Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Cell ; 11: 155-186, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38783922

RESUMEN

In Saccharomyces cerevisiae, polyadenylated forms of mature (and not precursor) small non-coding RNAs (sncRNAs) those fail to undergo proper 3'-end maturation are subject to an active degradation by Rrp6p and Rrp47p, which does not require the involvement of core exosome and TRAMP components. In agreement with this finding, Rrp6p/Rrp47p is demonstrated to exist as an exosome-independent complex, which preferentially associates with mature polyadenylated forms of these sncRNAs. Consistent with this observation, a C-terminally truncated version of Rrp6p (Rrp6p-ΔC2) lacking physical association with the core nuclear exosome supports their decay just like its full-length version. Polyadenylation is catalyzed by both the canonical and non-canonical poly(A) polymerases, Pap1p and Trf4p. Analysis of the polyadenylation profiles in WT and rrp6-Δ strains revealed that the majority of the polyadenylation sites correspond to either one to three nucleotides upstream or downstream of their mature ends and their poly(A) tails ranges from 10-15 adenylate residues. Most interestingly, the accumulated polyadenylated snRNAs are functional in the rrp6-Δ strain and are assembled into spliceosomes. Thus, Rrp6p-Rrp47p defines a core nuclear exosome-independent novel RNA turnover system in baker's yeast targeting imperfectly processed polyadenylated sncRNAs that accumulate in the absence of Rrp6p.

2.
Trends Biochem Sci ; 49(6): 477-479, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677919

RESUMEN

A recently characterized RNA modification is NAD+-modified RNAs (NAD-RNAs). Various enzymes decap NAD-RNAs, and Wang and Yu et al. now describe another, namely Toll/interleukin-1 receptor (TIR) domain-containing proteins of bacteria and Archaea. TIR decapping products are a specific variant of cyclic ADP ribose (ADPR)-RNAs (v-cADPR-RNAs), opening a new window to the NAD-RNA world.


Asunto(s)
NAD , NAD/metabolismo , Humanos , Dominios Proteicos , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/química , ARN/metabolismo , ARN/química
3.
Front Genet ; 15: 1272689, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444757

RESUMEN

The control of gene expression is a fundamental process essential for correct development and to maintain homeostasis. Many post-transcriptional mechanisms exist to maintain the correct levels of each RNA transcript within the cell. Controlled and targeted cytoplasmic RNA degradation is one such mechanism with the 5'-3' exoribonuclease Pacman (XRN1) and the 3'-5' exoribonuclease Dis3L2 playing crucial roles. Loss of function mutations in either Pacman or Dis3L2 have been demonstrated to result in distinct phenotypes, and both have been implicated in human disease. One mechanism by which gene expression is controlled is through the function of miRNAs which have been shown to be crucial for the control of almost all cellular processes. Although the biogenesis and mechanisms of action of miRNAs have been comprehensively studied, the mechanisms regulating their own turnover are not well understood. Here we characterise the miRNA landscape in a natural developing tissue, the Drosophila melanogaster wing imaginal disc, and assess the importance of Pacman and Dis3L2 on the abundance of miRNAs. We reveal a complex landscape of miRNA expression and show that whilst a null mutation in dis3L2 has a minimal effect on the miRNA expression profile, loss of Pacman has a profound effect with a third of all detected miRNAs demonstrating Pacman sensitivity. We also reveal a role for Pacman in regulating the highly conserved let-7 cluster (containing miR-100, let-7 and miR-125) and present a genetic model outlining a positive feedback loop regulated by Pacman which enhances our understanding of the apoptotic phenotype observed in Pacman mutants.

4.
Biochimie ; 217: 54-65, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37482092

RESUMEN

Bacteria can rapidly adapt to changes in their environment thanks to the innate flexibility of their genetic expression. The high turnover rate of RNAs, in particular messenger and regulatory RNAs, provides an important contribution to this dynamic adjustment. Recycling of RNAs is ensured by ribonucleases, among which RNase III is the focus of this review. RNase III enzymes are highly conserved from prokaryotes to eukaryotes and have the specific ability to cleave double-stranded RNAs. The role of RNase III in bacterial physiology has remained poorly explored for a long time. However, transcriptomic approaches recently uncovered a large impact of RNase III in gene expression in a wide range of bacteria, generating renewed interest in the physiological role of RNase III. In this review, we first describe the RNase III targets identified from global approaches in 8 bacterial species within 4 Phyla. We then present the conserved and unique functions of bacterial RNase III focusing on growth, resistance to stress, biofilm formation, motility and virulence. Altogether, this review highlights the underestimated impact of RNase III in bacterial adaptation.


Asunto(s)
Bacterias , Ribonucleasa III , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Bacterias/genética , Bacterias/metabolismo , Perfilación de la Expresión Génica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
5.
New Phytol ; 237(3): 870-884, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36285381

RESUMEN

Plants adapt to cold stress at the physiological and biochemical levels, thus enabling them to maintain growth and development. However, the molecular mechanism of fine-tuning cold signals remains largely unknown. We addressed the function of SlSEC1-SlC3H39 module in cold tolerance by using SlSEC1 and SlC3H39 knockout and overexpression tomato lines. A tandem CCCH zinc-finger protein SlC3H39 negatively modulates cold tolerance in tomato. SlC3H39 binds to AU-rich elements in the 3'-untranslated region (UTR) to induce mRNA degradation and regulates gene expression post-transcriptionally. We further validate that SlC3H39 participates in post-transcriptional regulation of a variety of cold-responsive genes. An O-linked N-acetylglucosamine transferase SlSEC1 physically interacts with SlC3H39 proteins and negatively regulates cold tolerance in tomato. Further study shows that SlSEC1 is essential for SlC3H39 protein stability and maintains SlC3H39 function in cold tolerance. Genetic analysis shows that SlC3H39 is epistatic to SlSEC1 in cold tolerance. The findings indicate that SlC3H39 negatively modulates plant cold tolerance through post-transcriptional regulation by binding to cold-responding mRNA 3'-UTR and reducing those transcripts. SlSEC1 promotes the O-GlcNAclation status of SlC3H39 and maintains SlC3H39 function in cold tolerance. Taken together, we propose a SlSEC1-SlC3H39 module, which allows plants to balance defense responses and growth processes.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Respuesta al Choque por Frío/genética , Estabilidad del ARN/genética , Regulación de la Expresión Génica de las Plantas , Frío , Plantas Modificadas Genéticamente/metabolismo
6.
Noncoding RNA ; 8(4)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35893232

RESUMEN

Besides transcription, RNA decay accounts for a large proportion of regulated gene expression and is paramount for cellular functions. Classical RNA surveillance pathways, like nonsense-mediated decay (NMD), are also implicated in the turnover of non-mutant transcripts. Whereas numerous protein factors have been assigned to distinct RNA decay pathways, the contribution of long non-coding RNAs (lncRNAs) to RNA turnover remains unknown. Here we identify the lncRNA CALA as a potent regulator of RNA turnover in endothelial cells. We demonstrate that CALA forms cytoplasmic ribonucleoprotein complexes with G3BP1 and regulates endothelial cell functions. A detailed characterization of these G3BP1-positive complexes by mass spectrometry identifies UPF1 and numerous other NMD factors having cytoplasmic G3BP1-association that is CALA-dependent. Importantly, CALA silencing impairs degradation of NMD target transcripts, establishing CALA as a non-coding regulator of RNA steady-state levels in the endothelium.

7.
Protein Sci ; 31(5): e4312, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481630

RESUMEN

Human Suv3 is a unique homodimeric helicase that constitutes the major component of the mitochondrial degradosome to work cooperatively with exoribonuclease PNPase for efficient RNA decay. However, the molecular mechanism of how Suv3 is assembled into a homodimer to unwind RNA remains elusive. Here, we show that dimeric Suv3 preferentially binds to and unwinds DNA-DNA, DNA-RNA, and RNA-RNA duplexes with a long 3' overhang (≥10 nucleotides). The C-terminal tail (CTT)-truncated Suv3 (Suv3ΔC) becomes a monomeric protein that binds to and unwinds duplex substrates with ~six to sevenfold lower activities relative to dimeric Suv3. Only dimeric Suv3, but not monomeric Suv3ΔC, binds RNA independently of ATP or ADP, and is capable of interacting with PNPase, indicating that dimeric Suv3 assembly ensures its continuous association with RNA and PNPase during ATP hydrolysis cycles for efficient RNA degradation. We further determined the crystal structure of the apo-form of Suv3ΔC, and SAXS structures of dimeric Suv3 and PNPase-Suv3 complex, showing that dimeric Suv3 caps on the top of PNPase via interactions with S1 domains, and forms a dumbbell-shaped degradosome complex with PNPase. Overall, this study reveals that Suv3 is assembled into a dimeric helicase by its CTT for efficient and persistent RNA binding and unwinding to facilitate interactions with PNPase, promote RNA degradation, and maintain mitochondrial genome integrity and homeostasis.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Estabilidad del ARN , ARN , Adenosina Trifosfato/metabolismo , ADN Helicasas/metabolismo , Endorribonucleasas , Humanos , Complejos Multienzimáticos , Polirribonucleótido Nucleotidiltransferasa , ARN/química , ARN Helicasas , ARN Mitocondrial , Dispersión del Ángulo Pequeño , Difracción de Rayos X
8.
Curr Top Dev Biol ; 146: 49-78, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35152986

RESUMEN

Echinoderms are a major model system for many general aspects of biology, including mechanisms of gene regulation. Analysis of transcriptional regulation (Gene regulatory networks, direct DNA-binding of proteins to specific cis-elements, and transgenesis) has contributed to our understanding of how an embryo works. This chapter looks at post-transcriptional gene regulation in the context of how the primordial germ cells are formed, and how the factors essential for this process are regulated. Important in echinoderms, as in many embryos, is that key steps of fate determination are made post-transcriptionally. This chapter highlights these steps uncovered in sea urchins and sea stars, and links them to a general theme of how the germ line may regulate its fate differently than many of the embryo's somatic cell lineages.


Asunto(s)
Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Animales , Equinodermos/metabolismo , Embrión no Mamífero/fisiología , Células Germinativas/metabolismo , Erizos de Mar/genética
9.
mLife ; 1(1): 21-39, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38818322

RESUMEN

RNA turnover plays critical roles in the regulation of gene expression and allows cells to respond rapidly to environmental changes. In bacteria, the mechanisms of RNA turnover have been extensively studied in the models Escherichia coli and Bacillus subtilis, but not much is known in other bacteria. Cyanobacteria are a diverse group of photosynthetic organisms that have great potential for the sustainable production of valuable products using CO2 and solar energy. A better understanding of the regulation of RNA decay is important for both basic and applied studies of cyanobacteria. Genomic analysis shows that cyanobacteria have more than 10 ribonucleases and related proteins in common with E. coli and B. subtilis, and only a limited number of them have been experimentally investigated. In this review, we summarize the current knowledge about these RNA-turnover-related proteins in cyanobacteria. Although many of them are biochemically similar to their counterparts in E. coli and B. subtilis, they appear to have distinct cellular functions, suggesting a different mechanism of RNA turnover regulation in cyanobacteria. The identification of new players involved in the regulation of RNA turnover and the elucidation of their biological functions are among the future challenges in this field.

10.
J Biol Chem ; 297(5): 101294, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34634303

RESUMEN

Tandem mass spectrometry (MS/MS) is an accurate tool to assess modified ribonucleosides and their dynamics in mammalian cells. However, MS/MS quantification of lowly abundant modifications in non-ribosomal RNAs is unreliable, and the dynamic features of various modifications are poorly understood. Here, we developed a 13C labeling approach, called 13C-dynamods, to quantify the turnover of base modifications in newly transcribed RNA. This turnover-based approach helped to resolve mRNA from ncRNA modifications in purified RNA or free ribonucleoside samples and showed the distinct kinetics of the N6-methyladenosine (m6A) versus 7-methylguanosine (m7G) modification in polyA+-purified RNA. We uncovered that N6,N6-dimethyladenosine (m62A) exhibits distinct turnover in small RNAs and free ribonucleosides when compared to known m62A-modified large rRNAs. Finally, combined measurements of turnover and abundance of these modifications informed on the transcriptional versus posttranscriptional sensitivity of modified ncRNAs and mRNAs, respectively, to stress conditions. Thus, 13C-dynamods enables studies of the origin of modified RNAs at steady-state and subsequent dynamics under nonstationary conditions. These results open new directions to probe the presence and biological regulation of modifications in particular RNAs.


Asunto(s)
Adenosina , Isótopos de Carbono , Guanosina/análogos & derivados , Procesamiento Postranscripcional del ARN , ARN , Adenosina/química , Adenosina/metabolismo , Adenosina/farmacología , Isótopos de Carbono/química , Isótopos de Carbono/farmacología , Guanosina/química , Guanosina/metabolismo , Guanosina/farmacología , Marcaje Isotópico , ARN/química , ARN/metabolismo , Espectrometría de Masas en Tándem
11.
Mol Cell ; 81(23): 4826-4842.e8, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34626567

RESUMEN

In animals, PIWI-interacting RNAs (piRNAs) silence transposons, fight viral infections, and regulate gene expression. piRNA biogenesis concludes with 3' terminal trimming and 2'-O-methylation. Both trimming and methylation influence piRNA stability. Our biochemical data show that multiple mechanisms destabilize unmethylated mouse piRNAs, depending on whether the piRNA 5' or 3' sequence is complementary to a trigger RNA. Unlike target-directed degradation of microRNAs, complementarity-dependent destabilization of piRNAs in mice and flies is blocked by 3' terminal 2'-O-methylation and does not require base pairing to both the piRNA seed and the 3' sequence. In flies, 2'-O-methylation also protects small interfering RNAs (siRNAs) from complementarity-dependent destruction. By contrast, pre-piRNA trimming protects mouse piRNAs from a degradation pathway unaffected by trigger complementarity. In testis lysate and in vivo, internal or 3' terminal uridine- or guanine-rich tracts accelerate pre-piRNA decay. Loss of both trimming and 2'-O-methylation causes the mouse piRNA pathway to collapse, demonstrating that these modifications collaborate to stabilize piRNAs.


Asunto(s)
Proteínas Argonautas/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Separación Celular , Drosophila melanogaster , Femenino , Citometría de Flujo , Expresión Génica , Silenciador del Gen , Técnicas Genéticas , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Procesamiento Proteico-Postraduccional , ARN Bicatenario , Espermatocitos/metabolismo , Espermatogonias/metabolismo , Testículo/metabolismo
12.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34576144

RESUMEN

Star-PAP is a non-canonical poly(A) polymerase that selects mRNA targets for polyadenylation. Yet, genome-wide direct Star-PAP targets or the mechanism of specific mRNA recognition is still vague. Here, we employ HITS-CLIP to map the cellular Star-PAP binding landscape and the mechanism of global Star-PAP mRNA association. We show a transcriptome-wide association of Star-PAP that is diminished on Star-PAP depletion. Consistent with its role in the 3'-UTR processing, we observed a high association of Star-PAP at the 3'-UTR region. Strikingly, there is an enrichment of Star-PAP at the coding region exons (CDS) in 42% of target mRNAs. We demonstrate that Star-PAP binding de-stabilises these mRNAs indicating a new role of Star-PAP in mRNA metabolism. Comparison with earlier microarray data reveals that while UTR-associated transcripts are down-regulated, CDS-associated mRNAs are largely up-regulated on Star-PAP depletion. Strikingly, the knockdown of a Star-PAP coregulator RBM10 resulted in a global loss of Star-PAP association on target mRNAs. Consistently, RBM10 depletion compromises 3'-end processing of a set of Star-PAP target mRNAs, while regulating stability/turnover of a different set of mRNAs. Our results establish a global profile of Star-PAP mRNA association and a novel role of Star-PAP in the mRNA metabolism that requires RBM10-mRNA association in the cell.


Asunto(s)
Nucleotidiltransferasas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Regulación hacia Abajo/genética , Genoma Humano , Células HEK293 , Semivida , Humanos , Modelos Biológicos , Unión Proteica , Procesamiento Postranscripcional del ARN/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , Transducción de Señal , Transcriptoma/genética , Regulación hacia Arriba/genética
13.
Methods Mol Biol ; 2192: 133-146, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33230771

RESUMEN

RNA turnover is an essential part of the gene expression pathway, and there are several experimental approaches for its determination. High-throughput measurement of global RNA turnover rates can provide valuable information about conditions or proteins that impact gene expression. Here, we present a protocol for mitochondrial RNA turnover analysis which involves metabolic labeling of RNA coupled with quantitative high-throughput fluorescent microscopy. This approach gives an excellent opportunity to discover new factors involved in mitochondrial gene regulation when combined with loss-of-function screening strategy.


Asunto(s)
Regulación de la Expresión Génica , Inmunohistoquímica/métodos , Mitocondrias/genética , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Bromouracilo/análogos & derivados , Bromouracilo/química , Expresión Génica , Células HeLa , Humanos , Microscopía Fluorescente/métodos , Estabilidad del ARN , ARN Mitocondrial/química , ARN Interferente Pequeño/genética , Coloración y Etiquetado/métodos , Transcripción Genética , Transfección , Uridina/análogos & derivados , Uridina/química
14.
J Biol Chem ; 295(47): 15810-15825, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32989052

RESUMEN

The RNA-binding protein Ataxin-2 binds to and stabilizes a number of mRNA sequences, including that of the transactive response DNA-binding protein of 43 kDa (TDP-43). Ataxin-2 is additionally involved in several processes requiring translation, such as germline formation, long-term habituation, and circadian rhythm formation. However, it has yet to be unambiguously demonstrated that Ataxin-2 is actually involved in activating the translation of its target mRNAs. Here we provide direct evidence from a polysome profile analysis showing that Ataxin-2 enhances translation of target mRNAs. Our recently established method for transcriptional pulse-chase analysis under conditions of suppressing deadenylation revealed that Ataxin-2 promotes post-transcriptional polyadenylation of the target mRNAs. Furthermore, Ataxin-2 binds to a poly(A)-binding protein PABPC1 and a noncanonical poly(A) polymerase PAPD4 via its intrinsically disordered region (amino acids 906-1095) to recruit PAPD4 to the targets. Post-transcriptional polyadenylation by Ataxin-2 explains not only how it activates translation but also how it stabilizes target mRNAs, including TDP-43 mRNA. Ataxin-2 is known to be a potent modifier of TDP-43 proteinopathies and to play a causative role in the neurodegenerative disease spinocerebellar ataxia type 2, so these findings suggest that Ataxin-2-induced cytoplasmic polyadenylation and activation of translation might impact neurodegeneration (i.e. TDP-43 proteinopathies), and this process could be a therapeutic target for Ataxin-2-related neurodegenerative disorders.


Asunto(s)
Ataxina-2/metabolismo , Citoplasma/metabolismo , Poliadenilación , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/metabolismo , Ataxina-2/genética , Citoplasma/genética , Células HEK293 , Células HeLa , Humanos , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Polinucleotido Adenililtransferasa/genética , Polinucleotido Adenililtransferasa/metabolismo , Unión Proteica , ARN Mensajero/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
15.
Biomolecules ; 10(7)2020 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-32635561

RESUMEN

Nonsense-mediated RNA decay (NMD) is the prototype example of a whole family of RNA decay pathways that unfold around a common central effector protein called UPF1. While NMD in yeast appears to be a linear pathway, NMD in higher eukaryotes is a multifaceted phenomenon with high variability with respect to substrate RNAs, degradation efficiency, effector proteins and decay-triggering RNA features. Despite increasing knowledge of the mechanistic details, it seems ever more difficult to define NMD and to clearly distinguish it from a growing list of other UPF1-mediated RNA decay pathways (UMDs). With a focus on mammalian, we here critically examine the prevailing NMD models and the gaps and inconsistencies in these models. By exploring the minimal requirements for NMD and other UMDs, we try to elucidate whether they are separate and definable pathways, or rather variations of the same phenomenon. Finally, we suggest that the operating principle of the UPF1-mediated decay family could be considered similar to that of a computing cloud providing a flexible infrastructure with rapid elasticity and dynamic access according to specific user needs.


Asunto(s)
ARN Helicasas/metabolismo , ARN Mensajero/química , Transactivadores/metabolismo , Levaduras/metabolismo , Animales , Proteínas Fúngicas/metabolismo , Humanos , Degradación de ARNm Mediada por Codón sin Sentido
16.
J Biol Chem ; 295(33): 11613-11625, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32571872

RESUMEN

The sequence-specific RNA-binding proteins PTBP1 (polypyrimidine tract-binding protein 1) and HNRNP L (heterogeneous nuclear ribonucleoprotein L) protect mRNAs from nonsense-mediated decay (NMD) by preventing the UPF1 RNA helicase from associating with potential decay targets. Here, by analyzing in vitro helicase activity, dissociation of UPF1 from purified mRNPs, and transcriptome-wide UPF1 RNA binding, we present the mechanistic basis for inhibition of NMD by PTBP1. Unlike mechanisms of RNA stabilization that depend on direct competition for binding sites among protective RNA-binding proteins and decay factors, PTBP1 promotes displacement of UPF1 already bound to potential substrates. Our results show that PTBP1 directly exploits the tendency of UPF1 to release RNA upon ATP binding and hydrolysis. We further find that UPF1 sensitivity to PTBP1 is coordinated by a regulatory loop in domain 1B of UPF1. We propose that the UPF1 regulatory loop and protective proteins control kinetic proofreading of potential NMD substrates, presenting a new model for RNA helicase regulation and target selection in the NMD pathway.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Proteína de Unión al Tracto de Polipirimidina/metabolismo , ARN Helicasas/metabolismo , Transactivadores/metabolismo , Adenosina Trifosfato/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/química , Humanos , Modelos Moleculares , Proteína de Unión al Tracto de Polipirimidina/química , Dominios Proteicos , ARN Helicasas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transactivadores/química , Transcripción Genética
17.
Plants (Basel) ; 9(3)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32182993

RESUMEN

Small RNA (sRNA) turnover is a key but poorly understood mechanism that determines the homeostasis of sRNAs. Animal XRN genes contribute the degradation of sRNAs, AtXRN2 and AtXRN3 also contribute the pri-miRNA processing and miRNA loop degradation in plants. However, the possible functions of the plant XRN genes in sRNA degradation are far from known. Here, we find that AtXRN4 contributes the turnover of plant sRNAs in Arabidopsis thaliana mainly by sRNA-seq, qRT-PCR and Northern blot. The mutation of AtXRN4 alters the sRNA profile and the accumulation of 21 nt sRNAs was increased. Some miRNA*s levels are significantly increased in xrn4 mutant plants. However, the accumulation of the primary miRNAs (pri-miRNAs) and miRNA precursors (pre-miRNAs) were generally unchanged in xrn4 mutant plants which indicates that AtXRN4 contributes the degradation of some miRNA*s. Moreover, AtXRN4 interacts with Arabidopsis Argonaute 2 (AtAGO2). This interaction takes place in Processing bodies (P-bodies). Taken together, our observations identified the interaction between XRN4 with AtAGO2 and suggested that plant XRN4 also contributes the turnover of sRNAs.

18.
Cell Rep ; 30(7): 2387-2401.e5, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075771

RESUMEN

Degradation of transcripts in human nuclei is primarily facilitated by the RNA exosome. To obtain substrate specificity, the exosome is aided by adaptors; in the nucleoplasm, those adaptors are the nuclear exosome-targeting (NEXT) complex and the poly(A) (pA) exosome-targeting (PAXT) connection. How these adaptors guide exosome targeting remains enigmatic. Employing high-resolution 3' end sequencing, we demonstrate that NEXT substrates arise from heterogenous and predominantly pA- 3' ends often covering kilobase-wide genomic regions. In contrast, PAXT targets harbor well-defined pA+ 3' ends defined by canonical pA site use. Irrespective of this clear division, NEXT and PAXT act redundantly in two ways: (1) regional redundancy, where the majority of exosome-targeted transcription units produce NEXT- and PAXT-sensitive RNA isoforms, and (2) isoform redundancy, where the PAXT connection ensures fail-safe decay of post-transcriptionally polyadenylated NEXT targets. In conjunction, this provides a two-layered targeting mechanism for efficient nuclear sorting of the human transcriptome.


Asunto(s)
Exosomas/metabolismo , Isoformas de Proteínas/metabolismo , ARN Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Humanos
19.
J Biol Chem ; 295(6): 1426-1438, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31896577

RESUMEN

Stress granules (SGs) are ribonucleoprotein (RNP) assemblies that form in eukaryotic cells as a result of limited translation in response to stress. SGs form during viral infection and are thought to promote the antiviral response because many viruses encode inhibitors of SG assembly. However, the antiviral endoribonuclease RNase L also alters SG formation, whereby only small punctate SG-like bodies that we term RNase L-dependent bodies (RLBs) form during RNase L activation. How RLBs relate to SGs and their mode of biogenesis is unknown. Herein, using immunofluorescence, live-cell imaging, and MS-based analyses, we demonstrate that RLBs represent a unique RNP granule with a protein and RNA composition distinct from that of SGs in response to dsRNA lipofection in human cells. We found that RLBs are also generated independently of SGs and the canonical dsRNA-induced SG biogenesis pathway, because RLBs did not require protein kinase R, phosphorylation of eukaryotic translation initiation factor 2 subunit 1 (eIF2α), the SG assembly G3BP paralogs, or release of mRNAs from ribosomes via translation elongation. Unlike the transient interactions between SGs and P-bodies, RLBs and P-bodies extensively and stably interacted. However, despite both RLBs and P-bodies exhibiting liquid-like properties, they remained distinct condensates. Taken together, these observations reveal that RNase L promotes the formation of a unique RNP complex that may have roles during the RNase L-mediated antiviral response.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Endorribonucleasas/metabolismo , Ribonucleoproteínas/metabolismo , Células A549 , Línea Celular , Gránulos Citoplasmáticos/ultraestructura , Células HEK293 , Humanos
20.
J Biol Chem ; 294(52): 19967-19977, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31740579

RESUMEN

RNA degradation is one of several ways for organisms to regulate gene expression. In bacteria, the removal of two terminal phosphate moieties as orthophosphate (Bacillus subtilis) or pyrophosphate (Escherichia coli) triggers ribonucleolytic decay of primary transcripts by 5'-monophosphate-dependent ribonucleases. In the soil-dwelling firmicute species B. subtilis, the RNA pyrophosphohydrolase BsRppH, a member of the Nudix family, triggers RNA turnover by converting primary transcripts to 5'-monophospate RNA. In addition to BsRppH, a source of redundant activity in B. subtilis has been proposed. Here, using recombinant protein expression and in vitro enzyme assays, we provide evidence for several additional RNA pyrophosphohydrolases, among them MutT, NudF, YmaB, and YvcI in B. subtilis We found that in vitro, YvcI converts RNA 5'-di- and triphosphates into monophosphates in the presence of manganese at neutral to slightly acidic pH. It preferred G-initiating RNAs and required at least one unpaired nucleotide at the 5'-end of its substrates, with the 5'-terminal nucleotide determining whether primarily ortho- or pyrophosphate is released. Exchanges of catalytically important glutamate residues in the Nudix motif impaired or abolished the enzymatic activity of YvcI. In summary, the results of our extensive in vitro biochemical characterization raise the possibility that YvcI is an additional RNA pyrophosphohydrolase in B. subtilis.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Pirofosfatasas/metabolismo , ARN Bacteriano/metabolismo , Proteínas Bacterianas/genética , Biocatálisis , Difosfatos/metabolismo , Concentración de Iones de Hidrógeno , Manganeso/química , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Pirofosfatasas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA