OH-EPT), and 5-methoxy-N-ethyl-N-propyltryptamine (5-MeO-EPT) are new psychoactive substances classified as tryptamines, sold online. Many tryptamines metabolize rapidly, and identifying the appropriate metabolites to reveal intake is essential. While the metabolism of 4-OH-EPT and 5-MeO-EPT are not previously described, EPT is known to form metabolites by indole ring hydroxylation among others. Based on general knowledge of metabolic patterns, 5-MeO-EPT is also expected to form ring hydroxylated EPT (5-OH-EPT). In the present study, the aim was to characterize the major metabolites of EPT, 4-OH-EPT, and 5-MeO-EPT, to provide markers for substance identification in forensic casework. The tryptamines were incubated with pooled human liver microsomes at 37°C for up to 4 h. The generated metabolites were separated and detected by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis. The major in vitro EPT metabolites were formed by hydroxylation, N-dealkylation, and carbonylation. In comparison, 4-OH-EPT metabolism was dominated by double bond formation, N-dealkylation, hydroxylation, and carbonylation in vitro and hydroxylation or carbonylation combined with double bond loss, carbonylation, N-dealkylation, and hydroxylation in vivo. 5-MeO-EPT was metabolized by O-demethylation, hydroxylation, and N-dealkylation in vitro. The usefulness of the characterized metabolites in forensic casework was demonstrated by identification of unique metabolites for 4-OH-EPT in a human postmortem blood sample with suspected EPT or 4-OH-EPT intoxication.

12.
Molecules ; 29(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542930

RESUMEN

Rhizoma Panacis Japonici (RPJ) is an ancient herbal medicine from China that has long been employed for its medicinal benefits in relieving arthritis physical debility and diverse afflictions. The primary bioactive constituents found in RPJ are triterpene saponins, which exhibit numerous pharmacological actions, including anti-inflammatory, antioxidant, and immunomodulating effects. The present study established a straightforward and effective approach for characterizing triterpene saponins in RPJ. An offline HILIC × RP LC/QTOF-MS method was developed, along with a self-constructed in-house database containing 612 saponins reported in the Panax genus and 228 predicted metabolites. The approach achieved good chromatographic performance in isolating triterpene saponins of RPJ, with the HILIC column as the first dimension (1D) and the BEH C18 column as the second dimension (2D). The developed two-dimensional liquid chromatography system exhibited an orthogonality of 0.61 and a peak capacity of 1249. Detection was performed using a QTOF mass spectrometer in a data-independent manner (MSE) in a negative ion mode. Using the in-house database, the collected MS data were processed by an automatic workflow on UNIFI 1.8.2 software, which included data correction, matching of precursor and product ions, and peak annotation. In this study, 307 saponins were characterized from RPJ and 76 saponins were identified for the first time in Panax japonicus. This research not only enhances our understanding of the chemical characteristics of RPJ but also offers a simple and efficient method for analyzing the complex composition of herbal medicine.


Asunto(s)
Medicamentos Herbarios Chinos , Panax , Plantas Medicinales , Saponinas , Triterpenos , Saponinas/química , Triterpenos/química , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/química , Espectrometría de Masas , Plantas Medicinales/química
13.
Front Pharmacol ; 15: 1363678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523634

RESUMEN

Diabetic nephropathy (DN) is the main cause of end-stage renal disease worldwide and a major public issue affecting the health of people. Therefore, it is essential to explore effective drugs for the treatment of DN. In this study, the traditional Chinese medicine (TCM) formula, Zhijun Tangshen Decoction (ZJTSD), a prescription modified from the classical formula Didang Decoction, has been used in the clinical treatment of DN. However, the chemical basis underlying the therapeutic effects of ZJTSD in treating DN remains unknown. In this study, compounds of ZJTSD and serum after oral administration in rats were identified and analyzed using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). Meanwhile, a semi-quantitative approach was used to analyze the dynamic changes in the compounds of ZJTSD in vivo. UPLC-Q/TOF-MS analysis identified 190 compounds from ZJTSD, including flavonoids, anthraquinones, terpenoids, phenylpropanoids, alkaloids, and other categories. A total of 156 xenobiotics and metabolites, i.e., 51 prototype compounds and 105 metabolites, were identified from the compounds absorbed into the blood of rats treated with ZJTSD. The results further showed that 23 substances with high relative content, long retention time, and favorable pharmacokinetic characteristics in vivo deserved further investigations and validations of bioactivities. In conclusion, this study revealed the chemical basis underlying the complexity of ZJTSD and investigated the metabolite profiling and pharmacokinetics of ZJTSD-related xenobiotics in rats, thus providing a foundation for further investigation into the pharmacodynamic substance basis and metabolic regulations of ZJTSD.

14.
Fa Yi Xue Za Zhi ; 40(1): 30-36, 2024 Feb 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38500458

RESUMEN

OBJECTIVES: To establish a rapid screening method for 34 emerging contaminants in surface water by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF-MS). METHODS: The pretreatment conditions of solid phase extraction (SPE) were optimized by orthogonal experimental design and the surface water samples were concentrated and extracted by Oasis® HLB and Oasis® MCX SPE columns in series. The extracts were separated by Kinetex® EVO C18 column, with gradient elution of 0.1% formic acid aqueous solution and 0.1% formic acid methanol solution. Q-TOF-MS 'fullscan' and 'targeted MS/MS' modes were used to detect 34 emerging contaminants and to establish a database with 34 emerging contaminants precursor ion, product ion and retention times. RESULTS: The 34 emerging contaminants exhibited good linearity in the concentration range respectively and the correlation coefficients (r) were higher than 0.97. The limit of detection was 0.2-10 ng/L and the recoveries were 81.2%-119.2%. The intra-day precision was 0.78%-18.70%. The method was applied to analyze multiple surface water samples and 6 emerging contaminants were detected, with a concentration range of 1.93-157.71 ng/L. CONCLUSIONS: The method is simple and rapid for screening various emerging contaminants at the trace level in surface water.


Asunto(s)
Espectrometría de Masas en Tándem , Agua , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Formiatos , Extracción en Fase Sólida/métodos
15.
J Pharm Biomed Anal ; 242: 116040, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387129

RESUMEN

The chemical and biologically active characterization of jujube samples (fruits, cores, and leaves) were carried out by the integrated nontargeted metabolomics and bioassay. Firstly, collision cross-section values of active compounds in jujubes were determined by ultrahigh-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. Then, a multidimensional statistical analysis that contained principal component analysis, partial least squares-discriminant analysis and hierarchical clustering analysis was employed to effectively cluster different tissues and types of jujubes, making identification more scientific. Furthermore, angiotensin-converting enzyme (ACE) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) were used to evaluate the quality of jujubes from a double activity dimension. The analytical results obtained by using ACE and DPPH to evaluate the quality of jujube were different from multivariate statistics, providing a reference for the application of jujube. Therefore, integrating chemical and biological perspectives to evaluate the quality of jujube provided a more comprehensive evaluation and effective reference for clinical needs.


Asunto(s)
Antioxidantes , Compuestos de Bifenilo , Ziziphus , Antioxidantes/farmacología , Antioxidantes/análisis , Ziziphus/química , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Frutas/química
16.
Molecules ; 29(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257193

RESUMEN

Eucalyptus globulus is widely introduced and cultivated in Yunnan province. Its foliage is mainly used to extract eucalyptus oil, but the by-product eucalyptus residue has not been fully utilized. Based on the above reasons, in this study, we sought to explore the comprehensive utilization potential of eucalyptus resources. The total composition of eucalyptus residue was analyzed by ultra performance liquid chromatography-time-of-flight mass spectrometry (UPLC-Q/TOF MS), and the active components and nutrient components of eucalyptus leaf residue were determined by chemical methods and liquid phase techniques. Meanwhile, the antitumor activity of triterpenoids in eucalyptus leaves was evaluated by tetramethylazazole blue colorimetric assay (MTT). The results of qualitative analysis indicated that 55 compounds were identified from eucalyptus residue, including 28 phloroglucinols, 17 terpenoids, 3 flavonoids, 5 fatty acids, 1 amino acid and 2 polyphenols. Among them, the pentacyclic triterpenoids, in eucalyptus residue, were mainly oleanane type and urthane type. The results of quantitative determination indicated that the content of triterpenoid compounds was 2.84% in eucalyptus residue, which could be enhanced to 82% by silicone separation. The antitumor activity results showed that triterpenoid compounds have moderate inhibitory effects on human breast cancer cell MDA-MB-231, gastric adenocarcinoma cell SGC-7901 and cervical cancer cell Hela. The half maximal inhibitory concentration (IC50) was 50.67, 43.12 and 42.65 µg/mL, respectively. In this study, the triterpenoids from eucalyptus leaf residues were analyzed to reveal that the triterpenoids from eucalyptus leaf have antitumor effects and have potential to be developed as antitumor drugs.


Asunto(s)
Adenocarcinoma , Eucalyptus , Triterpenos , Humanos , China , Hojas de la Planta
17.
Biochimie ; 218: 34-45, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37774825

RESUMEN

High-density lipoprotein (HDL) cholesterol is a well-known biomarker, which has been associated with reduction in the risk of cardiovascular diseases (CVD). However, some HDL anti-atherosclerotic functions may be impaired without altered HDL-cholesterol (HDL-C) level via its dysfunctional proteins or other physiological reactions in vivo. We previously showed that activated mast cell-derived chymase could modestly cleave apolipoprotein A-I (apoA-I) in HDL3, and further easily cleave lipid-free apoA-I. In contrast, myeloperoxidase (MPO) secreted by macrophages, the main cell type in atherosclerotic plaques, could oxidize HDL proteins, which might modify their tertiary structures, increasing their susceptibility to other enzymes. Here we focused on the co-modification and impact of chymase and MPO, usually secreted during inflammation from cells with possible co-existence in atheromas, on HDL. Only after sequential treatment with MPO and then chymase, two novel truncated apoA-I fragments were generated from HDL. One fragment was 16.5 kDa, and the cleavage site by chymase after MPO modification was the C-terminal of Tyr100 in apoA-I, cross-validated by three different mass spectrometry methods. This novel apoA-I fragment can be trapped in HDL particles to avoid kidney glomerular filtration and has a specific site for antibody generation for ELISA tests. As such, its quantification can be useful in predicting patients with CVD having normal HDL-C levels.


Asunto(s)
Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Quimasas/metabolismo , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I , Colesterol/metabolismo , Enfermedades Cardiovasculares/metabolismo , Peroxidasa/metabolismo
18.
Biomed Chromatogr ; 38(2): e5783, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38014563

RESUMEN

Huangqi Guizhi Wuwu decoction (HGWWD) is a widely used traditional Chinese medicine (TCM) preparation for the treatment of ischemic stroke and diabetes peripheral neuropathy. However, the material basis for the efficacy of HGWWD remains unclear. In this study, a rapid, sensitive and selective ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) method was developed to separate and identify the absorbed components and metabolites of HGWWD in rat plasma after oral administration for the first time. By comparing the retention time, high-resolution mass spectrometry primary and secondary mass spectrometry data of blank plasma and drug-containing plasma, a total of 42 constituents, including 24 prototype compounds and 18 metabolites, were identified or tentatively characterized. The results indicated that monoterpenes, flavonoids, organic acids, amino acids, gingerols and alkaloids were main prototype compounds in rat plasma, and flavonoid-related metabolites, organic acid-related metabolites and gingerol-related metabolites were major metabolites. It is concluded the developed UHPLC-Q-TOF-MS method with high sensitivity and resolution is suitable for identifying and characterizing the absorbed components and metabolites of HGWWD, and the results will provide important data for further study on the relationship between the chemical constituents and pharmacological activities of HGWWD.


Asunto(s)
Astragalus propinquus , Medicamentos Herbarios Chinos , Ratas , Animales , Ratas Sprague-Dawley , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Espectrometría de Masas/métodos , Cromatografía Liquida , Flavonoides/análisis
19.
Comb Chem High Throughput Screen ; 27(1): 90-100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37190798

RESUMEN

INTRODUCTION: Fu-Fang-Jin-Qian-Cao is a Chinese herbal preparation used to treat urinary calculi. Fu-Fang-Jin-Qian-Cao can protect renal tubular epithelial cells from calcium oxalateinduced renal injury by inhibiting ROS-mediated autopathy. The mechanism still needs further exploration. Metabonomics is a new subject; the combination of metabolomics and network pharmacology can find pathways for drugs to act on targets more efficiently. METHODS: Comprehensive metabolomics and network pharmacology to study the mechanism of Fu-Fang-Jin-Qian-Cao inhibiting autophagy in calcium oxalate-induced renal injury. Based on UHPLC-Q-TOF-MS, combined with biochemical analysis, a mice model of Calcium oxalateinduced renal injury was established to study the therapeutic effect of Fu-Fang-Jin-Qian-Cao. Based on the network pharmacology, the target signaling pathway and the protective effect of Fu- Fang-Jin-Qian-Cao on Calcium oxalate-induced renal injury by inhibiting autophagy were explored. Autophagy-related proteins LC3-II, BECN1, ATG5, and ATG7 were studied by immunohistochemistry. RESULTS: Combining network pharmacology and metabolomics, 50 differential metabolites and 2482 targets related to these metabolites were found. Subsequently, the targets enriched in PI3KAkt, MAPK and Ras signaling pathways. LC3-II, BECN1, ATG5 and ATG7 were up-regulated in Calcium oxalate-induced renal injury. All of them could be reversed after the Fu-Fang-Jin-Qian- Cao treatment. CONCLUSIONS: Fu-Fang-Jin-Qian-Cao can reverse ROS-induced activation of the MAPK signaling pathway and inhibition of the PI3K-Akt signaling pathway, thereby reducing autophagy damage of renal tubular epithelial cells in Calcium oxalate-induced renal injury.


Asunto(s)
Oxalato de Calcio , Medicamentos Herbarios Chinos , Ratones , Animales , Oxalato de Calcio/metabolismo , Oxalato de Calcio/farmacología , Calcio/metabolismo , Cromatografía Líquida de Alta Presión , Farmacología en Red , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Riñón/metabolismo , Autofagia , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/metabolismo
20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-999158

RESUMEN

ObjectiveBased on the quality evaluation experience of "it is better to have a fragrant and strong aroma" summarized by materia medica of past dynasties, the chemical components of Sojae Semen Nigrum(SSN) and Sojae Semen Praeparatum(SSP) were systematically compared and analyzed, and the main fermentation products in different fermentation time were quantitatively analyzed, so as to clarify the transformation law of internal components in the processing process and provide scientific basis for the modern quality control of SSP. MethodUltra performance liquid chromatography-quadrupole tandem time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used for the structural identification of the chemical constituents of SSN and SSP, and with the aid of Progenesis QI v2.3 software, the negative ion mode was employed for principal component analysis(PCA) pattern recognition, and the data were analyzed with the aid of orthogonal partial least squares-discriminant analysis(OPLS-DA) for two-dimensional data to obtain S-plot, and components with |P|>0.1 were selected as the differential constituents. The contents of isoflavonoids in SSP during fermentation was determined by UPLC, and the samples were taken every 8 h in the pre-fermentation period and every 2 d in the post-fermentation period, and the dynamic changes of isoflavonoid contents in different fermentation stages were analyzed. The contents of amino acids and nucleosides in SSP and SSN from different fermentation stages were quantitatively analyzed by phenyl isothiocyanate(PITC) pre-column derivatization and high performance liquid chromatography(HPLC) gradient elution, and the contribution of flavor substances to the "delicious" taste of SSP was discussed by taste intensity value(TAV). ResultA total of 19 kinds of differential components were screened out, mainly soybean saponins and isoflavones, and their contents decreased significantly or even disappeared after fermentation. In the pre-fermentation process of SSP, glycoside bond hydrolysis mainly occurred, and isoflavone glycosides in SSN were degraded and converted into the corresponding aglycones, the content of flavor substances such as amino acids increased gradually. In the post-fermentation process, protein degradation mainly occurred, after 8 d of post-fermentation, the content of isoflavones was basically stable, while the total content of amino acids increased by 8-40 times on average. Different amino acids form the special flavor of SSP, such as the TAV of glutamate is always ahead of other flavor substances, and sweet substances such as alanine and valine have made relatively great contributions to SSP. ConclusionBased on the law of constituent transformation, combined with the traditional evaluation index of "fragrant and strong", it is difficult to control the fermentation degree of SSP by the existing standards in the 2020 edition of Chinese Pharmacopoeia. It is suggested that description of the characteristics of SSP be refined and changed to "fragrant, delicious and slightly sweet", and at the same time, the post-fermentation index compounds such as glutamic acid, alanine and valine should be added as the quality control indicators of SSP, so as to standardize the production process and improve the quality of SSP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA