Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 858460, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464981

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an enterovirus that can cause acute diarrhea and death in piglets and cause serious economic losses to the pig industry. SADS-CoV membrane (M) protein mainly plays a key role in biological processes, such as virus assembly, budding, and host innate immune regulation. Understanding the interaction between M protein and host proteins is very important to define the molecular mechanism of cells at the protein level and to understand specific cellular physiological pathways. In this study, 289 host proteins interacting with M protein were identified by glutathione-S-transferase (GST) pull-down combined with liquid chromatography-mass spectrometry (LC-MS/MS), and the protein-protein interaction (PPI) network was established by Gene Ontology (GO) terms and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways analysis. Results showed that SADS-CoV M protein was mainly associated with the host metabolism, signal transduction, and innate immunity. The Co-Immunoprecipitation (CO-IP) validation results of six randomly selected proteins, namely, Rab11b, voltage-dependent anion-selective channel 1 (VDAC1), Ribosomal Protein L18 (RPL18), RALY, Ras Homolog Family Member A (RHOA), and Annexin A2 (ANXA2), were consistent with LC-MS results. In addition, overexpression of RPL18 and PHOA significantly promoted SADS-CoV replication, while overexpression of RALY antagonized viral replication. This work will help to clarify the function of SADS-CoV M protein in the life cycle of SADS-CoV.

2.
FASEB J ; 33(7): 8125-8137, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30921522

RESUMEN

The ribonucleoprotein (RNP) spliceosome machinery triggers the precursor RNA splicing process in eukaryotes. Major spliceosome defects are implicated in male infertility; however, the underlying mechanistic links between the spliceosome and the ribosome in Drosophila testes remains largely unresolved. Small ribonucleoprotein particle protein SmD3 (SmD3) is a novel germline stem cell (GSC) regulatory gene identified in our previous screen of Drosophila testes. In the present study, using genetic manipulation in a Drosophila model, we demonstrated that SmD3 is required for the GSC niche and controls the self-renewal and differentiation of GSCs in the testis. Using in vitro assays in Schneider 2 cells, we showed that SmD3 also regulates the homeostasis of proliferation and apoptosis in Drosophila. Furthermore, using liquid chromatography-tandem mass spectrometry methods, SmD3 was identified as binding with ribosomal protein (Rp)L18, which is a key regulator of the large subunit in the ribosome. Moreover, SmD3 was observed to regulate spliceosome and ribosome subunit expression levels and controlled spliceosome and ribosome function via RpL18. Significantly, our findings revealed the genetic causes and molecular mechanisms underlying the stem cell niche and the crosstalk between the spliceosome and the ribosome.-Yu, J., Luan, X., Yan, Y., Qiao, C., Liu, Y., Zhao, D., Xie, B., Zheng, Q., Wang, M., Chen, W., Shen, C., He, Z., Hu, X., Huang, X., Li, H., Chen, B., Zheng, B., Chen, X., Fang, J. Small ribonucleoprotein particle protein SmD3 governs the homeostasis of germline stem cells and the crosstalk between the spliceosome and ribosome signals in Drosophila.


Asunto(s)
Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Homeostasis , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribosomas/metabolismo , Transducción de Señal , Empalmosomas/metabolismo , Células Madre/metabolismo , Animales , Apoptosis , Línea Celular , Proliferación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Germinativas/citología , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Empalmosomas/genética , Células Madre/citología
3.
J Plant Physiol ; 232: 151-159, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30537602

RESUMEN

UV radiation is a serious threat to life, and algae have developed highly efficient adaptations to UV radiation through the course of evolution. To date, studies investigating the mechanisms of UV adaptation in algae have focused on physiological regulation and associated protein coding genes, with only a few reports on associated protein non-coding genes. In a previous study, we found that Cre-miR914 was significantly down-regulated in Chlamydomonas reinhardtii in response to heat shock. In the present study, we aimed to determine whether Cre-miR914 plays a role in response to UV-B radiation. Our bioinformatics analysis indicated that the potential target gene of Cre-miR914 is ribosomal protein L18 (RPL18). We also measured the expression of Cre-miR914 and RPL18 in response to UV-B radiation through qPCR analysis. Then, we constructed cell lines overexpressing Cre-miR914 or RPL18, and performed survival experiments under UV-B stress. The results showed that Cre-miR914 overexpression decreased resistance while RPL18 overexpression enhanced tolerance to UV-B radiation. These results indicate that Cre-miR914 and its potential target gene RPL18 are involved in the adaptation to UV-B in C. reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii/efectos de la radiación , MicroARNs/fisiología , Proteínas de Plantas/metabolismo , Proteínas Ribosómicas/metabolismo , Línea Celular , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/fisiología , Genes de Plantas/genética , Genes de Plantas/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Fotosíntesis , Proteínas de Plantas/fisiología , Tolerancia a Radiación/genética , Tolerancia a Radiación/fisiología , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Ribosómicas/fisiología , Rayos Ultravioleta
4.
J Med Genet ; 54(6): 417-425, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28280134

RESUMEN

BACKGROUND: Diamond-Blackfan anaemia (DBA) is an inherited bone marrow failure syndrome (IBMFS) characterised by erythroid hypoplasia. It is associated with congenital anomalies and a high risk of developing specific cancers. DBA is caused predominantly by autosomal dominant pathogenic variants in at least 15 genes affecting ribosomal biogenesis and function. Two X-linked recessive genes have been identified. OBJECTIVES: We aim to identify the genetic aetiology of DBA. METHODS: Of 87 families with DBA enrolled in an institutional review board-approved cohort study (ClinicalTrials.gov Identifier:NCT00027274), 61 had genetic testing information available. Thirty-five families did not have a known genetic cause and thus underwent comprehensive genomic evaluation with whole exome sequencing, deletion and CNV analyses to identify their disease-associated pathogenic variant. Controls for functional studies were healthy mutation-negative individuals enrolled in the same study. RESULTS: Our analyses uncovered heterozygous pathogenic variants in two previously undescribed genes in two families. One family had a non-synonymous variant (p.K77N) in RPL35; the second family had a non-synonymous variant (p. L51S) in RPL18. Both of these variants result in pre-rRNA processing defects. We identified heterozygous pathogenic variants in previously known DBA genes in 16 of 35 families. Seventeen families who underwent genetic analyses are yet to have a genetic cause of disease identified. CONCLUSIONS: Overall, heterozygous pathogenic variants in ribosomal genes were identified in 44 of the 61 families (72%). De novo pathogenic variants were observed in 57% of patients with DBA. Ongoing studies of DBA genomics will be important to understand this complex disorder.


Asunto(s)
Anemia de Diamond-Blackfan/genética , Mutación/genética , Ribosomas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios de Cohortes , Femenino , Genómica/métodos , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Linaje , Proteínas Ribosómicas/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA