Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38920625

RESUMEN

Envenomation by the Hypnale hypnale in the Western Ghats of India (particularly in the Malabar region of Kerala) and the subcontinent island nation of Sri Lanka is known to inflict devastating mortality and morbidity. Currently, H. hypnale bites in India are devoid of anti-venom regimens. A detailed characterization of the venom is essential to stress the need for therapeutic anti-venom. Notably, the deleterious effects of this venom on human blood cells have largely remained less explored. Therefore, in continuation of our previous study, in the present study, we envisioned investigating the effect of venom on the morphological and physiological properties of red blood cells (RBCs). The venom readily induced deleterious morphological changes and, finally, the aggregation of washed RBCs. The aggregation process was independent of the ROS and the intracellular Ca2+ ion concentration. Confocal and scanning electron microscopy (SEM) images revealed the loss of biconcave morphology and massive cytoskeletal disarray. Crenation or serrated plasma membrane projections were evenly distributed on the surface of the RBCs. The venom did not cause the formation of methemoglobin in washed RBCs but was significantly induced in whole blood. Venom did not affect glucose uptake and Na+/K+ -ATPase activity but inhibited glucose 6 phosphate dehydrogenase activity and decreased the fluidity of the plasma membrane. Venom-induced RBC aggregates exhibited pro-coagulant activity but without affecting platelet aggregation. In pre-incubation or co-treatment studies, none of the bioactive compounds, such as melatonin, curcumin, fisetin, berberine, and quercetin, sugars such as mannose and galactose, and therapeutic polyvalent anti-venoms (Bharat and VINS) were inhibited, whereas only N-acetylcysteine and H. hypnale monovalent anti-venom could inhibit venom-induced deleterious morphological changes and aggregation of RBCs. In post-treatment studies, paradoxically, none of the bioactives and anti-venoms, including N-acetylcysteine and H. hypnale monovalent anti-venom, reversed the venom-induced RBC aggregates.


Asunto(s)
Acetilcisteína , Venenos de Crotálidos , Eritrocitos , Animales , Humanos , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Acetilcisteína/farmacología , Agregación Eritrocitaria/efectos de los fármacos , Antivenenos/farmacología , Calcio/metabolismo , Crotalinae , Especies Reactivas de Oxígeno/metabolismo
2.
J Biophotonics ; : e202300524, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462766

RESUMEN

Optical clearing agents (OCAs) are substances that temporarily modify tissue's optical properties, enabling better imaging and light penetration. This study aimed to assess the impact of OCAs on the nail bed and blood using in vivo and in vitro optical methods. In the in vivo part, OCAs were applied to the nail bed, and optical coherence tomography and optical digital capillaroscopy were used to evaluate their effects on optical clearing and capillary blood flow, respectively. In the in vitro part, the collected blood samples were incubated with the OCA and blood aggregation properties were estimated using diffuse light scattering techniques. The results indicate that OCAs significantly influence the optical properties of the nail bed and blood microrheology. These findings suggest that OCAs hold promise for improving optical imaging and diagnostics, particularly for nail bed applications, and can modify blood microrheology.

3.
Int J Retina Vitreous ; 9(1): 40, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37408021

RESUMEN

PURPOSE: To describe the development and outcome of mid-phase pinpoint hyperfluorescent spots (MPHS) on fundus fluorescein angiography (FFA) in acute (< 7-day symptom onset) central retinal artery occlusion (CRAO) patients. METHODS: This retrospective study included acute CRAO patients who underwent multimodal imaging utilizing optical coherence tomography (OCT) and FFA between June 2017 and January 2023. The correlation of FFA images with the OCT images in various stages and severity of CRAO were studied. RESULTS: Twenty-three FFA studies on 23 patients with acute CRAO were included. In 11 (48%) cases, an important finding noted on FFA was the presence of single or multiple MPHS with adjacent minimal late vascular leakage. Of these 11 cases, eight (73%) were males and median age was 41 years (inter quartile range: 33-55 years). Visual acuity ranged from 'light perception' to 6/18, and these patients presented anytime on the same day to seven days after symptom onset. On OCT, three eyes had severe CRAO, seven eyes had moderate CRAO, and one eye had mild CRAO. MPHS were primarily observed at the posterior pole and more frequently observed in moderate CRAO severity. During follow-up, the MPHS and retinal vessel staining on FFA disappeared as the CRAO showed signs of resolution. CONCLUSION: MPHS at the posterior pole on FFA in acute CRAO patients could indicate a more severe occlusion and poor visual outcomes, even after treatment. This finding is most likely caused by red blood cell aggregation or rouleaux formation. TRIAL REGISTRATION NUMBER: Not applicable.

4.
Micromachines (Basel) ; 14(2)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36838017

RESUMEN

As rheological properties are substantially influenced by red blood cells (RBCs) and plasma, the separation of their individual contributions in blood is essential. The estimation of multiple rheological factors is a critical issue for effective early detection of diseases. In this study, three rheological properties (i.e., viscoelasticity, RBC aggregation, and blood junction pressure) are measured by analyzing the blood velocity and image intensity in a microfluidic device. Using a single syringe pump, the blood flow rate sets to a pulsatile flow pattern (Qb[t] = 1 + 0.5 sin(2πt/240) mL/h). Based on the discrete fluidic circuit model, the analytical formula of the time constant (λb) as viscoelasticity is derived and obtained at specific time intervals by analyzing the pulsatile blood velocity. To obtain RBC aggregation by reducing blood velocity substantially, an air compliance unit (ACU) is used to connect polyethylene tubing (i.d. = 250 µm, length = 150 mm) to the blood channel in parallel. The RBC aggregation index (AI) is obtained by analyzing the microscopic image intensity. The blood junction pressure (ß) is obtained by integrating the blood velocity within the ACU. As a demonstration, the present method is then applied to detect either RBC-aggregated blood with different concentrations of dextran solution or hardened blood with thermally shocked RBCs. Thus, it can be concluded that the present method has the ability to consistently detect differences in diluent or RBCs in terms of three rheological properties.

5.
Rev Cardiovasc Med ; 24(7): 196, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39077025

RESUMEN

Background: This study investigated the effects of 12-week resistance training on body composition, blood pressure, blood lipid levels, muscle cross-sectional area (CSA), isokinetic muscle function, and hemorheological properties in middle-aged obese women. Methods: Twenty-eight obese women with a mean age of 50.79 ± 5.80 years were randomly assigned to the control (CON, n = 13) or experimental (EXP, n = 15) group. The EXP group underwent a resistance training program composed of warm-up, main resistance exercise (deadlift, barbell squat, seated leg extension, and lying leg curl, bench press, preacher bench biceps curl, barbell rowing, and dumbbell shoulder press), and cool-down. The resistance exercise consisted of three sets of 8-10 repetitions (reps) performed with 70-80% of 1-rep maximum, and reps and sets were increased every 3 weeks. The training frequency was 80 min, 3 days per week for 12 weeks. The CON group maintained their daily lifestyle without training. All participants underwent measurements of body composition (weight, body mass index, lean body mass, fat mass, and % body fat), blood pressure (systolic blood pressure, diastolic blood pressure, mean arterial pressure, and pulse pressure), blood lipid levels (triglycerides, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol), CSA of the muscles (quadriceps, hamstring, and total thigh muscle), isokinetic muscle function (peak torque [PT], relative PT, mean power, and total work [TW]), and hemorheological properties (erythrocyte deformability and aggregation) before and after 12 weeks of training. Results: The EXP group showed a significant improved muscle function, including PT (p < 0.001), relative PT (p < 0.001) in extension 60°/s, TW (p < 0.001) in extension 180°/s, and TW (p = 0.018) in flexion 180°/s. Regarding hemorheological properties, the EXP group showed significant improvement in erythrocyte aggregation (p < 0.001) and deformability (p < 0.001). Conclusions: The present study verified that our resistance training program resulted in greater muscle function, decreased fat mass, and improved hemorheological properties. Clinical Trial Registration: This study was registered with cris.nih.go.kr (No. KCT0007412).

6.
Front Bioeng Biotechnol ; 10: 1049878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561046

RESUMEN

Red blood cells (RBCs) clump together under low flow conditions in a process called RBC aggregation, which can alter RBC perfusion in a microvascular network. As elevated RBC aggregation is commonly associated with cardiovascular and inflammatory diseases, a better understanding of aggregation is essential. Unlike RBC aggregation in polymer solutions which can be well explained by polymer depletion theory, plasma-mediated RBC aggregation has features that best match explanations with cross-bridging mechanisms. Previous studies have demonstrated the dominant role of fibrinogen (Fg) in promoting aggregate formation and recent cell-force spectroscopy (CFS) experiments on interacting RBC doublets in plasma have reported an inverse relationship between disaggregation force and the adhesive contact area between RBCs. This has led investigators to revisit the hypothesis of inter-RBC cross-bridging which involves cross-bridge migration under interfacial tension during the forced disaggregation of RBC aggregates. In this study, we developed the cross-bridge migration model (CBMM) in plasma that mechanistically represents the migrating cross-bridge hypothesis. Transport of mobile Fg cross-bridges (mFg) was calculated using a convection-diffusion transport equation with our novel introduction of convective cross-bridge drift that arises due to intercellular friction. By parametrically transforming the diffusivity of mFg in the CBMM, we were able to match experimental observations of both RBC doublet formation kinematics and RBC doublet disaggregation forces under optical tweezers tension. We found that non-specific cross-bridging promotes spontaneous growth of adhesion area between RBC doublets whereas specific cross-bridging tends to prevent adhesion area growth. Our CBMM was also able to correlate Fg concentration shifts from healthy population blood plasma to SLE (lupus) condition blood plasma with the observed increase in doublet disaggregation forces for the RBC doublets in SLE plasma.

7.
Clin Hemorheol Microcirc ; 81(4): 325-341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35527542

RESUMEN

BACKGROUND: In the blood vessels the impaired hemorheological parameters in patients with type 2 diabetes mellitus (T2DM) could lead to elevated flow resistance, increased forces at the endothelial wall and to microvascular disturbances. OBJECTIVE: The aim of the study is to investigate the hemorheological variables and the changes of the skin blood flow responses to cold stress in T2DM patients. METHODS: The basic hemorheological parameters: hematocrit (Ht), fibrinogen (Fib), whole blood viscosity (WBV) and plasma viscosity (PV) were examined in 20 patients with T2DM and a control group of 10 healthy age and sex matched controls. The mechanisms of vascular tone regulation were investigated using the wavelet analysis of the skin temperature oscillations (WAST). The degrees of the microvascular tone changes were determined during a cold test in the endothelial (0.02-0.0095 Hz), neurogenic (0.05- 0.02 Hz) and myogenic (0.05- 0.14 Hz) frequency ranges. RESULTS: Significant increase of Fib and WBV in the patients in comparison to controls was found. The mean values of the amplitudes of the skin temperature (ST) pulsations decreased significantly during the cold stress only in the endothelial frequency range for the diabetic patients. CONCLUSIONS: The results of our study reveal parallel impairment of the blood rheological parameters and the cutaneous microcirculation in T2DM patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Viscosidad Sanguínea/fisiología , Agregación Eritrocitaria , Deformación Eritrocítica , Fibrinógeno , Hematócrito , Hemorreología , Humanos , Microcirculación
8.
Micromachines (Basel) ; 13(3)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35334730

RESUMEN

To identify the biophysical properties of blood samples consistently, macroscopic pumps have been used to maintain constant flow rates in a microfluidic comparator. In this study, the bulk-sized and expensive pump is replaced with a cheap and portable micropump. A specific reference fluid (i.e., glycerin solution [40%]) with a small volume of red blood cell (RBC) (i.e., 1% volume fraction) as fluid tracers is supplied into the microfluidic comparator. An averaged velocity () obtained with micro-particle image velocimetry is converted into the flow rate of reference fluid (Qr) (i.e., Qr = CQ × Ac × , Ac: cross-sectional area, CQ = 1.156). Two control variables of the micropump (i.e., frequency: 400 Hz and volt: 150 au) are selected to guarantee a consistent flow rate (i.e., COV < 1%). Simultaneously, the blood sample is supplied into the microfluidic channel under specific flow patterns (i.e., constant, sinusoidal, and periodic on-off fashion). By monitoring the interface in the comparator as well as Qr, three biophysical properties (i.e., viscosity, junction pressure, and pressure-induced work) are obtained using analytical expressions derived with a discrete fluidic circuit model. According to the quantitative comparison results between the present method (i.e., micropump) and the previous method (i.e., syringe pump), the micropump provides consistent results when compared with the syringe pump. Thereafter, representative biophysical properties, including the RBC aggregation, are consistently obtained for specific blood samples prepared with dextran solutions ranging from 0 to 40 mg/mL. In conclusion, the present method could be considered as an effective method for quantifying the physical properties of blood samples, where the reference fluid is supplied with a cheap and portable micropump.

9.
Front Physiol ; 13: 827428, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283762

RESUMEN

The viscosity of blood is an indicator in the understanding and treatment of disease. An elevated blood viscosity has been demonstrated in patients with Type 2 Diabetes Mellitus (T2DM), which might represent a risk factor for cardiovascular complications. However, the roles of glycated hemoglobin (HbA1c) and plasma fibrinogen levels on the elevated blood viscosity in subjects with T2DM at different chronic glycemic conditions are still not clear. Here, we evaluate the relationship between the blood viscosity and HbA1c as well as plasma fibrinogen levels in patients with T2DM. The experimental data show that the mean values of the T2DM blood viscosity are higher in groups with higher HbA1c levels, but the correlation between the T2DM blood viscosity and the HbA1c level is not obvious. Instead, when we investigate the influence of plasma fibrinogen level on the blood viscosity in T2DM subjects, we find that the T2DM blood viscosity is significantly and positively correlated with the plasma fibrinogen level. Further, to probe the combined effects of multiple factors (including the HbA1c and plasma fibrinogen levels) on the altered blood viscosity in T2DM, we regroup the experimental data based on the T2DM blood viscosity values at both the low and high shear rates, and our results suggest that the influence of the elevated HbA1c level on blood viscosity is quite limited, although it is an important indicator of glycemic control in T2DM patients. Instead, the elevated blood hematocrit, the enhanced red blood cell (RBC) aggregation induced by the increased plasma fibrinogen level, and the reduced RBC deformation play key roles in the determination of blood viscosity in T2DM. Together, these experimental results are helpful in identifying the key determinants for the altered T2DM blood viscosity, which can be used in future studies of the hemorheological disturbances of T2DM patients.

10.
Biomimetics (Basel) ; 7(1)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35076493

RESUMEN

Diabetes mellitus, a metabolic disease characterized by chronically elevated blood glucose levels, affects about 29 million Americans and more than 422 million adults all over the world. Particularly, type 2 diabetes mellitus (T2DM) accounts for 90-95% of the cases of vascular disease and its prevalence is increasing due to the rising obesity rates in modern societies. Although multiple factors associated with diabetes, such as reduced red blood cell (RBC) deformability, enhanced RBC aggregation and adhesion to the endothelium, as well as elevated blood viscosity are thought to contribute to the hemodynamic impairment and vascular occlusion, clinical or experimental studies cannot directly quantify the contributions of these factors to the abnormal hematology in T2DM. Recently, computational modeling has been employed to dissect the impacts of the aberrant biomechanics of diabetic RBCs and their adverse effects on microcirculation. In this review, we summarize the recent advances in the developments and applications of computational models in investigating the abnormal properties of diabetic blood from the cellular level to the vascular level. We expect that this review will motivate and steer the development of new models in this area and shift the attention of the community from conventional laboratory studies to combined experimental and computational investigations, aiming to provide new inspirations for the development of advanced tools to improve our understanding of the pathogenesis and pathology of T2DM.

11.
Eur J Ophthalmol ; 32(4): 2395-2403, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34382439

RESUMEN

PURPOSE: To describe the multimodal imaging features including indocyanine green angiography (ICGA) in cases diagnosed clinically as central retinal artery occlusion (CRAO) at its different disease stages. METHODS: In this retrospective observational study, patients diagnosed clinically as CRAO or hemi-CRAO were included. All patients underwent multimodal imaging with optical coherence tomography (OCT), fundus fluorescein angiography (FFA) and indocyanine green angiography (ICGA) were studied. Analysis of ICGA images in different stages of artery occlusions and its correlation with accompanying FFA and OCT images was done. RESULTS: Eight such studies in five patients were available for analysis. The most important observation noted on ICGA was the presence of hypercyanescent spots seen during the acute stages of the disease in four of the five cases. The spots were accompanied by retinal vessel staining on FFA in the corresponding region. As the disease showed signs of resolution, the hypercyanescent spots on ICGA and retinal vessel staining on FFA disappeared. The hypercyanescent spots seen on the ICGA were noted due to the red blood cell aggregation or 'rouleaux' formation. In addition, choroidal perfusion abnormalities were noted on ICGA in all five cases in the acute stage. CONCLUSION: Choroidal perfusion changes can be identified in acute phase of retinal artery occlusion. Rouleaux formation in the retinal circulation occurs due to the slowing of the blood flow following artery occlusion. These are seen as hypercyanescent spots in the late phase on ICGA.


Asunto(s)
Colorantes , Verde de Indocianina , Arterias , Coroides , Angiografía con Fluoresceína/métodos , Humanos , Estudios Retrospectivos , Tomografía de Coherencia Óptica/métodos
12.
Colloids Surf B Biointerfaces ; 210: 112226, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34836705

RESUMEN

Red blood cell (RBC) adhesion to vascular endothelial cells (EC) is considered a potent effector of circulatory disorders, and its enhancement is implicated in the pathophysiology of numerous conditions, mainly hemoglobinopathies. The actual RBC/EC interaction is determined by both cellular and plasmatic factors, and the differentiation between them is essential for understanding its physiological implications. Yet, RBC/EC adhesion has been studied predominantly in protein-free media. To explore the plasma contribution to RBC/EC adhesion, we examined the adhesion of human RBC to human vascular endothelial cells in the presence of fresh frozen plasma (FFP) and compared it to that in a protein-free phosphate-buffered saline (PBS). RBC from blood samples freshly-collected from five healthy donors and from fifteen units of packed RBC units were used. The same FFP sample was used in all measurements. In FFP, the RBC form strongly adherent aggregates, which are dispersed as the shear stress (τ) increases to 3.0 Pa, and even at 5.0 Pa a large portion of the RBC are still adherent. In PBS, the RBC are singly dispersed and their adhesion becomes insignificant already at τ = 0.5 Pa. No cross-correlation was found between the adhesion in PBS vs. that in FFP at the same τ. However, in both media, under conditions that form singly dispersed adherent RBC, an inverse correlation between RBC/EC adhesion in PBS vs. that in FFP was observed. This study clearly implies that for understanding the physiological relevance of RBC/EC adhesion it should be determined in plasma.


Asunto(s)
Células Endoteliales , Eritrocitos , Adhesión Celular , Humanos , Plasma
13.
Biomed Mater Eng ; 33(3): 235-257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34897078

RESUMEN

BACKGROUND: Considerable progress of ultrasound simulation on blood has enhanced the characterizing of red blood cell (RBC) aggregation. OBJECTIVE: A novel simulation method aims at modeling the blood with different RBC aggregations and concentrations is proposed. METHODS: The modeling process is as follows: (i) A three-dimensional scatterer model is first built by a mapping with a Hilbert space-filling curve from the one-dimensional scatterer distribution. (ii) To illustrate the relationship between the model parameters and the RBC aggregation level, a variety of blood samples are prepared and scanned to acquire their radiofrequency signals in-vitro. (iii) The model parameters are determined by matching the Nakagami-distribution characteristics of envelope signals simulated from the model with those measured from the blood samples. RESULTS: Nakagami metrics m estimated from 15 kinds of blood samples (hematocrits of 20%, 40%, 60% and plasma concentrations of 15%, 30%, 45%, 60%, 75%) are compared with metrics estimated by their corresponding models (each with different eligible parameters). Results show that for the three hematocrit levels, the mean and standard deviation of the root-mean-squared deviations of m are 0.27 ± 0.0026, 0.16 ± 0.0021, 0.12 ± 0.0018 respectively. CONCLUSION: The proposed simulation model provides a viable data source to evaluate the performance of the ultrasound-based methods for quantifying RBC aggregation.


Asunto(s)
Eritrocitos , Simulación por Computador , Ultrasonografía/métodos
14.
Sensors (Basel) ; 23(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36617006

RESUMEN

The biomechanical properties of blood have been used to detect haematological diseases and disorders. The simultaneous measurement of multiple haemorheological properties has been considered an important aspect for separating the individual contributions of red blood cells (RBCs) and plasma. In this study, three haemorheological properties (viscosity, time constant, and RBC aggregation) were obtained by analysing blood flow, which was set to a square-wave profile (steady and transient flow). Based on a simplified differential equation derived using a discrete circuit model, the time constant for viscoelasticity was obtained by solving the governing equation rather than using the curve-fitting technique. The time constant (λ) varies linearly with respect to the interface in the coflowing channel (ß). Two parameters (i.e., average value: <λ>, linear slope: dλdß) were newly suggested to effectively represent linearly varying time constant. <λ> exhibited more consistent results than dλdß. To detect variations in the haematocrit in blood, we observed that the blood viscosity (i.e., steady flow) is better than the time constant (i.e., transient flow). The blood viscosity and time constant exhibited significant differences for the hardened RBCs. The present method was then successfully employed to detect continuously varying haematocrit resulting from RBC sedimentation in a driving syringe. The present method can consistently detect variations in blood in terms of the three haemorheological properties.


Asunto(s)
Viscosidad Sanguínea , Agregación Eritrocitaria , Viscosidad Sanguínea/fisiología , Agregación Eritrocitaria/fisiología , Hematócrito , Eritrocitos , Hemodinámica
15.
Metabolites ; 11(12)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34940644

RESUMEN

Glucose metabolism disorders contribute to the development of various diseases. Numerous studies show that these disorders not only change the normal values of biochemical parameters but also affect the mechanical properties of blood. To show the influence of glucose and poloxamer 188 (P188) on the mechanical properties of a red-blood-cell (RBC) suspension, we studied the aggregation of the cells. To show the mechanisms of the mechanical properties of blood, we studied the effects of glucose and poloxamer 188 (P188) on red-blood-cell aggregation. We used a model in which cells were suspended in a dextran 70 solution at a concentration of 2 g/dL with glucose and P188 at concentrations of 0-3 g/dL and 0-3 mg/mL, respectively. RBC aggregation was determined using an aggregometer, and measurements were performed every 4 min for 1 h. Such a procedure enabled the incubation of RBCs in solution. The aggregation index determined from the obtained syllectograms was used as a measure of aggregation. Both the presence of glucose and that of P188 increased the aggregation index with the incubation time until saturation was reached. The time needed for the saturation of the aggregation index increased with increasing glucose and P188 concentrations. As the concentrations of these components increased, the joint effect of glucose and P188 increased the weakening of RBC aggregation. The mechanisms of the observed changes in RBC aggregation in glucose and P188 solutions are discussed.

16.
Micromachines (Basel) ; 11(5)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354105

RESUMEN

Air compliance has been used effectively to stabilize fluidic instability resulting from a syringe pump. It has also been employed to measure blood viscosity under constant shearing flows. However, due to a longer time delay, it is difficult to quantify the aggregation of red blood cells (RBCs) or blood viscoelasticity. To quantify the mechanical properties of blood samples (blood viscosity, RBC aggregation, and viscoelasticity) effectively, it is necessary to quantify contributions of air compliance to dynamic blood flows in microfluidic channels. In this study, the effect of air compliance on measurement of blood mechanical properties was experimentally quantified with respect to the air cavity in two driving syringes. Under periodic on-off blood flows, three mechanical properties of blood samples were sequentially obtained by quantifying microscopic image intensity () and interface (α) in a co-flowing channel. Based on a differential equation derived with a fluid circuit model, the time constant was obtained by analyzing the temporal variations of ß = 1/(1-α). According to experimental results, the time constant significantly decreased by securing the air cavity in a reference fluid syringe (~0.1 mL). However, the time constant increased substantially by securing the air cavity in a blood sample syringe (~0.1 mL). Given that the air cavity in the blood sample syringe significantly contributed to delaying transient behaviors of blood flows, it hindered the quantification of RBC aggregation and blood viscoelasticity. In addition, it was impossible to obtain the viscosity and time constant when the blood flow rate was not available. Thus, to measure the three aforementioned mechanical properties of blood samples effectively, the air cavity in the blood sample syringe must be minimized (Vair, R = 0). Concerning the air cavity in the reference fluid syringe, it must be sufficiently secured about Vair, R = 0.1 mL for regulating fluidic instability because it does not affect dynamic blood flows.

17.
Biomech Model Mechanobiol ; 19(1): 159-171, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31297646

RESUMEN

In order to figure out whether red blood cell (RBC) aggregation is beneficial or deleterious for the blood flow through a stenosis, fluid mechanics of a microvascular stenosis was examined through simulating the dynamics of deformable red blood cells suspended in plasma using dissipative particle dynamics. The spatial variation in time-averaged cell-free layer (CFL) thickness and velocity profiles indicated that the blood flow exhibits asymmetry along the flow direction. The RBC accumulation occurs upstream the stenosis, leading to a thinner CFL and reduced flow velocity. Therefore, the emergence of stenosis produces an increased blood flow resistance. In addition, an enhanced Fahraeus-Lindqvist effect was observed in the presence of the stenosis. Finally, the effect of RBC aggregation combined with decreased stenosis on the blood flow was investigated. The findings showed that when the RBC clusters pass through the stenosis with a throat comparable to the RBC core in diameter, the blood flow resistance decreases with increasing intercellular interaction strength. But if the RBC core is larger and even several times than the throat, the blood flow resistance increases largely under strong RBC aggregation, which may contribute to the mechanism of the microthrombus formation.


Asunto(s)
Eritrocitos/patología , Microvasos/patología , Velocidad del Flujo Sanguíneo , Agregación Celular , Simulación por Computador , Constricción Patológica , Humanos , Modelos Biológicos , Flujo Sanguíneo Regional , Reproducibilidad de los Resultados
18.
Micromachines (Basel) ; 9(7)2018 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-30424251

RESUMEN

Red blood cell (RBC) aggregation causes to alter hemodynamic behaviors at low flow-rate regions of post-capillary venules. Additionally, it is significantly elevated in inflammatory or pathophysiological conditions. In this study, multiple and periodic measurements of RBC aggregation and erythrocyte sedimentation rate (ESR) are suggested by sucking blood from a pipette tip into parallel microfluidic channels, and quantifying image intensity, especially through single experiment. Here, a microfluidic device was prepared from a master mold using the xurography technique rather than micro-electro-mechanical-system fabrication techniques. In order to consider variations of RBC aggregation in microfluidic channels due to continuous ESR in the conical pipette tip, two indices (aggregation index (AI) and erythrocyte-sedimentation-rate aggregation index (EAI)) are evaluated by using temporal variations of microscopic, image-based intensity. The proposed method is employed to evaluate the effect of hematocrit and dextran solution on RBC aggregation under continuous ESR in the conical pipette tip. As a result, EAI displays a significantly linear relationship with modified conventional ESR measurement obtained by quantifying time constants. In addition, EAI varies linearly within a specific concentration of dextran solution. In conclusion, the proposed method is able to measure RBC aggregation under continuous ESR in the conical pipette tip. Furthermore, the method provides multiple data of RBC aggregation and ESR through a single experiment. A future study will involve employing the proposed method to evaluate biophysical properties of blood samples collected from cardiovascular diseases.

19.
Micromachines (Basel) ; 9(9)2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30424400

RESUMEN

Hemorheological properties such as viscosity, deformability, and aggregation have been employed to monitor or screen patients with cardiovascular diseases. To effectively evaluate blood circulating within an in vitro closed circuit, it is important to quantify its hemorheological properties consistently and accurately. A simple method for measuring red blood cell (RBC) aggregation and blood viscosity is proposed for analyzing blood flow in a microfluidic device, especially in a continuous and simultaneous fashion. To measure RBC aggregation, blood flows through three channels: the left wide channel, the narrow channel and the right wide channel sequentially. After quantifying the image intensity of RBCs aggregated in the left channel () and the RBCs disaggregated in the right channel (), the RBC aggregation index (AIPM) is obtained by dividing by . Simultaneously, based on a modified parallel flow method, blood viscosity is obtained by detecting the interface between two fluids in the right wide channel. RBC aggregation and blood viscosity were first evaluated under constant and pulsatile blood flows. AIPM varies significantly with respect to blood flow rate (for both its amplitude and period) and the concentration of the dextran solution used. According to our quantitative comparison between the proposed aggregation index (AIPM) and the conventional aggregation index (AICM), it is found that AIPM provides consistent results. Finally, the suggested method is employed to obtain the RBC aggregation and blood viscosity of blood circulating within an in vitro fluidic circuit. The experimental results lead to the conclusion that the proposed method can be successfully used to measure RBC aggregation and blood viscosity, especially in a continuous and simultaneous fashion.

20.
Micromachines (Basel) ; 9(10)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30424408

RESUMEN

Biophysical properties are widely used to detect pathophysiological processes of vascular diseases or clinical states. For early detection of cardiovascular diseases, it is necessary to simultaneously measure multiple biophysical properties in a microfluidic environment. However, a microfluidic-based technique for measuring multiple biophysical properties has not been demonstrated. In this study, a simple measurement method was suggested to quantify three biophysical properties of blood, including red blood cell (RBC) deformability, RBC aggregation, and hematocrit. To demonstrate the suggested method, a microfluidic device was constructed, being composed of a big-sized channel (BC), a parallel micropillar (MP), a main channel, a branch channel, inlet, and outlets. By operating a single syringe pump, blood was supplied into the inlet of the microfluidic device, at a periodic on-off profile (i.e., period = 240 s). The RBC deformability index (DI) was obtained by analyzing the averaged blood velocity in the branch channel. Additionally, the RBC aggregation index (AIN) and the hematocrit index (HiBC) were measured by analyzing the image intensity of blood flows in the MP and the BC, respectively. The corresponding contributions of three influencing factors, including the turn-on time (Ton), the amplitude of blood flow rate (Q0), and the hematocrit (Hct) on the biophysical indices (DI, AIN, and HiBC) were evaluated quantitatively. As the three biophysical indices varied significantly with respect to the three factors, the following conditions (i.e., Ton = 210 s, Q0 = 1 mL/h, and Hct = 50%) were maintained for consistent measurement of biophysical properties. The proposed method was employed to detect variations of biophysical properties depending on the concentrations of autologous plasma, homogeneous hardened RBCs, and heterogeneous hardened RBCs. Based on the observations, the proposed method exhibited significant differences in biophysical properties depending on base solutions, homogeneous hardened RBCs (i.e., all RBCs fixed with the same concentration of glutaraldehyde solution), and heterogeneous hardened RBCs (i.e., partially mixed with normal RBCs and homogeneous hardened RBCs). Additionally, the suggested indices (i.e., DI, AIN, and HiBC) were effectively employed to quantify three biophysical properties, including RBC deformability, RBC aggregation, and hematocrit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA