Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Neotrop Entomol ; 53(4): 937-954, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38691225

RESUMEN

The fall armyworm (FAW) poses a significant global threat to food security, and economics. Timely detection is crucial, and this research explores innovative techniques like data analysis, remote sensing, satellite imagery, and AI with machine learning algorithms for predicting and managing outbreaks. Emphasizing the importance of community engagement and international collaboration, social network analysis (SNA) is employed to uncover collaborative networks in FAW management research. The study analyzes a decade of research, revealing trends, influential institutions, authors, and countries, providing insights for efficient FAW management strategies. The research highlights a growing interest in Spodoptera frugiperda (Smith and Abbott 1797) research, focusing on biological control, chemical insecticides, plant extracts, and pest resistance. Co-Citation analysis identifies key research concepts, while collaboration analysis emphasizes the contributions of actors and institutions, such as China, the USA, and Brazil, with international collaboration playing a vital role. Current research trends involve evolving resistance, insecticidal protein gene discovery, and bio-control investigations. Leveraging insights from collaborative networks is essential for formulating effective strategies to manage fall armyworm and ensure global food security. This comprehensive analysis serves as a valuable resource for researchers and stakeholders, guiding efforts to combat this pervasive agricultural pest.


Asunto(s)
Spodoptera , Animales , Insecticidas , Control de Insectos/métodos , Control Biológico de Vectores , Resistencia a los Insecticidas , Investigación , Cooperación Internacional
2.
BMC Biol ; 22(1): 14, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273313

RESUMEN

BACKGROUND: Mosquito borne viruses, such as dengue, Zika, yellow fever and Chikungunya, cause millions of infections every year. These viruses are mostly transmitted by two urban-adapted mosquito species, Aedes aegypti and Aedes albopictus. Although mechanistic understanding remains largely unknown, Aedes mosquitoes may have unique adaptations that lower the impact of viral infection. Recently, we reported the identification of an Aedes specific double-stranded RNA binding protein (dsRBP), named Loqs2, that is involved in the control of infection by dengue and Zika viruses in mosquitoes. Preliminary analyses suggested that the loqs2 gene is a paralog of loquacious (loqs) and r2d2, two co-factors of the RNA interference (RNAi) pathway, a major antiviral mechanism in insects. RESULTS: Here we analyzed the origin and evolution of loqs2. Our data suggest that loqs2 originated from two independent duplications of the first double-stranded RNA binding domain of loqs that occurred before the origin of the Aedes Stegomyia subgenus, around 31 million years ago. We show that the loqs2 gene is evolving under relaxed purifying selection at a faster pace than loqs, with evidence of neofunctionalization driven by positive selection. Accordingly, we observed that Loqs2 is localized mainly in the nucleus, different from R2D2 and both isoforms of Loqs that are cytoplasmic. In contrast to r2d2 and loqs, loqs2 expression is stage- and tissue-specific, restricted mostly to reproductive tissues in adult Ae. aegypti and Ae. albopictus. Transgenic mosquitoes engineered to express loqs2 ubiquitously undergo developmental arrest at larval stages that correlates with massive dysregulation of gene expression without major effects on microRNAs or other endogenous small RNAs, classically associated with RNA interference. CONCLUSIONS: Our results uncover the peculiar origin and neofunctionalization of loqs2 driven by positive selection. This study shows an example of unique adaptations in Aedes mosquitoes that could ultimately help explain their effectiveness as virus vectors.


Asunto(s)
Aedes , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Aedes/genética , Proteínas Portadoras/genética , Mosquitos Vectores/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Virus Zika/genética , Virus Zika/metabolismo
3.
Front Cell Infect Microbiol ; 13: 1260390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900319

RESUMEN

Adult Amblyomma sculptum and Amblyomma aureolatum ticks are partially refractory to Rickettsia rickettsii when fed on infected hosts, hindering the functional characterization of potentially protective targets in the bacterial acquisition. In the current study, we used the anal pore route to infect adult A. sculptum and A. aureolatum ticks with R. rickettsii and to assess the effects of the knockdown of microplusin in infection control. The anal pore route was efficient to infect both species, resulting in a prevalence of around 100% of infected ticks. Higher loads of R. rickettsii were detected in microplusin-silenced A. aureolatum in relation to the control, as previously obtained when microplusin-silenced ticks were fed on R. rickettsii-infected rabbits. This is the first report showing R. rickettsii infection through the anal pore in Amblyomma ticks, highlighting this route as a powerful tool to assess the role played by additional targets in the control of pathogens.


Asunto(s)
Ixodidae , Rickettsia , Fiebre Maculosa de las Montañas Rocosas , Garrapatas , Animales , Conejos , Rickettsia rickettsii , Garrapatas/microbiología , Amblyomma , Fiebre Maculosa de las Montañas Rocosas/microbiología , Ixodidae/microbiología , Brasil/epidemiología
5.
Front Oncol ; 13: 1162835, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223681

RESUMEN

MAP4K4 is a serine/threonine kinase that belongs to the MAP kinase family and plays a critical role in embryogenesis and cellular migration. It contains approximately 1,200 amino acids and has a molecular mass of 140 kDa. MAP4K4 is expressed in most tissues where it has been examined and its knockout is embryonic lethal due to impaired somite development. Alterations in MAP4K4 function have a central role in the development of many metabolic diseases such as atherosclerosis and type 2 diabetes, but have recently been implicated in the initiation and progression of cancer. For example, it has been shown that MAP4K4 can stimulate the proliferation and invasion of tumor cells by activating pro-proliferative pathways (such as the c-Jun N-terminal kinase [JNK] and mixed-lineage protein kinase 3 [MLK3] pathways), attenuate anti-tumor cytotoxic immune responses, and stimulate cell invasion and migration by altering cytoskeleton and actin function. Recent in vitro experiments using RNA interference-based knockdown (miR) techniques have shown that inhibition of MAP4K4 function reduces tumor proliferation, migration, and invasion, and may represent a promising therapeutic approach in many types of cancer such as pancreatic cancer, glioblastoma, and medulloblastoma, among others. Over the last few years, specific MAP4K4 inhibitors such as GNE-495 have been developed but have not yet been tested in cancer patients. However, these novel agents may be useful for cancer treatment in the future.

6.
Pathogens ; 12(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36839559

RESUMEN

Theobroma cacao is one of the main crops of economic importance in the world as the source of raw material for producing chocolate and derivatives. The crop is the main source of income for thousands of small farmers, who produce more than 80% of the world's cocoa supply. However, the emergence, re-emergence and proliferation of pathogens, such as Ceratocystis spp., the causative agent of Ceratocystis wilt disease and canker disease, have been affecting the sustainability of many crops. Fungal control is laborious, often depending on fungicides that are expensive and/or toxic to humans, prompting researchers to look for new solutions to counteract the proliferation of these pathogens, including the use of biological agents such as mycoviruses. In this study, we investigated the diversity of microorganisms associated with the T. cacao pathogens Ceratocystis cacaofunesta and Ceratocystis fimbriata with a focus on the virome using RNA sequencing data available in public databases. We used a comprehensive bioinformatics pipeline containing several steps for viral sequence enrichment and took advantage of an integrated assembly step composed of different assemblers followed by sequence similarity searches using NCBI nonredundant databases. Our strategy was able to identify four putative C. cacaofunesta viruses (hypovirus, sclerotimonavirus, alphapartitivirus and narnavirus) and six C. fimbriata viruses (three alphaendornaviruses, one victorivirus and two mitoviruses). All the viral sequences identified showed similarity to viral genomes in public databases only at the amino acid level, likely representing new viral species. Of note, we present the first report of viruses associated with the cacao pathogens C. cacaofunesta and C. fimbriata and the second report of viral species infecting members of the Ceratocystidaceae family. Our findings highlight the need for further prospective studies to uncover the real diversity of fungus-infecting viruses that can contribute to the development of new management strategies.

7.
Cell Mol Neurobiol ; 43(1): 367-380, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35061107

RESUMEN

The pilocarpine-induced (PILO) model has helped elucidate the electrophysiological and molecular aspects related to mesial temporal lobe epilepsy. It has been suggested that the extensive cell death and edema observed in the brains of these animals could be induced by increased inflammatory responses, such as the rapid release of the inflammatory cytokine interleukin 1 beta (Il1b). In this study, we investigate the role of endogenous Il1b in the acute phase of the PILO model. Our aim is twofold. First, we want to determine whether it is feasible to silence Il1b in the central nervous system using a non-invasive procedure. Second, we aim to investigate the effect of silencing endogenous Il1b and its antagonist, Il1rn.We used RNA interference applied non-invasively to knockdown Il1b and its endogenous antagonist Il1rn. We found that knocking down Il1b prior to pilocarpine injection increased the mortality rate of treated animals. Furthermore, we observed that, when exposing the animals to more Il1b by silencing its endogenous antagonist Il1rn, there was a better response to status epilepticus with decreased animal mortality in the acute phase of the PILO model. Thus, we show the feasibility of using a novel, less invasive approach to study genes involved in the inflammatory response in the central nervous system. Furthermore, our results provide suggestive evidence that modulating endogenous Il1b improves animal survival in the acute phase of the PILO model and may have effects that extend into the chronic phase.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Estado Epiléptico , Animales , Pilocarpina/efectos adversos , Pilocarpina/metabolismo , Interleucina-1beta/metabolismo , Epilepsia/inducido químicamente , Epilepsia/genética , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/genética , Estado Epiléptico/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo
8.
Front Microbiol ; 14: 1287519, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235434

RESUMEN

Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.

9.
Front Microbiol ; 13: 1064218, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578572

RESUMEN

Introduction: Extracellular/environmental stimuli trigger cellular responses to allow Schistosoma sp. parasites adaptation and decide development and survival fate. In this context, signal transduction involving eukaryotic protein kinases (ePKs) has an essential role in regulatory mechanisms. Functional studies had shown the importance of MAPK pathway for Schistosoma mansoni development. In addition, early studies demonstrated that Smp38 MAPK regulates the expression of a large set of genes, among them the hypoxanthine-guanine phosphoribosyl transferase 1 (SmHGPRTase 1, Smp_103560), a key enzyme in the purine salvage pathway that is part of a family comprising five different proteins. Methods: First, the regulation of this gene family by the MAPKs pathways was experimentally verified using Smp38-predicted specific inhibitors. In silico analysis showed significant differences in the predicted structure and the domain sequence among the schistosomal HGPRTase family and their orthologs in humans. In order to interrogate the HGPRTases (Smp_103560, Smp_148820, Smp_168500, Smp_312580 and Smp_332640, henceforth SmHGPRTase -1, -2, -3, -4, -5) functional roles, schistosomula, sporocysts, and adult worms were knocked-down using specific dsRNAs. Results: Our results suggest that SmHGPRTases activity has an essential role in sporocysts and schistosomula development since significant differences in viability, size, and/ or shape were observed after the in vitro knockdown. Also, the knockdown of SmHGPRTases in schistosomula influenced the ovary development and egg maturation in female adult worms during mammalian infection. We also observed alterations in the movement of female adult worms knocked-down in vitro. Most of these results were shown when all gene family members were knocked-down simultaneously, suggesting a redundant function among them. Discussion: Thus, this study helps to elucidate the functional roles of the SmHGPRTase gene family in the S. mansoni life cycle and provides knowledge for future studies required for schistosomiasis treatment and control.

10.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430188

RESUMEN

Cotton is the most important crop for fiber production worldwide. However, the cotton boll weevil (CBW) is an insect pest that causes significant economic losses in infested areas. Current control methods are costly, inefficient, and environmentally hazardous. Herein, we generated transgenic cotton lines expressing double-stranded RNA (dsRNA) molecules to trigger RNA interference-mediated gene silencing in CBW. Thus, we targeted three essential genes coding for chitin synthase 2, vitellogenin, and ecdysis-triggering hormone receptor. The stability of expressed dsRNAs was improved by designing a structured RNA based on a viroid genome architecture. We transformed cotton embryos by inserting a promoter-driven expression cassette that overexpressed the dsRNA into flower buds. The transgenic cotton plants were characterized, and positive PCR transformed events were detected with an average heritability of 80%. Expression of dsRNAs was confirmed in floral buds by RT-qPCR, and the T1 cotton plant generation was challenged with fertilized CBW females. After 30 days, data showed high mortality (around 70%) in oviposited yolks. In adult insects fed on transgenic lines, chitin synthase II and vitellogenin showed reduced expression in larvae and adults, respectively. Developmental delays and abnormalities were also observed in these individuals. Our data remark on the potential of transgenic cotton based on a viroid-structured dsRNA to control CBW.


Asunto(s)
Gorgojos , Humanos , Animales , Gorgojos/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Gossypium/genética , Gossypium/metabolismo , Vitelogeninas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
11.
Int. j. cardiovasc. sci. (Impr.) ; 35(5): 665-675, Sept.-Oct. 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1405193

RESUMEN

Abstract Therapeutics that inhibit enzymes, receptors, ion channels, and cotransporters have long been the mainstay of cardiovascular medicine. Now, oligonucleotide therapeutics offer a modern variation on this paradigm of protein inhibition. Rather than target a protein, however, small interfering ribonucleic acids and antisense oligonucleotides target the messenger RNA (mRNA) from which a protein is translated. Endogenous, cellular mechanisms enable the oligonucleotides to bind a selected sequence on a target mRNA, leading to its degradation. The catalytic nature of the process confers an advantage over the stoichiometric binding of traditional small molecule therapeutics to their respective protein targets. Advances in nucleic acid chemistry and delivery have enabled development of oligonucleotide therapeutics against a wide range of diseases, including hyperlipidemias and hereditary transthyretin-mediated amyloidosis with polyneuropathy. While most of these therapeutics were initially designed for rare diseases, recent clinical trials highlight the potential impact of oligonucleotides on more common forms of cardiovascular disease.

12.
Front Plant Sci ; 13: 984804, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092396

RESUMEN

Common bean (Phaseolus vulgaris L.) is a staple food in Brazil with both nutritional and socioeconomic importance. As an orphan crop, it has not received as much research attention as the commodity crops. Crop losses are strongly related to virus diseases transmitted by the whitefly Bemisia tabaci, one of the most important agricultural pests in the world. The main method of managing whitefly-transmitted viruses has been the application of insecticides to reduce vector populations. Compared to chemical vector control, a more sustainable strategy for managing insect-borne viruses is the development of resistant/tolerant cultivars. RNA interference has been applied to develop plant lines resistant to the whitefly in other species, such as tomato, lettuce and tobacco. Still, no whitefly-resistant plant has been made commercially available to date. Common bean is a recalcitrant species to in vitro regeneration; therefore, stable genetic transformation of this plant has been achieved only at low frequencies (<1%) using particle bombardment. In the present work, two transgenic common bean lines were obtained with an intron-hairpin construct to induce post-transcriptional gene silencing against the B. tabaci vATPase (Bt-vATPase) gene, with stable expression of siRNA. Northern blot analysis revealed the presence of bands of expected size for siRNA in leaf samples of the line Bt-22.5, while in the other line (11.5), the amount of siRNA produced was significantly smaller. Bioassays were conducted with both lines, but only the line Bt-22.5 was associated with significant mortality of adult insects (97% when insects were fed on detached leaves and 59% on the whole plant). The expression of the Bt-vATPase gene was 50% lower (p < 0.05) in insects that fed on the transgenic line Bt-22.5, when compared to non-transgenic controls. The transgenic line did not affect the virus transmission ability of the insects. Moreover, no effect was observed on the reproduction of non-target organisms, such as the black aphid Aphis craccivora, the leafminer Liriomyza sp. and the whitefly parasitoid Encarsia formosa. The results presented here serve as a basis for the development of whitefly-tolerant transgenic elite common bean cultivars, with potential to contribute to the management of the whitefly and virus diseases.

13.
Planta ; 256(4): 69, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36066773

RESUMEN

MAIN CONCLUSION: The pUceS8.3 is a constitutive gene promoter with potential for ectopic and strong genes overexpression or active biomolecules in plant tissues attacked by pests, including nematode-induced giant cells or galls. Soybean (Glycine max) is one of the most important agricultural commodities worldwide and a major protein and oil source. Herein, we identified the soybean ubiquitin-conjugating (E2) enzyme gene (GmUBC4; Glyma.18G216000), which is significantly upregulated in response to Anticarsia gemmatalis attack and Meloidogyne incognita-induced galls during plant parasitism by plant nematode. The GmUBC4 promoter sequence and its different modules were functionally characterized in silico and in planta using transgenic Arabidopsis thaliana and G. max lines. Its full-length transcriptional regulatory region (promoter and 5´-UTR sequences, named pUceS8.3 promoter) was able to drive higher levels of uidA (ß-glucuronidase) gene expression in different tissues of transgenic A. thaliana lines compared to its three shortened modules and the p35SdAMV promoter. Notably, higher ß-glucuronidase (GUS) enzymatic activity was shown in M. incognita-induced giant cells when the full pUceS8.3 promoter drove the expression of this reporter gene. Furthermore, nematode-specific dsRNA molecules were successfully overexpressed under the control of the pUceS8.3 promoter in transgenic soybean lines. The RNAi gene construct used here was designed to post-transcriptionally downregulate the previously characterized pre-mRNA splicing factor genes from Heterodera glycines and M. incognita. A total of six transgenic soybean lines containing RNAi gene construct were selected for molecular characterization after infection with M. incognita pre-parasitic second-stage (ppJ2) nematodes. A strong reduction in the egg number produced by M. incognita after parasitism was observed in those transgenic soybean lines, ranging from 71 to 92% compared to wild-type control plants. The present data demonstrated that pUceS8.3 is a gene promoter capable of effectively driving dsRNA overexpression in nematode-induced giant cells of transgenic soybean lines and can be successfully applied as an important biotechnological asset to generate transgenic crops with improved resistance to root-knot nematodes as well as other pests.


Asunto(s)
Arabidopsis , Tylenchoidea , Animales , Arabidopsis/genética , Glucuronidasa/genética , Plantas Modificadas Genéticamente/genética , ARN Bicatenario/genética , Glycine max/genética , Tylenchoidea/genética
14.
Pestic Biochem Physiol ; 186: 105166, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35973772

RESUMEN

The efficiency of RNAi technology in insects varies considerably, particularly in lepidopterans. An important limiting factor of RNAi-mediated gene silencing is the degradation of dsRNA by insect nucleases before cellular uptake. To date, few studies have reported effective gene knockdown in the sugarcane borer Diatraea saccharalis. However, yielding contradictory results when using oral delivery. Further, the RNAi efficiency in D. saccharalis and presumed activity of gut nucleases remain poorly understood. Therefore, we investigated whether gene silencing was feasible via dsRNA feeding in D. saccharalis. Two different genes were tested, juvenile hormone esterase (DsJHE) and chitin synthase 1 (DsCHS1). Discrete knockdown was verified only for DsCHS1 with high dsRNA dosages and long exposure times. Neither mortality nor abnormal phenotypes were observed after treatment with any tested dsRNA. It was also verified that dsRNAs were quickly degraded when incubated with gut juice. Furthermore, we identified four possible nucleases that could reduce the knockdown efficiency in D. saccharalis. Three of them had the endonuclease_NS domain (DsNucleases), and one had the PIN domain (DsREase), with REase-like genes being scarcely represented in databanks. We further remark that DsNuclease1 and DsREase are highly expressed in the larval gut, and DsREase was upregulated as insects were fed with artificial diet (without dsRNA), and also when injected with dsRNA. Conversely, no nuclease was triggered when insects were fed with a sucrose droplet containing dsRNA. Thus, our findings suggest that nuclease activity within the gut is one of the possible reasons for the inefficiency of RNAi in D. saccharalis. Our data may shed light on the challenges to overcome when introducing RNAi as a strategy for controlling lepidopteran pests.


Asunto(s)
Mariposas Nocturnas , ARN Bicatenario , Animales , Endonucleasas/genética , Técnicas de Silenciamiento del Gen , Mariposas Nocturnas/genética , Interferencia de ARN , ARN Bicatenario/genética
15.
Front Immunol ; 13: 889645, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911671

RESUMEN

The tegument of Schistosoma mansoni is involved in essential functions for parasite survival and is known to stimulate immune responses in pre-clinical vaccine trials. Smtal-9, a member of the tegument-allergen-like (TAL) family, is one of the components of the tegument of schistosomula recognized by sera from immunized and protected mice. In this work, we assessed the role of Smtal-9 in parasite survival using the RNAi approach. Also, we cloned and expressed a recombinant form of Smtal-9 and evaluated its ability to induce protection in mice. Smtal-9 knockdown did not impact parasite survival in vitro, but significantly decreased schistosomula size. Additionally, significant reduction in both parasite and egg burdens were observed in mice inoculated with Smtal-9-knockdown schistosomula. Immunization using the Smtal-9 as an antigen conferred partial protection against challenge infection. Overall, our results indicate that Smtal-9 is a candidate target for drug and/or vaccine development due to its important role in parasite biology and survival.


Asunto(s)
Parásitos , Esquistosomiasis mansoni , Vacunas , Alérgenos/genética , Animales , Anticuerpos Antihelmínticos , Antígenos Helmínticos/genética , Ratones , Schistosoma mansoni , Desarrollo de Vacunas
16.
Viruses ; 14(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893693

RESUMEN

Acutely infectious new world alphaviruses such as Venezuelan Equine Encephalitis Virus (VEEV) pose important challenges to the human population due to a lack of effective therapeutic intervention strategies. Small interfering RNAs that can selectively target the viral genome (vsiRNAs) has been observed to offer survival advantages in several in vitro and in vivo models of acute virus infections, including alphaviruses such as Chikungunya virus and filoviruses such as Ebola virus. In this study, novel vsiRNAs that targeted conserved regions in the nonstructural and structural genes of the VEEV genome were designed and evaluated for antiviral activity in mammalian cells in the context of VEEV infection. The data demonstrate that vsiRNAs were able to effectively decrease the infectious virus titer at earlier time points post infection in the context of the attenuated TC-83 strain and the virulent Trinidad Donkey strain, while the inhibition was overcome at later time points. Depletion of Argonaute 2 protein (Ago2), the catalytic component of the RISC complex, negated the inhibitory effect of the vsiRNAs, underscoring the involvement of the siRNA pathway in the inhibition process. Depletion of the RNAi pathway proteins Dicer, MOV10, TRBP2 and Matrin 3 decreased viral load in infected cells, alluding to an impact of the RNAi pathway in the establishment of a productive infection. Additional studies focused on rational combinations of effective vsiRNAs and delivery strategies to confer better in vivo bioavailability and distribution to key target tissues such as the brain can provide effective solutions to treat encephalitic diseases resulting from alphavirus infections.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , ARN Interferente Pequeño , Animales , Línea Celular , Virus de la Encefalitis Equina Venezolana/fisiología , Caballos , Humanos , ARN Helicasas , ARN Interferente Pequeño/farmacología , Replicación Viral
17.
Arq. bras. cardiol ; Arq. bras. cardiol;118(6): 1134-1140, Maio 2022. tab, graf
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1383694

RESUMEN

Resumo A aterosclerose é a causa mais comum de doença cardiovascular em todo o mundo, ela está associada a uma alta incidência de eventos clínicos. O acúmulo de evidências elucidou que os RNAs longos não codificantes (LncRNAs) são uma nova classe de transcritos com papéis críticos nos processos fisiopatológicos da aterosclerose. Nesta revisão, resumimos o progresso recente dos LncRNAs no desenvolvimento da aterosclerose. Descrevemos principalmente os diversos mecanismos regulatórios dos LncRNAs nos níveis transcricionais e pós-transcricionais. Este estudo pode fornecer informações úteis sobre os LncRNAs como alvos terapêuticos ou biomarcadores para o tratamento da aterosclerose.


Abstract Atherosclerosis is the most common cause of cardiovascular disease globally, associated with a high incidence of clinical events. Accumulating evidence has elucidated that long non-coding RNAs (lncRNAs) as a novel class of transcripts with critical roles in the pathophysiological processes of atherosclerosis. In this review, we summarize the recent progress of lncRNAs in the development of atherosclerosis. We mainly describe the diverse regulatory mechanisms of lncRNAs at the transcriptional and post-transcriptional levels. This study may provide helpful insights about lncRNAs as therapeutic targets or biomarkers for atherosclerosis treatment.

18.
Exp Parasitol ; 238: 108246, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35460697

RESUMEN

Meloidogyne incognita is the most economically important species of the root-knot nematode complex causing damage to several crops worldwide. During parasitism in host plants, M. incognita secretes several effector proteins to suppress the plant immune system, manipulate the plant cell cycle, and promote parasitism. Several effector proteins have been identified, but their relationship with plant parasitism by M. incognita has not been fully confirmed. Herein, the Minc01696, Minc00344, and Minc00801 putative effector genes were evaluated to assess their importance during soybean and Nicotiana tabacum parasitism by M. incognita. For this study, we used in planta RNAi technology to overexpress dsRNA molecules capable of producing siRNAs that target and downregulate these nematode effector genes. Soybean composite roots and N. tabacum lines were successfully generated, and susceptibility level to M. incognita was evaluated. Consistently, both transgenic soybean roots and transgenic N. tabacum lines carrying the RNAi strategy showed reduced susceptibility to M. incognita. The number of galls per plant and the number of egg masses per plant were reduced by up to 85% in transgenic soybean roots, supported by the downregulation of effector genes in M. incognita during parasitism. Similarly, the number of galls per plant, the number of egg masses per plant, and the nematode reproduction factor were reduced by up to 83% in transgenic N. tabacum lines, which was also supported by the downregulation of the Minc00801 effector gene during parasitism. Therefore, our data indicate that all three effector genes can be a target in the development of new biotechnological tools based on the RNAi strategy in economically important crops for M. incognita control.


Asunto(s)
Enfermedades de las Plantas , Tylenchoidea , Animales , Enfermedades de las Plantas/prevención & control , Raíces de Plantas , Interferencia de ARN , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Glycine max/genética , Nicotiana/genética , Tylenchoidea/genética
19.
Methods Mol Biol ; 2360: 85-90, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34495509

RESUMEN

RNA interference (RNAi) comprises a natural mechanism of gene regulation and antiviral defense system in eukaryotic cells, and results in sequence-specific degradation of RNAs. Recent scientific studies demonstrate the feasibility of use RNAi-based strategies to control pest and pathogens in plants. A key step in developing RNAi-based products is a reliable method to appropriated screening of selected dsRNAs.Herein presented are a bioassay for screening dsRNAs to control the Asian citrus psyllid (ACP), Diaphorina citri, vector of citrus Huanglongbing (HLB) and other hemipterans. The RNAi feeding bioassay, called in plant system (iPS), uses vegetative new growth citrus flush to deliver double-strand RNA (dsRNA ) to ACP during natural feeding .


Asunto(s)
Hemípteros , Animales , Bioensayo , Citrus , Hemípteros/genética , Insectos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Interferencia de ARN , ARN Bicatenario/genética
20.
Methods Mol Biol ; 2360: 217-233, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34495518

RESUMEN

Cultivated cotton (Gossypium hirsutum) is heavily attacked by various species of insects worldwide and breeding of new varieties resistant to pests is still a hard battle to win. RNAi technology is an important reverse genetics tool to induce gene silencing in eukaryotic organisms and produce phenotypic modifications. In cotton, RNAi was applied to investigate gene function and enhance resistance to insects and pathogens. Different methods and techniques can be used to synthetize double stranded RNA (dsRNA) into plant cells. The Agrobacterium-mediated transformation is a common method to introduce RNAi binary plasmids into cotton genome and obtain stable transgenics plants. This methodology includes the coculture of cotton tissues with Agrobacterium cultures, selection of transgenic cells and induction of somatic embryogenesis to finally obtain transgenic plants after a relatively long period of time. The transient synthesis of dsRNA mediated by virus-induced gene silencing (VIGS) in cotton is an alternative to anticipate the silencing effect of a specific RNA sequence, prior to the development of a stable transgenic plant. VIGS vectors are incorporated into the plant by agroinfiltration technique. During VIGS replication inside plant cells, synthetized dsRNA allows the study on specific heterologous gene expression including the phenotypic effect on herbivorous target pests, thus facilitating a rapid evaluation of dsRNA expressed in cotton plants against individual insect target genes. Here we describe the complementation of these two techniques to evaluate RNAi-based cotton plant protection against insect pests.


Asunto(s)
Gossypium , Agrobacterium/genética , Animales , Gossypium/genética , Insectos , Fitomejoramiento , Plantas Modificadas Genéticamente/genética , Interferencia de ARN , ARN Bicatenario/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA