Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.807
Filtrar
1.
Free Radic Biol Med ; 224: 50-61, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147072

RESUMEN

Hydrogen-rich water (HRW) is a beverage containing a high concentration of hydrogen that has been researched for its antioxidant, anti-apoptotic, and anti-inflammatory properties in asthma. This study investigates the potential therapeutic impact of HRW on the gut-lung axis. Using 16S rRNA and serum metabolomics, we examined changes in gut microbiota and serum metabolites in asthmatic mice after HRW intervention, followed by validation experiments. The findings revealed that HRW influenced gut microbiota by increasing Ligilactobacillus and Bifidobacterium abundance and enhancing the presence of indole-3-acetic acid (IAA), a microbially derived serum metabolite. Both in vivo and in vitro experiments showed that HRW's protective effects against airway inflammation in asthmatic mice may be linked to the gut microbiota, with IAA potentially playing a role in reducing asthmatic airway inflammation through the aryl hydrocarbon receptors (AhR) signaling pathway. In summary, HRW can modify gut microbiota, increase Bifidobacterium abundance, elevate microbial-derived IAA levels, and activate AhR, which could potentially alleviate inflammation in asthma.

2.
Environ Pollut ; 359: 124723, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142426

RESUMEN

Petroleum hydrocarbons are being released into the marine environment continuously. They will undergo weathering and may eventually be biodegraded by bacteria and other microbes. While nanoplankton (2-20 µm) are the major consumers of marine bacteria, their effect on the process of biodegradation of oil hydrocarbons is still debated. A 14-day microcosm experiment was conducted to investigate the effects of crude oil hydrocarbons on nanoplankton bacterivory and bacterial community in coastal waters. The coefficients of population growth (0.56-1.80 d-1 for all treatments considered) and grazing mortality (0.38-1.65 d-1 for all treatment considered) of bacteria estimated with the dilution method did not differ among the treatments of control (Ctrl), low dose chemically dispersed oil (LDOil, 2 µL L-1 of crude oil), and high dose chemically dispersed oil (HDOil, 8 µL L-1 of crude oil). Bacterial abundance ranged between 0.21-0.86 × 106 cells mL-1 on average for all treatments. The lack of drastic increases in the cell density of bacterial cells in the oil-loaded treatments was observed throughout the experiment period. Sequencing analysis of the 16S rRNA gene revealed the progressive changes in the community compositions of bacteria in all treatments. The relatively high abundance of oil-degrading bacteria, including Cycloclasticus and Alcanivorax on Days 3-14 of the experiment reflected the presence of biodegradation of oil in the LDOil and HDOil treatments. Throughout the 14 days, the community composition of bacteria in the LDOil and HDOil treatments became more similar and they both differed from that in the Ctrl treatment. This study concluded that, in oil-polluted seawater, the changes in the bacterial community composition were mainly resulting from the addition of chemically dispersed crude oil.

3.
Anim Reprod Sci ; 268: 107569, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098060

RESUMEN

A seasonal effect on sperm quality parameters was observed previously. Although identification of the bull semen microbiota by 16S rRNA sequencing was performed previously, it has not been carried out in commercial semen samples from different seasons, and its connection with sperm quality parameters has not been evaluated yet. The objectives in this study were; (i) to evaluate diversity of bull semen microbiota and sperm quality parameters in different seasons, and (ii) to find if specific bacteria were associated with seasonal differences in specific sperm quality parameters. Bull semen microbiota was identified in 54 commercial bull semen samples from 3 seasons (winter, spring, summer). Sperm quality was analysed by Computer Assisted Sperm Analyses (CASA) and Flow Cytometry (FC). From 28 phyla in all samples, six phyla were identified in samples from all seasons, with observed seasonal differences in their distribution. At genus level, 388 genera were identified, of which 22 genera had a relative abundance over 1 % and showed seasonal differences in bacterial diversity, and 9 bacteria genera were present in all seasons. Differences between spring and summer (P < 0.05) were observed for live hydrogen peroxide positive sperm cells. A trend towards significance (0.10 > P > 0.05) was observed for some CASA kinematics (VCL and LIN) and FC parameters (High respiratory activity, and live hydrogen peroxide positive sperm cells) between seasons. Nevertheless, associations between sperm quality parameters and specific bacteria were observed in spring.


Asunto(s)
Microbiota , Estaciones del Año , Análisis de Semen , Semen , Masculino , Animales , Bovinos , Semen/microbiología , Análisis de Semen/veterinaria , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Metagenómica/métodos , Espermatozoides/microbiología , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis
4.
Anaerobe ; : 102900, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154705

RESUMEN

OBJECTIVES: This study investigated the codigestion of corn straw (CS) with cow manure (CM), cow digestion solution (CD), and a strain consortium (SC) for enhanced volatile fatty acid (VFA) production. The aims of this study were to develop a sustainable technique to increase VFA yields, examine how combining microbial reagents with CS affects VFA production by functional microorganisms, and assess the feasibility of improving microbial diversity through codigestion. METHODS: Batch experiments evaluated VFA production dynamics and microbial community changes with different combinations of CS substrates with CM, CD, and SC. Analytical methods included measuring VFAs by GC, ammonia and COD by standard methods and microbial community analysis by 16S rRNA gene sequencing. RESULTS: Codigesting CS with the microbial consortium yielded initial volatile fatty acid (VFA) concentrations ranging from 0.6-1.0 g/L, which were greater than those of the other combinations (0.05-0.3 g/L). Including CM and CD further increased VFA production to 1.0-2.0 g/L, with the highest value of 2.0 g/L occurring when all four substrates were codigested. Significant ammonium reduction (194-241 mg/L to 29-37 mg/L) and COD reduction (3310-5250 mg/L to 730-1210 mg/L) were observed. Codigestion with CM and CD had greater Shannon diversity indices (3.19-3.24) than did codigestion with the other consortia (2.26). Firmicutes dominated (96.5-99.6%), with Clostridiales playing key roles in organic matter breakdown. CONCLUSIONS: This study demonstrated the feasibility of improving VFA yields and harnessing microbial diversity through anaerobic codigestion of lignocellulosic and animal waste streams. Codigestion substantially enhanced VFA production, which was dominated by butyrate, reduced ammonium and COD, and enriched fiber-degrading and fermentative bacteria. These findings can help optimize codigestion for sustainable waste management and high-value chemical production.

5.
mSphere ; : e0026224, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158277

RESUMEN

The study of the fecal microbiota is crucial for unraveling the pathways through which gut symbionts are acquired and transmitted. While stable gut microbial communities are essential for honey bee health, their modes of acquisition and transmission are yet to be confirmed. The gut of honey bees is colonized by symbiotic bacteria within 5 days after emergence from their wax cells as adults. Few studies have suggested that bees could be colonized in part via contact with fecal matter in the hive. However, the composition of the fecal microbiota is still unknown. It is particularly unclear whether all bacterial species can be found viable in the feces and can therefore be transmitted to newborn nestmates. Using 16S rRNA gene amplicon sequencing, we revealed that the composition of the honey bee fecal microbiota is strikingly similar to the microbiota of entire guts. We found that fecal transplantation resulted in gut microbial communities similar to those obtained from feeding gut homogenates. Our study shows that fecal sampling and transplantation are viable tools for the non-invasive analysis of bacterial community composition and host-microbe interactions. It also implies that contact of young bees with fecal matter in the hive is a plausible route for gut microbiota acquisition. IMPORTANCE: Honey bees are crucial pollinators for many crops and wildflowers. They are also powerful models for studying microbiome-host interactions. However, current methods rely on gut tissue disruption to analyze microbiota composition and use gut homogenates to inoculate microbiota-deprived bees. Here, we provide two new and non-invasive approaches that will open doors to longitudinal studies: fecal sampling and transplantation. Furthermore, our findings provide insights into gut microbiota transmission in social insects by showing that ingestion of fecal matter can result in gut microbiota acquisition.

6.
Ecotoxicol Environ Saf ; 284: 116875, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142114

RESUMEN

Recent evidence has pinpointed a key role of the microbiome in human respiratory health and disease. However, significant knowledge gaps still exist regarding the connection between bacterial communities and adverse effects caused by particulate matters (PMs). Here, we characterized the bacterial microbiome along different airway sites in occupational pneumoconiosis (OP) patients. The sequencing data revealed that OP patients exhibited distinct dysbiosis in the composition and function of the respiratory microbiota. To different extents, there was an overall increase in the colonization of microbiota, such as Streptococcus, implying a possible intrusion pathway provided by exogenous PMs. Compared to those of healthy subjects, unhealthy living habits (i.e., smoking) had a greater impact on microbiome changes in OP patients. Importantly, the associations between the bacterial community and disease indicators indicated that specific bacterial species, including Prevotella, Actinobacillus, and Leptotrichia, might be surrogate markers of OP disease progression. Collectively, our results highlighted the potential participation of the bacterial microbiota in the pathogenesis of respiratory diseases and helped in the discovery of microbiome-based diagnostics for PM-induced disorders.

7.
J Infect Chemother ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089446

RESUMEN

INTRODUCTION: Antimicrobial treatment disrupts human microbiota. The effects of lascufloxacin (LSFX), a new fluoroquinolone, on human microbiota remains unknown. Therefore, in this study, we aimed to evaluate the effects of LSFX administration on the gut and salivary microbiota of healthy participants and those with pneumonia. METHODS: LSFX (75 mg, once a day, orally) was administered to healthy adults (healthy group) and adult patients with pneumonia (pneumonia group), and fecal and saliva samples were collected at five time points (Days 0, 3, 7, 14, and 28). Using the collected samples, α- and ß-diversity indices, as well as bacterial composition of the gut microbiota and salivary microbiota were analyzed using next-generation sequencing. RESULTS: In the healthy group, α-diversity indices of the gut and salivary microbiota were reduced and the lowest values on Day 3. For the gut microbiota, the Chao1 index (richness) recovered on Day 28, whereas the Shannon index (evenness) did not. In the salivary microbiota, the Chao1 and Shannon indices did not recover within the 28 day period. The ß-diversity indices changed after LSFX administration and subsequently recovered on Day 28. After LSFX administration, the abundance of the Lachnospiraceae family decreased in the gut microbiota, and the abundance of Granulicatella, Streptococcus, Prevotella, Absconditabacteriales(SR1), and Saccharimonadales decreased in the salivary microbiota. In the pneumonia group, the α-diversity indices were lowest on Day 14 after LSFX administration. CONCLUSIONS: We elucidated that LSFX administration differentially affected the gut and salivary microbiota; however, the richness and beta diversity recovered within 28 days.

8.
Animal ; 18(8): 101243, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39106554

RESUMEN

The performance of dairy cows is influenced by the microbial communities hosted within their digestive tract. While the rumen microbiota has long been associated with host phenotypes, the impact of the faecal microbiota remains elusive. In this study, we collected 697 faecal samples from commercial Holstein cows and analysed them with 16S rRNA gene analyses. For each animal, routinely recorded data, i.e., milk yield, fat yield, protein yield, fat content, protein content, and an aggregate production trait (pINEL) based on the French economic dairy index, were available to assess the links between the faecal microbiota and host production. Our findings revealed a strong and significant association between the structure of the bacterial and prokaryote community (ß-diversity) and dairy production. In addition, differential abundance analyses identified 48 genera whose abundances were significantly associated with pINEL, milk, fat and protein yield. Among these genera, the increased abundance of Bifidobacterium, and particularly an amplicon sequence variant with a 16S rRNA V3-V4 gene region identical to B. globosum and B. pseudolongum, was found to be the most important for high-yielding animals. Bifidobacterium seemed to be a potential key member of the bovine faecal microbiota that should be further investigated. Conversely, the p-1088-a5 gut group genus was found more abundant in low-productive cows. In conclusion, this study demonstrates significant associations between the faecal microbiota and the performance of dairy cows at the whole lactation scale. A better understanding of the physiology of the gut microbiota could help to improve dairy cow production.


Asunto(s)
Bifidobacterium , Heces , Leche , ARN Ribosómico 16S , Animales , Bovinos/microbiología , Heces/microbiología , Leche/microbiología , Leche/química , Femenino , ARN Ribosómico 16S/análisis , Microbioma Gastrointestinal , Lactancia , Industria Lechera
10.
Environ Sci Ecotechnol ; 22: 100451, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39148555

RESUMEN

Intensive ecological interventions have been carried out in highly polluted shallow lakes to improve their environments and restore their ecosystems. However, certain treatments, such as dredging polluted sediment and stocking fish, can impact the aquatic communities, including benthos and fishes. These impacts can alter the composition and characteristics of aquatic communities, which makes community-based ecological assessments challenging. Here we develop a bacteria-based index of biotic integrity (IBI) that can clearly indicate the restoration of aquatic ecosystems with minimal artificial interventions. We applied this method to a restored shallow lake during 3-year intensive ecological interventions. The interventions reduced nutrients and heavy metals by 27.1% and 16.7% in the sediment, while the total organic carbon (TOC) increased by 8.0% due to the proliferation of macrophytes. Additionally, the abundance of sulfur-related metabolic pathways decreased by 10.5% as the responses to improved ecosystem. The score of bacteria-based IBI, which is calculated based on the diversity, composition, and function of benthic bacterial communities, increased from 0.62 in 2018 to 0.81 in 2021. Our study not only provides an applicable method for aquatic ecological assessment under intensive artificial interventions but also extends the application of IBI to complex application scenarios, such as ecosystems with significantly different aquatic communities and comparisons between different basins.

11.
PeerJ ; 12: e17795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148678

RESUMEN

Background: The imbalance of oral microbiota can contribute to various oral disorders and potentially impact general health. Chronic alcohol consumption beyond a certain threshold has been implicated in influencing both the onset and progression of periodontitis. However, the mechanism by which chronic alcohol consumption affects periodontitis and its association with changes in the oral microbial community remains unclear. Objective: This study used 16S rRNA gene amplicon sequencing to examine the dynamic changes in the oral microbial community of rats with periodontitis influenced by chronic alcohol consumption. Methods: Twenty-four male Wistar rats were randomly allocated to either a periodontitis (P) or periodontitis + alcohol (PA) group. The PA group had unrestricted access to alcohol for 10 weeks, while the P group had access to water only. Four weeks later, both groups developed periodontitis. After 10 weeks, serum levels of alanine aminotransferase and aspartate aminotransferase in the rats' serum were measured. The oral swabs were obtained from rats, and 16S rRNA gene sequencing was conducted. Alveolar bone status was assessed using hematoxylin and eosin staining and micro-computed tomography. Results: Rats in the PA group exhibited more severe periodontal tissue damage compared to those in the periodontitis group. Although oral microbial diversity remained stable, the relative abundance of certain microbial communities differed significantly between the two groups. Actinobacteriota and Desulfobacterota were more prevalent at the phylum level in the PA group. At the genus level, Cutibacterium, Tissierella, Romboutsia, Actinomyces, Lawsonella, Anaerococcus, and Clostridium_sensu_stricto_1 were significantly more abundant in the PA group, while Haemophilus was significantly less abundant. Additionally, functional prediction using Tax4Fun revealed a significant enrichment of carbohydrate metabolism in the PA group. Conclusion: Chronic alcohol consumption exacerbated periodontitis in rats and influenced the composition and functional characteristics of their oral microbiota, as indicated by 16S rRNA gene sequencing results. These microbial alterations may contribute to the exacerbation of periodontitis in rats due to chronic alcohol consumption.


Asunto(s)
Microbiota , Periodontitis , ARN Ribosómico 16S , Ratas Wistar , Animales , Masculino , Periodontitis/microbiología , Microbiota/efectos de los fármacos , Ratas , ARN Ribosómico 16S/genética , Boca/microbiología , Consumo de Bebidas Alcohólicas/efectos adversos , Modelos Animales de Enfermedad
12.
J Med Primatol ; 53(5): e12730, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39148344

RESUMEN

BACKGROUND: The gut morphology of Symphalangus syndactylus exhibits an intermediate structure that aligns with its consumption of fruit and ability to supplement its diet with leaves. The Siamang relies on its gut microbiome for energy extraction, immune system development, and the synthesis of micronutrients. Gut microbiome composition may be structured based on several factors such as age, sex, and habitat. No study has yet been carried out on the gut microbiota of the Hylobatidae members in Malaysia especially S. syndactylus. METHODS: This study aims to resolve the gut microbiome composition of S. syndactylus by using a fecal sample as DNA source, adapting high-throughput sequencing, and 16S rRNA as the targeted region. RESULTS: A total of 1 272 903 operational taxonomic units (OTUs) reads were assigned to 22 phyla, 139 families, and 210 genera of microbes. The {Unknown Phylum} Bacteria-2 is the dominant phyla found across all samples. Meanwhile, {Unknown Phylum} Bacteria-2 and Firmicutes are genera that have the highest relative abundance found in the Siamang gut. CONCLUSIONS: This study yields nonsignificance relationship between Siamang gut microbiome composition with these three factors: group, sex, and age.


Asunto(s)
Microbioma Gastrointestinal , Animales , Masculino , Femenino , Malasia , ARN Ribosómico 16S/genética , Factores de Edad , Factores Sexuales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hylobatidae , Especies en Peligro de Extinción , Heces/microbiología , ARN Bacteriano/análisis , ARN Bacteriano/genética
13.
Int Med Case Rep J ; 17: 725-731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100685

RESUMEN

This case report describes the case of a female infant hospitalized for severe pneumonia. During the treatment process, various antibiotics are used to treat and prevent further infection. The child had a weak physical condition, combined with neuroblastoma, paraneoplastic syndrome, and low immune function, leading to Tsukamurella tyrosinosolvens infection. The treatment was eventually abandoned owing to poor prognosis. This study aims to through the medium, dyeing, electron microscope observation, 16s rRNA and high-throughput sequencing investigated the morphological characteristics, staining properties, electron microscope morphology, antibiotic resistance, and genomic characteristics of Tsukamurella tyrosinosolvens. The aim of the study is to provide data reference for clinical laboratory staff in bacteria identification research, and to provide relevant help for clinicians in diagnosis and treatment.

14.
World J Gastroenterol ; 30(27): 3336-3355, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39086748

RESUMEN

BACKGROUND: Colorectal polyps that develop via the conventional adenoma-carcinoma sequence [e.g., tubular adenoma (TA)] often progress to malignancy and are closely associated with changes in the composition of the gut microbiome. There is limited research concerning the microbial functions and gut microbiomes associated with colorectal polyps that arise through the serrated polyp pathway, such as hyperplastic polyps (HP). Exploration of microbiome alterations associated with HP and TA would improve the understanding of mechanisms by which specific microbes and their metabolic pathways contribute to colorectal carcinogenesis. AIM: To investigate gut microbiome signatures, microbial associations, and microbial functions in HP and TA patients. METHODS: Full-length 16S rRNA sequencing was used to characterize the gut microbiome in stool samples from control participants without polyps [control group (CT), n = 40], patients with HP (n = 52), and patients with TA (n = 60). Significant differences in gut microbiome composition and functional mechanisms were identified between the CT group and patients with HP or TA. Analytical techniques in this study included differential abundance analysis, co-occurrence network analysis, and differential pathway analysis. RESULTS: Colorectal cancer (CRC)-associated bacteria, including Streptococcus gallolyticus (S. gallolyticus), Bacteroides fragilis, and Clostridium symbiosum, were identified as characteristic microbial species in TA patients. Mediterraneibacter gnavus, associated with dysbiosis and gastrointestinal diseases, was significantly differentially abundant in the HP and TA groups. Functional pathway analysis revealed that HP patients exhibited enrichment in the sulfur oxidation pathway exclusively, whereas TA patients showed dominance in pathways related to secondary metabolite biosynthesis (e.g., mevalonate); S. gallolyticus was a major contributor. Co-occurrence network and dynamic network analyses revealed co-occurrence of dysbiosis-associated bacteria in HP patients, whereas TA patients exhibited co-occurrence of CRC-associated bacteria. Furthermore, the co-occurrence of SCFA-producing bacteria was lower in TA patients than HP patients. CONCLUSION: This study revealed distinct gut microbiome signatures associated with pathways of colorectal polyp development, providing insights concerning the roles of microbial species, functional pathways, and microbial interactions in colorectal carcinogenesis.


Asunto(s)
Pólipos del Colon , Neoplasias Colorrectales , Heces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Humanos , Femenino , Masculino , Persona de Mediana Edad , Pólipos del Colon/microbiología , Pólipos del Colon/patología , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , ARN Ribosómico 16S/genética , Anciano , Heces/microbiología , Tailandia/epidemiología , Adulto , Adenoma/microbiología , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Hiperplasia/microbiología , Estudios de Casos y Controles , Disbiosis/microbiología , Pueblos del Sudeste Asiático
15.
Ann Med ; 56(1): 2381085, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39099020

RESUMEN

BACKGROUND: Rat models are valuable tools to study the lung microbiota in diseases. Yet the impacts of different lung parts, young and mature adult stages, and the different batches of the same conditions on the healthy rat lung microbiome have not been investigated. METHODS: The rat lung microbiome was analyzed to clarify the lung part-dependent and age-dependent differences and to evaluate the effects of several 'batch environmental factors' on normal rats, after eliminating potential contamination. RESULTS: The results showed that the contamination could be identified and excluded. The lung microbiome from left and right lung parts was very similar so one representative part could be used in the microbiome study. There were significantly different lung microbial communities between the young and mature adult groups, and also between the different feeding batches groups of the same repetitive feeding conditions, but a common lung microbiota characterized by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria as the most dominant phyla were present in all adult rats. It indicated that the experiment under the same condition of the same rats batch was needed to compare the difference in the lung microbiota and repeated experiments were necessary to confirm the results. CONCLUSION: These data represented that the lung bacterial communities were dynamic and rapidly susceptible to environmental influence, clustered strongly by age or different feeding batches but similar in the different lung tissue parts. This study improved the basic understanding of the potential effects on the lung microbiome of healthy rats.


Asunto(s)
Pulmón , Microbiota , Animales , Pulmón/microbiología , Ratas/microbiología , Masculino , Factores de Edad , Ratas Sprague-Dawley , Bacterias/clasificación , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética
16.
Front Microbiol ; 15: 1429035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104582

RESUMEN

The alarming rise in antimicrobial resistance (AMR) has created a significant public health challenge, necessitating the discovery of new therapeutic agents to combat infectious diseases and oxidative stress-related disorders. The Lentzea flaviverrucosa strain E25-2, isolated from Moroccan forest soil, represents a potential avenue for such research. This study aimed to identify the isolate E25-2, obtained from soil in a cold Moroccan ecosystem, and further investigate its antimicrobial and antioxidant activities. Phylogenetic analysis based on 16S rRNA gene sequences revealed the strain's classification within the Lentzea genus, with a sequence closely resembling that of Lentzea flaviverrucosa AS4.0578 (96.10% similarity). Antimicrobial activity in solid media showed moderate to strong activity against Staphylococcus aureus ATCC 25923, Bacillus cereus strain ATCC 14579, Escherichia coli strain ATCC 25922, Candida albicans strain ATCC 60193 and 4 phytopathogenic fungi. In addition, ethyl acetate extract of this isolate demonstrated potent antimicrobial activity against 7 clinically multi-drug resistant bacteria. Furthermore, it demonstrated antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, as well as a significant increase in ferric reducing antioxidant power. A significant positive correlation was observed between antioxidant activities and total content of phenolic compounds (p < 0.0001), along with flavonoids (p < 0.0001). Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of amines, hydroxyl groups, pyridopyrazinone rings, esters and pyrrolopyrazines. The Lentzea genus could offer promising prospects in the fight against antibiotic resistance and in the prevention against oxidative stress related diseases.

17.
Infect Dis Health ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39107205

RESUMEN

BACKGROUND: Peripheral venous catheters (PVCs) remain the primary mode of short-term venous access for managing intravenous fluid, obtaining blood samples, and peripheral parenteral nutrition. They may get contaminated and require regular monitoring to prevent complications. This study evaluated the occurrence of phlebitis and its associated-clinical and microbiological indicators. METHODS: The frequency of phlebitis was evaluated in hospitalized patients of both medical and surgical fields. Subsequently, the dichotomous association between the presence of phlebitis and the clinical aspects was investigated. In parallel, the bacterial contamination of PVCs was assessed through culture-based methods, microscopy observation, and 16S rRNA gene sequencing. RESULTS: Approximately one in four patients presented phlebitis (28.4%). The most frequent symptom was erythema at access site, with or without pain, corresponding to Score 1 on the phlebitis scale (17.9%). Colonization of both lumen and external surface of PVC was observed in 31.3% of the samples. Staphylococcus and Pseudomonas were the most isolated bacterial genera on the PVC surface. No significant association was observed between the presence of phlebitis and the clinical aspects, as well as the presence of microorganisms. CONCLUSION: Microorganism were present on both internal and external PVC surface, without being associated to phlebitis.

18.
BMC Microbiol ; 24(1): 287, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095728

RESUMEN

This study used berberine hydrochloride to treat the Asian paddle crab, Charybdis japonica infected with the Gram-negative bacterium Aeromonas hydrophila at concentrations of 0, 100, 200 and 300 mg/L. The effect of berberine hydrochloride on the survival rate and gut microbiota of C. japonica was investigated. Berberine hydrochloride improved the stability of the intestinal flora, with an increase in the abundance of probiotic species and a decrease in the abundance of both pathogenic bacteria after treatment with high concentrations of berberine hydrochloride. Berberine hydrochloride altered peroxidase activity (POD), malondialdehyde (MDA), and lipid peroxidation (LPO) in the intestinal tract compared to the control. Berberine hydrochloride could modulate the energy released from the enzyme activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the intestinal tract of C. japonica infected with A. hydrophila. Zona occludens 1 (ZO-1), Zinc finger E-box binding homeobox 1 (ZEB1), occludin and signal transducer, and activator of transcription5b (STAT5b) expression were also increased, which improved intestinal barrier function. The results of this study provide new insights into the role of berberine hydrochloride in intestinal immune mechanisms and oxidative stress in crustaceans.


Asunto(s)
Aeromonas hydrophila , Antioxidantes , Berberina , Microbioma Gastrointestinal , Infecciones por Bacterias Gramnegativas , Berberina/farmacología , Aeromonas hydrophila/efectos de los fármacos , Aeromonas hydrophila/genética , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Braquiuros/microbiología , Braquiuros/efectos de los fármacos , Malondialdehído/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo
19.
FEBS Open Bio ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39097990

RESUMEN

Syrian hamsters (Mesocricetus auratus) have been increasingly used as rodent models in recent years, especially for SARS-CoV-2 since the pandemic. However, the physiology of this animal model is not yet well-understood, even less when considering the digestive tract. Generally, the gastrointestinal microbiome influences the immune system, drug metabolism, and vaccination efficacy. However, a detailed understanding of the gastrointestinal microbiome of hamsters is missing. Therefore, we analyzed 10 healthy 11-week-old RjHan:AURA hamsters fed a pelleted standard diet. Their gastrointestinal content was sampled (i.e., forestomach, glandular stomach, ileum, cecum, and colon) and analyzed using 16S rRNA gene amplicon sequencing. Results displayed a distinct difference in the bacterial community before and after the cecum, possibly due to the available nutrients and digestive functions. Next, we compared hamsters with the literature data of young-adult C57BL/6J mice, another important animal model. We sampled the same gastrointestinal regions and analyzed the differences in the microbiome between both rodents. Surprisingly, we found strong differences in their specific gastrointestinal bacterial communities. For instance, Lactobacillaceae were more abundant in hamsters' forestomach and ileum, while Muribaculaceae dominated in the mouse forestomach and ileum. Similarly, in mouse cecum and colon, Muribaculaceae were dominant, while in hamsters, Lachnospiraceae and Erysipelotrichaceae dominated the bacterial community. Molecular strains of Muribaculaceae in both rodent species displayed some species specificity. This comparison allows a better understanding of the suitability of the Syrian hamster as an animal model, especially regarding its comparability to other rodent models. Thereby, this work contributes to the characterization of the hamster model and allows better experimental planning.

20.
Front Microbiol ; 15: 1423342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109212

RESUMEN

Some natural environments on Earth are characterised by high levels of radiation, including naturally radioelement enriched mineral springs in the French Massif Central. Therefore, naturally radioactive mineral springs are interesting ecosystems for understanding how bacterial populations in these springs have adapted to high levels of natural and chronic radioactivity over the very long term. The aim of this study was to analyse the bacterial communities of sediments from five naturally radioactive mineral springs in the French Massif Central, sampled in autumn 2019 and spring 2020, and to observe whether radionuclides, compared to other physicochemical parameters, are drivers of the bacterial community structuring in these extreme environments. Physicochemical measurements showed that two springs, Dourioux and Montagne had high radioelement concentrations/activities (uranium, thorium and radon). Analysis of the structure of the bacterial communities, by next generation sequencing based on 16S rRNA gene sequencing, showed that the presence of radionuclides in Dourioux and Montagne, did not lead to a reduction in bacterial diversity and richness compared to the other springs. However, Dourioux and Montagne were characterised by specific bacterial populations, whose presence correlates with the radioelement concentrations/activities measured in these springs. This suggests that radioelements could partly explain the structuring of bacterial communities in these springs. In addition, several of these operational taxonomic units (OTUs) specific to Dourioux and Montagne, mainly affiliated to Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria, and Bacteroidetes, could be involved in the biogeochemistry of radionuclides through different mechanisms (biosorption, biomineralisation, bioaccumulation, and bioreduction), which would allow the development of other bacterial species sensitive to these metals/radioelements. In particular, the co-occurrence of sulphate and/or iron-reducing bacteria, capable of bioreducing uranium, with fermentative bacteria, releasing sources of organic carbons, reflects associations of bacteria with complementary functions that allow them to grow in this peculiar environment and maintain a high diversity in these extreme environments. This study has provided a better understanding of the structuring of bacterial communities exposed to ionising radiation for thousands of years in naturally radioactive environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA