Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Int J Biol Macromol ; 280(Pt 2): 135817, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306157

RESUMEN

Eimeria tenella is the major causative agent of chicken coccidiosis. 5-Methylcytosine (m5C) is a type of RNA chemical modifications reported to regulate diverse biological processes. However, the distribution and biological functions of m5C in E. tenella mRNAs are yet to be known. Herein, we report transcriptome-wide profiling of mRNA m5C in E. tenella by employing m5C RNA immunoprecipitation followed by a deep-sequencing approach (m5C-RIP-seq). Our data showed that m5C peaks were distributed across the whole mRNA body. Compared with unsporulated oocysts, there were 2813 hypermethylated and 1850 hypomethylated m5C peaks in sporulated oocysts. Generally, a positive correlation between m5C modification and gene expression levels was observed. The mRNA sequencing (RNA-seq) and m5C-RIP-seq data were consistent with the results of the quantitative reverse transcription PCR (RT-qPCR) and methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR), respectively. Gene Ontology (GO) and pathway enrichment analysis predicated diverse biological functions and pathways, including microtubule motor activity, helicase activity, cGMP-PKG signaling pathway, aminoacyl-tRNA biosynthesis, glycolysis/gluconeogenesis, and spliceosome. Meanwhile, stage-specific gene expression signatures of m5C-related regulators were observed. Altogether, our findings reveal the transcriptional significance of m5C modification in E. tenella oocysts, providing resources and clues for further in-depth research.

2.
Future Oncol ; : 1-16, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39345093

RESUMEN

Aim: To delineate the RNA-5-methylcytosine (m5C) modification of breast cancer brain metastasis (BCBM).Methods: Methylated RNA immunoprecipitation next-generation sequencing (MeRIP-seq) was performed to obtain RNA-m5C patterns of BCBM.Results: 1048 hypermethylation and 1866 hypomethylation m5C peaks were identified in BCBM compared with those in breast cancer. The most significant m5C hypermethylated genes included ENG, SHANK1, IGFN1, EVL and MMP9, whereas the most significant m5C hypomethylated genes included AREG, SAA2, TP53I11, KRT7 and LCN2. MeRIP-qPCR data were concordant with the corresponding MeRIP-seq results in terms of the observed m5C levels. Conjoint analysis identified 190 hyper-up genes characterized by concurrent m5C hypermethylation and up-regulation, alongside 284 hypo-down genes exhibiting both m5C hypomethylation and down-regulation.Conclusion: This study presents the first comprehensive analysis of RNA-m5C modification in BCBM.


[Box: see text].

3.
Methods Mol Biol ; 2837: 59-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044075

RESUMEN

Of all the chemical modifications of RNAs, the N6-methyladenosine (m6A) modification is the most prevalent and well-characterized RNA modification that is functionally implicated in a wide range of biological processes. The m6A modification occurs in hepatitis B virus (HBV) RNAs and this modification regulates the HBV life cycle in several ways. Thus, understanding the mechanisms underlying m6A modification of HBV RNAs is crucial in understanding HBV infectious process and associated pathogenesis. Here, we describe the currently utilized method in the detection and characterization of m6A-methylated RNAs during viral infection.


Asunto(s)
Adenosina , Virus de la Hepatitis B , Inmunoprecipitación , ARN Viral , Adenosina/análogos & derivados , Adenosina/metabolismo , Virus de la Hepatitis B/genética , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Metilación , Inmunoprecipitación/métodos , Hepatitis B/virología
4.
Adv Exp Med Biol ; 3234: 1-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38507196

RESUMEN

Throughout their life cycle, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Each mRNA is part of multiple successive mRNP complexes that participate in their biogenesis, cellular localization, translation and decay. The dynamic composition of mRNP complexes and their structural remodelling play crucial roles in the control of gene expression. Studying the endogenous composition of different mRNP complexes is a major challenge. In this chapter, we describe the variety of protein-centric immunoprecipitation methods available for the identification of mRNP complexes and the requirements for their experimental settings.


Asunto(s)
Ribonucleoproteínas , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Inmunoprecipitación
5.
PeerJ ; 11: e16312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953772

RESUMEN

Background: Alternative splicing (AS) is a biological process that allows genes to be translated into diverse proteins. However, aberrant AS can predispose cells to aberrations in biological mechanisms. RNA binding proteins (RBPs), closely affiliated with AS, have gained increased attention in recent years. Among these RBPs, RBM25 has been reported to participate in the cardiac pathological mechanism through regulating AS; however, the involvement of RBM25 as a splicing factor in heart failure remains unclarified. Methods: RBM25 was overexpressed in H9c2 cells to explore the target genes bound and regulated by RBM25 during heart failure. RNA sequencing (RNA-seq) was used to scrutinize the comprehensive transcriptional level before identifying AS events influenced by RBM25. Further, improved RNA immunoprecipitation sequencing (iRIP-seq) was employed to pinpoint RBM25-binding sites, and RT-qPCR was used to validate specific genes modulated by RBM25. Results: RBM25 was found to upregulate the expression of genes pertinent to the inflammatory response and viral processes, as well as to mediate the AS of genes associated with cellular apoptosis and inflammation. Overlap analysis between RNA-seq and iRIP-seq suggested that RBM25 bound to and manipulated the AS of genes associated with inflammation in H9c2 cells. Moreover, qRT-PCR confirmed Slc38a9, Csf1, and Coro6 as the binding and AS regulatory targets of RBM25. Conclusion: Our research implies that RBM25 plays a contributory role in cardiac inflammatory responses via its ability to bind to and regulate the AS of related genes. This study offers preliminary evidence of the influence of RBM25 on inflammation in H9c2 cells.


Asunto(s)
Empalme Alternativo , Insuficiencia Cardíaca , Proteínas con Motivos de Reconocimiento de ARN , Factores de Empalme de ARN , Empalme Alternativo/genética , Insuficiencia Cardíaca/genética , Inflamación/genética , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Animales , Ratas , Factores de Empalme de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/genética
6.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003223

RESUMEN

For several histone lysine methyltransferases (HKMTs), RNA binding has been already shown to be a functionally relevant feature, but detailed information on the RNA interactome of these proteins is not always known. Of the six human KMT2 proteins responsible for the methylation of the H3K4 residue, two-SETD1A and SETD1B-contain RNA recognition domains (RRMs). Here we investigated the RNA binding capacity of SETD1A and identified a broad range of interacting RNAs within HEK293T cells. Our analysis revealed that similar to yeast Set1, SETD1A is also capable of binding several coding and non-coding RNAs, including RNA species related to RNA processing. We also show direct RNA binding activity of the individual RRM domain in vitro, which is in contrast with the RRM domain found in yeast Set1. Structural modeling revealed important details on the possible RNA recognition mode of SETD1A and highlighted some fundamental differences between SETD1A and Set1, explaining the differences in the RNA binding capacity of their respective RRMs.


Asunto(s)
ARN , Proteínas de Saccharomyces cerevisiae , Humanos , Células HEK293 , Metilación , ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Iran J Public Health ; 52(9): 1902-1916, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38033847

RESUMEN

Background: N6-methyladenosine (m6A) methylation modification is involved in tumorigenesis and progression and can affect various stages of RNA processing. We aimed to determine m6A methylation modifications on a transcriptome-wide scale in thyroid cancer. Methods: RNA samples from cancerous tissues and adjacent tissues extracted from patients with papillary thyroid carcinoma (PTC) from Hangzhou First People's Hospital, Zhejiang, China from January 2019 to January 2020 were used for m6A-sequencing. The biological function of differentially expressed genes (DEGs) was analyzed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Correlation analysis between the results of transcriptome sequencing and m6A-sequencing was also performed. The key m6A immune-related genes were downloaded from Immport. LASSO regression was performed on the resulting genes to establish a prognostic risk model, which was verified by multivariate Cox proportional hazards regression analyses, receiver operating characteristic (ROC) curves and Kaplan-Meier survival analysis. Results: An increase in m6A content in the total RNA of PTC was observed. A total of 123 genes with significant differential expression and differential methylation sites in thyroid cancer were selected, related to protein digestion and absorption, linoleic acid metabolism, legionellosis and alpha-linolenic acid metabolism. Seven genes (GDNF, EBI3, CCL2, BMP5, TGFB2, CGB3 and RLN2) were found to be predictive of PTC. Conclusion: We analyzed the expression, enrichment pathways and functions of m6A methylation-related genes in the whole transcriptome of thyroid cancer and provided a prognostic risk model for thyroid cancer patients.

8.
J Cell Biochem ; 124(11): 1720-1733, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37796115

RESUMEN

5-Methylcytosine (m5 C) is a prevalent RNA modification in messenger RNAs (mRNAs). Despite its abundance, its role in the decidua of pre-eclampsia (PE) remains elusive. In this study, we utilized methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-sequencing (RNA-seq) to map m5 C peaks and mRNA expression profile in the decidua of human early-onset PE (EPE), late-onset PE (LPE), and normal pregnancy (NP). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses elucidated potential roles of the differentially methylated mRNAs (DMGs) and differentially expressed mRNAs in decidualization pathways. Integrative analysis of MeRIP-seq and RNA-seq data pinpointed 50 candidate genes linked to PE, marked by both differentially methylated m5 C peaks and congruent expression changes. To validate these observations, we selected nine genes for verification via quantitative PCR. Our results underscore the precision and reproducibility of our bioinformatics approach. Importantly, we propose that changes in m5 C modification and expression of relevant mRNA might influence the pathogenesis of PE by hampering decidualization. This work shines light on the distinct mRNA m5 C modification patterns and expression profiles in the decidua of PE, implicating pivotal signaling disruptions and decidualization impediments in the onset of PE.


Asunto(s)
5-Metilcitosina , Preeclampsia , Embarazo , Femenino , Humanos , ARN Mensajero/genética , 5-Metilcitosina/metabolismo , Preeclampsia/patología , Reproducibilidad de los Resultados , Transducción de Señal
9.
Genes Genet Syst ; 98(4): 191-200, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37813646

RESUMEN

N6-methyladenosine (m6A) modifications are the most abundant internal modifications of mRNA and have a significant role in various cancers; however, the m6A methylome profile of oral squamous cell carcinoma (OSCC) in the mRNA-wide remains unknown. In this study, we examined the relationship between m6A and OSCC. Four pairs of OSCC and adjacent normal tissues were compared by Methylated RNA immunoprecipitation sequencing (MeRIP-seq). Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Ingenuity Pathway Analysis (IPA) analyses were used to further analyze the MeRIP-seq data. A total of 2,348 different m6A peaks were identified in the OSCC group, including 85 m6A upregulated peaks and 2,263 m6A downregulated peaks. Differentially methylated m6A binding sites were enriched in the coding sequence in proximity to the stop codon of both groups. KEGG analysis revealed genes with upregulated m6A-modified sites in the OSCC group, which were prominently associated with the forkhead box O (FOXO) signaling pathway. Genes containing downregulated m6A-modified sites were significantly correlated with the PI3K/Akt signaling pathway, spliceosome, protein processing in the endoplasmic reticulum, and endocytosis. IPA analysis indicated that several genes with differential methylation peaks form networks with m6A regulators. Overall, this study established the mRNA-wide m6A map for human OSCC and indicated the potential links between OSCC and N6-methyladenosine modification.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Fosfatidilinositol 3-Quinasas , Neoplasias de la Boca/genética , ARN Mensajero
10.
Biochem Biophys Res Commun ; 684: 149113, 2023 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-37866243

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is a significant public health concern globally. Evidence suggests that Salt-inducible kinase 2 (SIK2) is differentially expressed across various cancers and is also implicated in cancer progression. Despite this, the precise function of SIK2 in NSCLC is yet to be elucidated and requires further investigation. METHODS: SIK2 expression was evaluated in both HBEC and NSCLC cells, utilizing quantitative real-time PCR (qRT-PCR) and Western blot (WB) analyses. Furthermore, to identify the influence of SIK2 on cell proliferation, migration, invasion, and apoptosis, a range of techniques were employed. To evaluate N6-methyladenosine (m6A) modification levels of total RNA and SIK2 within cells, RNA m6A colorimetry and methylated RNA immunoprecipitation (MeRIP) techniques were employed. Additionally, to confirm the interaction between SIK2 and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), bioinformatics analysis was executed, and the results were validated through RIP. The stability of SIK2 mRNA was determined using actinomycin D experiment. Furthermore, to validate the in vivo functionality of SIK2, a subcutaneous transplantation tumor model was established in nude mice. RESULTS: In this study, upregulation of SIK2 in NSCLC cells was observed. Overexpression of SIK2 was found to lead to promotion of cell proliferation, migration, invasion, and suppression of the Hippo/yes-associated protein (YAP) pathway, while inhibiting apoptosis. RIP analysis showed that IGF2BP1 protein interacted with SIK2 mRNA. Knockdown of IGF2BP1 decreased mRNA stability and m6A modification levels of SIK2. Additionally, knockdown of IGF2BP1 resulted in inhibition of cell proliferation, migration, invasion, suppression of the Hippo/YAP pathway, and promoting apoptosis. Overexpression of SIK2 overturned the impact of IGF2BP1 on NSCLC cells, which was then confirmed through in vivo experiments. CONCLUSION: IGF2BP1 stabilized SIK2 mRNA through m6A modification to promote NSCLC progression, potentially offering new diagnostic and therapeutic insights for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , MicroARNs/genética , ARN Mensajero/genética , Ratones Desnudos , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas/metabolismo , Regulación Neoplásica de la Expresión Génica
11.
Cell Rep ; 42(9): 113099, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37682711

RESUMEN

To understand the function of multisubunit complexes, it is of key importance to uncover the precise mechanisms that guide their assembly. Nascent proteins can find and bind their interaction partners during their translation, leading to co-translational assembly. Here, we demonstrate that the core modules of ATAC (ADA-two-A-containing) and SAGA (Spt-Ada-Gcn5-acetyltransferase), two lysine acetyl transferase-containing transcription co-activator complexes, assemble co-translationally in the cytoplasm of mammalian cells. In addition, a SAGA complex containing all of its modules forms in the cytoplasm and acetylates non-histone proteins. In contrast, ATAC complex subunits cannot be detected in the cytoplasm of mammalian cells. However, an endogenous ATAC complex containing two functional modules forms and functions in the nucleus. Thus, the two related co-activators, ATAC and SAGA, assemble using co-translational pathways, but their subcellular localization, cytoplasmic abundance, and functions are distinct.


Asunto(s)
Histona Acetiltransferasas , Proteínas de Saccharomyces cerevisiae , Animales , Histona Acetiltransferasas/metabolismo , Factores de Transcripción/metabolismo , Cromatina , Núcleo Celular/metabolismo , Proteínas Fúngicas , Proteínas de Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
12.
Methods ; 218: 158-166, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37611837

RESUMEN

Proteins are expressed from genes via sequential biological processes of transcription, mRNA processing, export and translation, and play their roles in maintaining cellular functions via interactions with proteins, DNAs or RNAs. Thus, it is important to study the protein interactions during biological processes in living cells towards understanding their mechanisms-of-action in real time. Methodologies have been developed over the years to study protein interactions in vivo. One state-of-the-art approach is formaldehyde crosslinking-based immuno- or chemi-precipitation to analyze selective as well as genome/proteome-wide interactions in living cells. It is a popular and widely used methodology for cellular analysis of the protein-protein and protein-nucleic acid interactions. Here, we describe this approach to analyze protein-protein/nucleic acid interactions in vivo.


Asunto(s)
Cromatina , Ácidos Nucleicos , Cromatina/genética , ARN/genética , Proteoma , Inmunoprecipitación
13.
FASEB Bioadv ; 5(8): 305-320, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554544

RESUMEN

N7-methylguanosine (m7G) modification is closely related to the occurrence of tumors. However, the m7G modification of circRNAs in oral squamous cell carcinoma (OSCC) remains to be investigated. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) was used to measure the methylation levels of m7G and identify m7G sites in circRNAs in human OSCC and normal tissues. The host genes of differentially methylated and differentially expressed circRNAs were analyzed by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, and circRNA-miRNA-mRNA networks were predicted using the miRanda and miRDB databases. The analysis identified 2348 m7G peaks in 624 circRNAs in OSCC tissues. In addition, the source of m7G-methylated circRNAs in OSCC was mainly the sense overlap region compared with normal tissues. The most conserved m7G motif in OSCC tissues was CCUGU, whereas the most conserved motif in normal tissues was RCCUG (R = G/A). Importantly, GO enrichment and KEGG pathway analysis showed that the host genes of differentially methylated and differentially expressed circRNAs were involved in many cellular biological functions. Furthermore, the significantly differentially expressed circRNAs were analyzed to predict the circRNA-miRNA-mRNA networks. This study revealed the whole profile of circRNAs of differential m7G methylation in OSCC and suggests that m7G-modified circRNAs may impact the development of OSCC.

14.
Front Genet ; 14: 1198975, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37496715

RESUMEN

[This corrects the article DOI: 10.3389/fgene.2022.974357.].

15.
BMC Genomics ; 24(1): 316, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308824

RESUMEN

BACKGROUND: In recent years, accumulating evidences have revealed that influenza A virus (IAV) infections induce significant differential expression of host long noncoding RNAs (lncRNAs), some of which play important roles in the regulation of virus-host interactions and determining the virus pathogenesis. However, whether these lncRNAs bear post-translational modifications and how their differential expression is regulated remain largely unknown. In this study, the transcriptome-wide 5-methylcytosine (m5C) modification of lncRNAs in A549 cells infected with an H1N1 influenza A virus was analyzed and compared with uninfected cells by Methylated RNA immunoprecipitation sequencing (MeRIP-Seq). RESULTS: Our data identified 1317 upregulated m5C peaks and 1667 downregulated peaks in the H1N1 infected group. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the differentially modified lncRNAs were associated with protein modification, organelle localization, nuclear export and other biological processes. Furthermore, conjoint analysis of the differentially modified (DM) and differentially expressed (DE) lncRNAs identified 143 'hyper-up', 81 'hypo-up', 6 'hypo-down' and 4 'hyper-down' lncRNAs. GO and KEGG analyses revealed that these DM and DE lncRNAs were predominantly associated with pathogen recognition and disease pathogenesis pathways, indicating that m5C modifications could play an important role in the regulation of host response to IAV replication by modulating the expression and/or stability of lncRNAs. CONCLUSION: This study presented the first m5C modification profile of lncRNAs in A549 cells infected with IAV and demonstrated a significant alteration of m5C modifications on host lncRNAs upon IAV infection. These data could give a reference to future researches on the roles of m5C methylation in virus infection.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , ARN Largo no Codificante , Humanos , Células A549 , Transcriptoma , 5-Metilcitosina
16.
Mol Biol Rep ; 50(8): 6703-6715, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37378749

RESUMEN

BACKGROUND: Abnormal methylation of N6-methyladenosine (m6A) is reportedly associated with central nervous system disorders. However, the role of m6A mRNA methylation in unconjugated bilirubin (UCB) neurotoxicity requires further research. METHODS: Rat pheochromocytoma PC12 cells treated with UCB were used as in vitro models. After the PC12 cells were treated with UCB (0, 12, 18, and 24 µM) for 24 h, the total RNA m6A levels were measured using an m6A RNA methylation quantification kit. The expression of m6A demethylases and methyltransferases was detected through western blotting. We determined the m6A mRNA methylation profile in PC12 cells exposed to UCB (0 and 18 µM) for 24 h using methylated RNA immunoprecipitation sequencing (MeRIP-seq). RESULTS: Compared with the control group, UCB (18 and 24 µM) treatment decreased the expression of the m6A demethylase ALKBH5 and increased the expression of the methyltransferases METTL3 and METTL14, which resulted in an increase in the total m6A levels in PC12 cells. Furthermore, 1533 m6A peaks were significantly elevated and 1331 peaks were reduced in the UCB (18 µM)-treated groups compared with those in the control group. Genes with differential m6A peaks were mainly enriched in protein processing in the endoplasmic reticulum, ubiquitin-mediated proteolysis, cell cycle, and endocytosis. Through combined analysis of the MeRIP-seq and RNA sequencing data, 129 genes with differentially methylated m6A peaks and differentially expressed mRNA levels were identified. CONCLUSION: Our study suggests that the modulation of m6A methylation modifications plays a significant role in UCB neurotoxicity.


Asunto(s)
Metiltransferasas , ARN , Ratas , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células PC12 , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN/metabolismo , Adenosina/metabolismo
17.
Methods Mol Biol ; 2666: 107-114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166660

RESUMEN

Proteins with either RNA or DNA-binding motifs were shown to bind RNA. Immunoprecipitation of such proteins using antibodies and identification of the RNA-binding molecules is called RNA immunoprecipitation (RIP). The RNA precipitated with the studied protein can be detected by real-time polymerase chain reaction (PCR), microarray or sequencing. Here, we detail a method for native immunoprecipitation, without cross-linking, to isolate protein-RNA complexes followed by subsequent extraction and quantification of the co-purified RNA.


Asunto(s)
Proteínas de Unión al ARN , ARN , ARN/química , Proteínas de Unión al ARN/metabolismo , Inmunoprecipitación
18.
Methods Mol Biol ; 2666: 265-278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166671

RESUMEN

R-loops are three-stranded nucleic acid structures that consist of a DNA-RNA hybrid and a displaced single-stranded DNA. Since it was first reported by Ronald Davis and colleagues over 40 years ago, the study of R-loops has become an increasingly expanded area of research. Numerous factors have been identified to modulate the dynamic formation and resolution of R-loops, which are critical for proper controls of gene expression and genome stability. Along the lines of these discoveries, various biochemical and cellular assays have been developed to detect R-loop changes in vitro and in vivo. In this chapter, we describe a protocol for measuring R-loop formation using a plasmid-based in vitro transcription assay. The R-loop formed is then detected and quantified by using gel mobility, antibody staining, and DNA-RNA immunoprecipitation (DRIP)-qPCR assays. Unlike the helicase assay that uses short R-loop substrates, this assay system introduces DNA topology and active transcription as additional variables that impact R-loop formation, thus, more closely recapitulating in vivo situations. Furthermore, this method can be adopted for investigation of cis-elements and trans-acting factors that influence R-loop formation.


Asunto(s)
ADN , Estructuras R-Loop , ADN/química , ARN/química , Plásmidos/genética , ADN de Cadena Simple
19.
Parasit Vectors ; 16(1): 118, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004055

RESUMEN

BACKGROUND: Trypanosomes are single-celled eukaryotes that rely heavily on post-transcriptional mechanisms to regulate gene expression. RNA-binding proteins play essential roles in regulating the fate, abundance and translation of messenger RNAs (mRNAs). Among these, zinc finger proteins of the cysteine3histidine (CCCH) class have been shown to be key players in cellular processes as diverse as differentiation, regulation of the cell cycle and translation. ZC3H41 is an essential zinc finger protein that has been described as a component of spliced leader RNA granules and nutritional stress granules, but its role in RNA metabolism is unknown. METHODS: Cell cycle analysis in ZC3H41- and Z41AP-depleted cells was carried out using 4',6-diamidino-2-phenylindole staining, microscopic examination and flow cytometry. The identification of ZC3H41 protein partners was done using tandem affinity purification and mass spectrometry. Next-generation sequencing was used to evaluate the effect of ZC3H41 depletion on the transcriptome of procyclic Trypanosoma brucei cells, and also to identify the cohort of mRNAs associated with the ZC3H41/Z41AP complex. Levels of 5S ribosomal RNA (rRNA) species in ZC3H41- and Z41AP-depleted cells were assessed by quantitative reverse transcription-polymerase chain reaction. Surface sensing of translation assays were used to monitor global translation. RESULTS: We showed that depletion of the zinc finger protein ZC3H41 resulted in marked cell cycle defects and abnormal cell morphologies. ZC3H41 was found associated with an essential protein, which we named Z41AP, forming a stable heterodimer, and also with proteins of the poly(A)-binding protein 1 complex. The identification of mRNAs associated with the ZC3H41/Z41AP complex revealed that it is primarily composed of ribosomal protein mRNAs, and that binding to target transcripts is diminished upon nutritional stress. In addition, we observed that mRNAs encoding several proteins involved in the maturation of 5S rRNA are also associated with the ZC3H41/Z41AP complex. Finally, we showed that depletion of either ZC3H41 or Z41AP led to the accumulation of 5S rRNA precursors and a decrease of protein translation. CONCLUSIONS: We propose that ZC3H41 and Z41AP play important roles in controlling the fate of ribosomal components in response to environmental cues.


Asunto(s)
Proteínas Ribosómicas , Trypanosoma brucei brucei , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , ARN Ribosómico 5S/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas Protozoarias/metabolismo
20.
Neuromuscul Disord ; 33(5): 405-409, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037049

RESUMEN

Overlap syndrome is a clinical entity of myositis concomitant with one or more collagen diseases such as systemic lupus erythematosus, systemic sclerosis, and/or rheumatoid arthritis. It is not evident whether the myopathology of overlap syndrome is disease-specific or categorizes one of the four major subsets: inclusion body myositis, immune-mediated necrotizing myopathy, dermatomyositis, and antisynthetase syndrome. We report a patient with overlap syndrome who exhibited autoantibodies against multiple transfer-RNA components by RNA immunoprecipitation, suggesting antisynthetase syndrome. A 64-year-old woman developed systemic lupus erythematosus, systemic sclerosis, and myositis. Muscle biopsy showed perifascicular necrosis and perimysial alkaline phosphatase positivity, suggesting antisynthetase syndrome. Enzyme-linked immunosorbent assay was negative for autoantibodies to aminoacyl transfer-RNA synthetase, whereas RNA immunoprecipitation revealed a novel antibody to multiple transfer-RNA components. Although the myopathology of overlap syndrome may be diagnosed as any one of various subsets, this case suggests that the myopathological features of overlap syndrome may include antisynthetase syndrome.


Asunto(s)
Enfermedades Autoinmunes , Enfermedades del Tejido Conjuntivo , Lupus Eritematoso Sistémico , Miositis , Femenino , Humanos , Persona de Mediana Edad , Esclerosis , Autoanticuerpos , ARN de Transferencia , Lupus Eritematoso Sistémico/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA