Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1147950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180114

RESUMEN

The relationship among microbiome, immunity and cervical cancer has been targeted by several studies, yet many questions remain unanswered. We characterized herein the virome and bacteriome from cervical samples and correlated these findings with innate immunity gene expression in a Brazilian convenience sample of HPV-infected (HPV+) and uninfected (HPV-) women. For this purpose, innate immune gene expression data were correlated to metagenomic information. Correlation analysis showed that interferon (IFN) is able to differentially modulate pattern recognition receptors (PRRs) expression based on HPV status. Virome analysis indicated that HPV infection correlates to the presence of Anellovirus (AV) and seven complete HPV genomes were assembled. Bacteriome results unveiled that vaginal community state types (CST) distribution was independent of HPV or AV status, although bacterial phyla distribution differed between groups. Furthermore, TLR3 and IFNαR2 levels were higher in the Lactobacillus no iners-dominated mucosa and we detected correlations among RIG-like receptors (RLR) associated genes and abundance of specific anaerobic bacteria. Collectively, our data show an intriguing connection between HPV and AV infections that could foster cervical cancer development. Besides that, TLR3 and IFNαR2 seem to create a protective milieu in healthy cervical mucosa (L. no iners-dominated), and RLRs, known to recognize viral RNA, were correlated to anaerobic bacteria suggesting that they might be related to dysbiosis.


Asunto(s)
Microbiota , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Cuello del Útero , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Brasil , Receptor Toll-Like 3/genética , Bacterias/genética , Expresión Génica
2.
EMBO J ; 41(6): e109760, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35156720

RESUMEN

RNA editing by the adenosine deaminase ADAR1 prevents innate immune responses to endogenous RNAs. In ADAR1-deficient cells, unedited self RNAs form base-paired structures that resemble viral RNAs and inadvertently activate the cytosolic RIG-I-like receptor (RLR) MDA5, leading to an antiviral type I interferon (IFN) response. Mutations in ADAR1 cause Aicardi-Goutières Syndrome (AGS), an autoinflammatory syndrome characterized by chronic type I IFN production. Conversely, ADAR1 loss and the consequent type I IFN production restricts tumor growth and potentiates the activity of some chemotherapeutics. Here, we show that another RIG-I-like receptor, LGP2, also has an essential role in the induction of a type I IFN response in ADAR1-deficient human cells. This requires the canonical function of LGP2 as an RNA sensor and facilitator of MDA5-dependent signaling. Furthermore, we show that the sensitivity of tumor cells to ADAR1 loss requires LGP2 expression. Finally, type I IFN induction in tumor cells depleted of ADAR1 and treated with some chemotherapeutics fully depends on LGP2 expression. These findings highlight a central role for LGP2 in self RNA sensing with important clinical implications.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Malformaciones del Sistema Nervioso , ARN Helicasas/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/genética , Humanos , Malformaciones del Sistema Nervioso/genética , Edición de ARN , ARN Bicatenario
3.
EMBO J ; 37(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29351913

RESUMEN

In vertebrates, the presence of viral RNA in the cytosol is sensed by members of the RIG-I-like receptor (RLR) family, which signal to induce production of type I interferons (IFN). These key antiviral cytokines act in a paracrine and autocrine manner to induce hundreds of interferon-stimulated genes (ISGs), whose protein products restrict viral entry, replication and budding. ISGs include the RLRs themselves: RIG-I, MDA5 and, the least-studied family member, LGP2. In contrast, the IFN system is absent in plants and invertebrates, which defend themselves from viral intruders using RNA interference (RNAi). In RNAi, the endoribonuclease Dicer cleaves virus-derived double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that target complementary viral RNA for cleavage. Interestingly, the RNAi machinery is conserved in mammals, and we have recently demonstrated that it is able to participate in mammalian antiviral defence in conditions in which the IFN system is suppressed. In contrast, when the IFN system is active, one or more ISGs act to mask or suppress antiviral RNAi. Here, we demonstrate that LGP2 constitutes one of the ISGs that can inhibit antiviral RNAi in mammals. We show that LGP2 associates with Dicer and inhibits cleavage of dsRNA into siRNAs both in vitro and in cells. Further, we show that in differentiated cells lacking components of the IFN response, ectopic expression of LGP2 interferes with RNAi-dependent suppression of gene expression. Conversely, genetic loss of LGP2 uncovers dsRNA-mediated RNAi albeit less strongly than complete loss of the IFN system. Thus, the inefficiency of RNAi as a mechanism of antiviral defence in mammalian somatic cells can be in part attributed to Dicer inhibition by LGP2 induced by type I IFNs. LGP2-mediated antagonism of dsRNA-mediated RNAi may help ensure that viral dsRNA substrates are preserved in order to serve as targets of antiviral ISG proteins.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Interferón Tipo I/metabolismo , ARN Helicasas/metabolismo , Interferencia de ARN , Virus ARN/fisiología , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , Ribonucleasa III/metabolismo , ARN Helicasas DEAD-box/genética , Regulación de la Expresión Génica , Células HeLa , Humanos , ARN Helicasas/genética , ARN Bicatenario/genética , ARN Viral/genética , Ribonucleasa III/genética , Transducción de Señal
4.
Proc Natl Acad Sci U S A ; 114(31): 8342-8347, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716935

RESUMEN

Viral respiratory infections are usually mild and self-limiting; still they exceptionally result in life-threatening infections in previously healthy children. To investigate a potential genetic cause, we recruited 120 previously healthy children requiring support in intensive care because of a severe illness caused by a respiratory virus. Using exome and transcriptome sequencing, we identified and characterized three rare loss-of-function variants in IFIH1, which encodes an RIG-I-like receptor involved in the sensing of viral RNA. Functional testing of the variants IFIH1 alleles demonstrated that the resulting proteins are unable to induce IFN-ß, are intrinsically less stable than wild-type IFIH1, and lack ATPase activity. In vitro assays showed that IFIH1 effectively restricts replication of human respiratory syncytial virus and rhinoviruses. We conclude that IFIH1 deficiency causes a primary immunodeficiency manifested in extreme susceptibility to common respiratory RNA viruses.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Síndromes de Inmunodeficiencia/genética , Helicasa Inducida por Interferón IFIH1/genética , Interferón beta/biosíntesis , Virus Sincitiales Respiratorios/inmunología , Infecciones del Sistema Respiratorio/virología , Rhinovirus/inmunología , Adenosina Trifosfatasas/genética , Preescolar , Cuidados Críticos , Femenino , Variación Genética/genética , Humanos , Síndromes de Inmunodeficiencia/inmunología , Lactante , Recién Nacido , Interferón beta/inmunología , Masculino , Estudios Prospectivos , Isoformas de Proteínas/genética , Infecciones del Sistema Respiratorio/inmunología , Replicación Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA