Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36929912

RESUMEN

Gram-positive Firmicutes bacteria and their mobile genetic elements (plasmids and bacteriophages) encode peptide-based quorum-sensing systems (QSSs) that orchestrate behavioral transitions as a function of population densities. In their simplest form, termed "RRNPP", these QSSs are composed of two adjacent genes: a communication propeptide and its cognate intracellular receptor. RRNPP QSSs notably regulate social/competitive behaviors such as virulence or biofilm formation in bacteria, conjugation in plasmids, or lysogeny in temperate bacteriophages. However, the genetic diversity and the prevalence of these communication systems, together with the breadth of behaviors they control, remain largely underappreciated. To better assess the impact of density dependency on microbial community dynamics and evolution, we developed the RRNPP_detector software, which predicts known and novel RRNPP QSSs in chromosomes, plasmids, and bacteriophages of Firmicutes. Applying RRNPP_detector against available complete genomes of viruses and Firmicutes, we identified a rich repertoire of RRNPP QSSs from 11 already known subfamilies and 21 novel high-confidence candidate subfamilies distributed across a vast diversity of taxa. The analysis of high-confidence RRNPP subfamilies notably revealed 14 subfamilies shared between chromosomes/plasmids/phages, 181 plasmids and 82 phages encoding multiple communication systems, phage-encoded QSSs predicted to dynamically modulate bacterial behaviors, and 196 candidate biosynthetic gene clusters under density-dependent regulation. Overall, our work enhances the field of quorum-sensing research and reveals novel insights into the coevolution of gram-positive bacteria and their mobile genetic elements.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Lisogenia , Plásmidos , Bacterias/genética , Percepción de Quorum/genética
2.
J Biol Chem ; 297(6): 101346, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34715127

RESUMEN

Competence for natural transformation extensively contributes to genome evolution and the rapid adaptability of bacteria dwelling in challenging environments. In most streptococci, this process is tightly controlled by the ComRS signaling system, which is activated through the direct interaction between the (R)RNPP-type ComR sensor and XIP pheromone (mature ComS). The overall mechanism of activation and the basis of pheromone selectivity have been previously reported in Gram-positive salivarius streptococci; however, detailed 3D-remodeling of ComR leading up to its activation remains only partially understood. Here, we identified using a semirational mutagenesis approach two residues in the pheromone XIP that bolster ComR sensor activation by interacting with two aromatic residues of its XIP-binding pocket. Random and targeted mutagenesis of ComR revealed that the interplay between these four residues remodels a network of aromatic-aromatic interactions involved in relaxing the sequestration of the DNA-binding domain. Based on these data, we propose a comprehensive model for ComR activation based on two major conformational changes of the XIP-binding domain. Notably, the stimulation of this newly identified trigger point by a single XIP substitution resulted in higher competence and enhanced transformability, suggesting that pheromone-sensor coevolution counter-selects for hyperactive systems in order to maintain a trade-off between competence and bacterial fitness. Overall, this study sheds new light on the ComRS activation mechanism and how it could be exploited for biotechnological and biomedical purposes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Feromonas/metabolismo , Percepción de Quorum , Streptococcus thermophilus/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Feromonas/química , Feromonas/genética , Dominios Proteicos , Streptococcus thermophilus/química , Streptococcus thermophilus/genética , Transformación Bacteriana
3.
Genes (Basel) ; 11(9)2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961685

RESUMEN

In streptococci, intracellular quorum sensing pathways are based on quorum-sensing systems that are responsible for peptide secretion, maturation, and reimport. These peptides then interact with Rgg or ComR transcriptional regulators in the Rap, Rgg, NprR, PlcR, and PrgX (RRNPP) family, whose members are found in Gram-positive bacteria. Short hydrophobic peptides (SHP) interact with Rgg whereas ComS peptides interact with ComR regulators. To date, in Streptococcus thermophilus, peptide secretion, maturation, and extracellular fate have received little attention, even though this species has several (at least five) genes encoding Rgg regulators and one encoding a ComR regulator. We studied pheromone export in this species, focusing our attention on PptAB, which is an exporter of signaling peptides previously identified in Enterococcus faecalis, pathogenic streptococci and Staphylococcus aureus. In the S. thermophilus strain LMD-9, we showed that PptAB controlled three regulation systems, two SHP/Rgg systems (SHP/Rgg1358 and SHP/Rgg1299), and the ComS/ComR system, while using transcriptional fusions and that PptAB helped to produce and export at least three different mature SHPs (SHP1358, SHP1299, and SHP279) peptides while using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using a deep sequencing approach (RNAseq), we showed that the exporter PptAB, the membrane protease Eep, and the oligopeptide importer Ami controlled the transcription of the genes that were located downstream from the five non-truncated rgg genes as well as few distal genes. This led us to propose that the five non-truncated shp/rgg loci were functional. Only three shp genes were expressed in our experimental condition. Thus, this transcriptome analysis also highlighted the complex interconnected network that exists between SHP/Rgg systems, where a few homologous signaling peptides likely interact with different regulators.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Fragmentos de Péptidos/metabolismo , Proteoma/análisis , Percepción de Quorum , Streptococcus thermophilus/metabolismo , Transcriptoma , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Cromatografía Liquida , Regulación Bacteriana de la Expresión Génica , Streptococcus thermophilus/genética , Streptococcus thermophilus/crecimiento & desarrollo , Espectrometría de Masas en Tándem
4.
Proc Natl Acad Sci U S A ; 117(39): 24494-24502, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32907945

RESUMEN

Regulator gene of glucosyltransferase (Rgg) family proteins, such as Rgg2 and Rgg3, have emerged as primary quorum-sensing regulated transcription factors in Streptococcus species, controlling virulence, antimicrobial resistance, and biofilm formation. Rgg2 and Rgg3 function is regulated by their interaction with oligopeptide quorum-sensing signals called short hydrophobic peptides (SHPs). The molecular basis of Rgg-SHP and Rgg-target DNA promoter specificity was unknown. To close this gap, we determined the cryoelectron microscopy (cryo-EM) structure of Streptococcus thermophilus Rgg3 bound to its quorum-sensing signal, SHP3, and the X-ray crystal structure of Rgg3 alone. Comparison of these structures with that of an Rgg in complex with cyclosporin A (CsA), an inhibitor of SHP-induced Rgg activity, reveals the molecular basis of CsA function. Furthermore, to determine how Rgg proteins recognize DNA promoters, we determined X-ray crystal structures of both Streptococcus dysgalactiae Rgg2 and S. thermophilus Rgg3 in complex with their target DNA promoters. The physiological importance of observed Rgg-DNA interactions was dissected using in vivo genetic experiments and in vitro biochemical assays. Based on these structure-function studies, we present a revised unifying model of Rgg regulatory interplay. In contrast to existing models, where Rgg2 proteins are transcriptional activators and Rgg3 proteins are transcriptional repressors, we propose that both are capable of transcriptional activation. However, when Rgg proteins with different activation requirements compete for the same DNA promoters, those with more stringent activation requirements function as repressors by blocking promoter access of SHP-bound conformationally active Rgg proteins. While a similar gene expression regulatory scenario has not been previously described, in all likelihood it is not unique to streptococci.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Feromonas/metabolismo , Streptococcus thermophilus/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Regulación Bacteriana de la Expresión Génica , Feromonas/química , Streptococcus/genética , Streptococcus/metabolismo , Streptococcus thermophilus/química , Streptococcus thermophilus/genética , Transactivadores/genética
5.
J Bacteriol ; 202(17)2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32540933

RESUMEN

Enterococcus faecalis is an opportunistic pathogen capable of causing infections, including endocarditis and urinary tract infections (UTI). One of the well-characterized quorum-sensing pathways in E. faecalis involves coordination of the conjugal transfer of pheromone-responsive plasmids by PrgX, a member of the RRNPP protein family. Members of this protein family in various Firmicutes have also been shown to contribute to numerous cellular processes, including sporulation, competence, conjugation, nutrient sensing, biofilm formation, and virulence. As PrgX is a plasmid-encoded RRNPP family member, we surveyed the genome of the multidrug-resistant strain V583 for additional RRNPP homologs using computational searches and refined those identified hits for predicted structural similarities to known RRNPP family members. This led us to investigate the contribution of the chromosomally encoded RRNPP homologs to biofilm processes and pathogenesis in a catheter-associated urinary tract infection (CAUTI) model. In this study, we identified five such homologs and report that 3 of the 5 homologs, EF0073, EF1599, and EF1316, affect biofilm formation as well as outcomes in the CAUTI model.IMPORTANCEEnterococcus faecalis causes health care-associated infections and displays resistance to a variety of broad-spectrum antibiotics by acquisition of resistance traits as well as the ability to form biofilms. Even though a growing number of factors related to biofilm formation have been identified, mechanisms that contribute to biofilm formation are still largely unknown. Members of the RRNPP protein family regulate a diverse set of biological reactions in low-G+C Gram-positive bacteria (Firmicutes). Here, we identify three predicted structural homologs of the RRNPP family, EF0073, EF1599, and EF1316, which affect biofilm formation and CAUTI pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Enterococcus faecalis/metabolismo , Infecciones Urinarias/microbiología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos
6.
Microbiology (Reading) ; 166(6): 579-592, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375981

RESUMEN

The strictly anaerobic bacterium Clostridium acetobutylicum is well known for its ability to convert sugars into organic acids and solvents, most notably the potential biofuel butanol. However, the regulation of its fermentation metabolism, in particular the shift from acid to solvent production, remains poorly understood. The aim of this study was to investigate whether cell-cell communication plays a role in controlling the timing of this shift or the extent of solvent formation. Analysis of the available C. acetobutylicum genome sequences revealed the presence of eight putative RRNPP-type quorum-sensing systems, here designated qssA to qssH, each consisting of an RRNPP-type regulator gene followed by a small open reading frame encoding a putative signalling peptide precursor. The identified regulator and signal peptide precursor genes were designated qsrA to qsrH and qspA to qspH, respectively. Triplicate regulator mutants were generated in strain ATCC 824 for each of the eight systems and screened for phenotypic changes. The qsrB mutants showed increased solvent formation during early solventogenesis and hence the QssB system was selected for further characterization. Overexpression of qsrB severely reduced solvent and endospore formation and this effect could be overcome by adding short synthetic peptides to the culture medium representing a specific region of the QspB signalling peptide precursor. In addition, overexpression of qspB increased the production of acetone and butanol and the initial (48 h) titre of heat-resistant endospores. Together, these findings establish a role for QssB quorum sensing in the regulation of early solventogenesis and sporulation in C. acetobutylicum.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridium acetobutylicum/fisiología , Percepción de Quorum , Esporas Bacterianas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Composición de Base , Secuencia de Bases , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Familia de Multigenes , Análisis de Secuencia de ADN , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo
7.
Biotechnol Biofuels ; 13: 84, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411297

RESUMEN

BACKGROUND: Clostridium saccharoperbutylacetonicum N1-4 (HMT) is a strictly anaerobic, spore-forming Gram-positive bacterium capable of hyper-butanol production through the well-known acetone-butanol-ethanol fermentation process. Recently, five putative RRNPP-type QSSs (here designated as QSS1 to QSS5) were predicted in this bacterial strain, each of which comprises a putative RRNPP-type regulator (QssR1 to QssR5) and a cognate signaling peptide precursor (QssP1 to QssP5). In addition, both proteins are encoded by the same operon. The functions of these multiple RRNPP-type QSSs are unknown. RESULTS: To elucidate the function of multiple RRNPP-type QSSs as related to cell metabolism and solvent production in N1-4 (HMT), we constructed qssR-deficient mutants ΔR1, ΔR2, ΔR3 and ΔR5 through gene deletion using CRISPR-Cas9 and N1-4-dcas9-R4 (with the QssR4 expression suppressed using CRISPR-dCas9). We also constructed complementation strains by overexpressing the corresponding regulator gene. Based on systematic characterization, results indicate that QSS1, QSS2, QSS3, and QSS5 positively regulate the sol operon expression and thus solvent production, but they likely negatively regulate cell motility. Consequently, QSS4 might not directly regulate solvent production, but positively affect cell migration. In addition, QSS3 and QSS5 appear to positively regulate sporulation efficiency. CONCLUSIONS: Our study provides the first insights into the roles of multiple RRNPP-type QSSs of C. saccharoperbutylacetonicum for the regulation of solvent production, cell motility, and sporulation. Results of this study expand our knowledge of how multiple paralogous QSSs are involved in the regulation of essential bacterial metabolism pathways.

8.
Proc Natl Acad Sci U S A ; 117(14): 7745-7754, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32198205

RESUMEN

Competence allows bacteria to internalize exogenous DNA fragments for the acquisition of new phenotypes such as antibiotic resistance or virulence traits. In most streptococci, competence is regulated by ComRS signaling, a system based on the mature ComS pheromone (XIP), which is internalized to activate the (R)RNPP-type ComR sensor by triggering dimerization and DNA binding. Cross-talk analyses demonstrated major differences of selectivity between ComRS systems and raised questions concerning the mechanism of pheromone-sensor recognition and coevolution. Here, we decipher the molecular determinants of selectivity of the closely related ComRS systems from Streptococcus thermophilus and Streptococcus vestibularis Despite high similarity, we show that the divergence in ComR-XIP interaction does not allow reciprocal activation. We perform the structural analysis of the ComRS system from S. vestibularis. Comparison with its ortholog from S. thermophilus reveals an activation mechanism based on a toggle switch involving the recruitment of a key loop by the XIP C terminus. Together with a broad mutational analysis, we identify essential residues directly involved in peptide binding. Notably, we generate a ComR mutant that displays a fully reversed selectivity toward the heterologous pheromone with only five point mutations, as well as other ComR variants featuring XIP bispecificity and/or neofunctionalization for hybrid XIP peptides. We also reveal that a single XIP mutation relaxes the strictness of ComR activation, suggesting fast adaptability of molecular communication phenotypes. Overall, this study is paving the way toward the rational design or directed evolution of artificial ComRS systems for a range of biotechnological and biomedical applications.


Asunto(s)
Feromonas/metabolismo , Transducción de Señal , Streptococcus/metabolismo , Secuencia de Aminoácidos , Luciferasas/metabolismo , Modelos Moleculares , Mutación Puntual/genética , Estructura Secundaria de Proteína , Homología Estructural de Proteína
9.
mBio ; 10(2)2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862746

RESUMEN

Clostridioides difficile infection (CDI) is a toxin-mediated diarrheal disease. Several factors have been identified that influence the production of the two major C. difficile toxins, TcdA and TcdB, but prior published evidence suggested that additional unknown factors were involved in toxin regulation. Previously, we identified a C. difficile regulator, RstA, that promotes sporulation and represses motility and toxin production. We observed that the predicted DNA-binding domain of RstA was required for RstA-dependent repression of toxin genes, motility genes, and rstA transcription. In this study, we further investigated the regulation of toxin and motility gene expression by RstA. DNA pulldown assays confirmed that RstA directly binds the rstA promoter via the predicted DNA-binding domain. Through mutational analysis of the rstA promoter, we identified several nucleotides that are important for RstA-dependent transcriptional regulation. Further, we observed that RstA directly binds and regulates the promoters of the toxin genes tcdA and tcdB, as well as the promoters for the sigD and tcdR genes, which encode regulators of toxin gene expression. Complementation analyses with the Clostridium perfringens RstA ortholog and a multispecies chimeric RstA protein revealed that the C. difficile C-terminal domain is required for RstA DNA-binding activity, suggesting that species-specific signaling controls RstA function. Our data demonstrate that RstA is a transcriptional repressor that autoregulates its own expression and directly inhibits transcription of the two toxin genes and two positive toxin regulators, thereby acting at multiple regulatory points to control toxin production.IMPORTANCEClostridioides difficile is an anaerobic, gastrointestinal pathogen of humans and other mammals. C. difficile produces two major toxins, TcdA and TcdB, which cause the symptoms of the disease, and forms dormant endospores to survive the aerobic environment outside the host. A recently discovered regulatory factor, RstA, inhibits toxin production and positively influences spore formation. Herein, we determine that RstA directly binds its own promoter DNA to repress its own gene transcription. In addition, our data demonstrate that RstA directly represses toxin gene expression and gene expression of two toxin gene activators, TcdR and SigD, creating a complex regulatory network to tightly control toxin production. This study provides a novel regulatory link between C. difficile sporulation and toxin production. Further, our data suggest that C. difficile toxin production is regulated through a direct, species-specific sensing mechanism.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Toxinas Bacterianas/biosíntesis , Clostridioides difficile/genética , Clostridioides difficile/fisiología , Enterotoxinas/biosíntesis , Regulación Bacteriana de la Expresión Génica , Locomoción , Proteínas Represoras/metabolismo , Clostridium perfringens/genética , Análisis Mutacional de ADN , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Prueba de Complementación Genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/genética
10.
Mol Cell ; 74(1): 59-72.e3, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30745087

RESUMEN

Bacillus phages use a communication system, termed "arbitrium," to coordinate lysis-lysogeny decisions. Arbitrium communication is mediated by the production and secretion of a hexapeptide (AimP) during lytic cycle. Once internalized, AimP reduces the expression of the negative regulator of lysogeny, AimX, by binding to the transcription factor, AimR, promoting lysogeny. We have elucidated the crystal structures of AimR from the Bacillus subtilis SPbeta phage in its apo form, bound to its DNA operator and in complex with AimP. AimR presents intrinsic plasticity, sharing structural features with the RRNPP quorum-sensing family. Remarkably, AimR binds to an unusual operator with a long spacer that interacts nonspecifically with the receptor TPR domain, while the HTH domain canonically recognizes two inverted repeats. AimP stabilizes a compact conformation of AimR that approximates the DNA-recognition helices, preventing AimR binding to the aimX promoter region. Our results establish the molecular basis of the arbitrium communication system.


Asunto(s)
Fagos de Bacillus/metabolismo , Lisogenia , Proteínas Virales/metabolismo , Fagos de Bacillus/genética , Bacillus subtilis/virología , ADN/metabolismo , Regulación Viral de la Expresión Génica , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Transducción de Señal , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/genética
11.
Microbiologyopen ; 6(4)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28523739

RESUMEN

In many gram positive bacteria, horizontal transfer and virulence are regulated by peptide-mediated cell-cell signaling. The heptapeptide cCF10 (C) activates conjugative transfer of the Enterococcus faecalis plasmid pCF10, whereas the iCF10 (I) peptide inhibits transfer. Both peptides bind to the same domain of the master transcription regulator PrgX, a repressor of transcription of the prgQ operon encoding conjugation genes. We show that repression of prgQ by PrgX tetramers requires formation of a pCF10 DNA loop where each of two PrgX DNA-binding sites is occupied by a dimer. I binding to PrgX enhances prgQ repression, while C binding has the opposite effect. Previous models suggested that differential effects of these two peptides on the PrgX oligomerization state accounted for their distinct functions. Our new results demonstrate that both peptides have similar, high-binding affinity for PrgX, and that both peptides actually promote formation of PrgX tetramers with higher DNA-binding affinity than Apo-PrgX. We propose that differences in repression ability of PrgX/peptide complexes result from subtle differences in the structures of DNA-bound PrgX/peptide complexes. Changes in the induction state of a donor cell likely results from replacement of one type of DNA-bound peptide/PrgX tetramer with the other.


Asunto(s)
Conjugación Genética/efectos de los fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Péptidos/metabolismo , Feromonas/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , ADN Bacteriano/metabolismo , Transferencia de Gen Horizontal , Conformación de Ácido Nucleico , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Proteínas Represoras/metabolismo
12.
J Mol Biol ; 428(14): 2793-804, 2016 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-27283781

RESUMEN

The members of RRNPP family of bacterial regulators sense population density-specific secreted oligopeptides and modulate the expression of genes involved in cellular processes, such as sporulation, competence, virulence, biofilm formation, conjugative plasmid transfer and antibiotic resistance. Signaling by RRNPP regulators include several steps: generation and secretion of the signaling oligopeptides, re-internalization of the signaling molecules into the cytoplasm, signal sensing by the cytosolic RRNPP regulators, signal-specific allosteric structural changes in the regulators, and interaction of the regulators with their respective regulatory target and gene regulation. The recently determined structures of the RRNPP regulators provide insight into the mechanistic aspects for several steps in this signaling circuit. In this review, we discuss the structural principles underlying peptide specificity, regulatory target recognition, and ligand-induced allostery in RRNPP regulators and its impact on gene regulation. Despite the conserved tertiary structure of these regulators, structural analyses revealed unexpected diversity in the mechanism of activation and molecular strategies that couple the peptide-induced allostery to gene regulation. Although these structural studies provide a sophisticated understanding of gene regulation by RRNPP regulators, much needs to be learned regarding the target DNA binding by yet-to-be characterized RNPP regulators and the several aspects of signaling by Rgg regulators.


Asunto(s)
Regulación Alostérica/genética , Regulación Bacteriana de la Expresión Génica/genética , Péptidos/genética , Proteínas Bacterianas/genética , Percepción de Quorum/genética , Transducción de Señal/genética , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA