Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13940, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886463

RESUMEN

Perilla frutescens (L.) Britton, a member of the Lamiaceae family, stands out as a versatile plant highly valued for its unique aroma and medicinal properties. Additionally, P. frutescens seeds are rich in Îs-linolenic acid, holding substantial economic importance. While the nuclear and chloroplast genomes of P. frutescens have already been documented, the complete mitochondrial genome sequence remains unreported. To this end, the sequencing, annotation, and assembly of the entire Mitochondrial genome of P. frutescens were hereby conducted using a combination of Illumina and PacBio data. The assembled P. frutescens mitochondrial genome spanned 299,551 bp and exhibited a typical circular structure, involving a GC content of 45.23%. Within the genome, a total of 59 unique genes were identified, encompassing 37 protein-coding genes, 20 tRNA genes, and 2 rRNA genes. Additionally, 18 introns were observed in 8 protein-coding genes. Notably, the codons of the P. frutescens mitochondrial genome displayed a notable A/T bias. The analysis also revealed 293 dispersed repeat sequences, 77 simple sequence repeats (SSRs), and 6 tandem repeat sequences. Moreover, RNA editing sites preferentially produced leucine at amino acid editing sites. Furthermore, 70 sequence fragments (12,680 bp) having been transferred from the chloroplast to the mitochondrial genome were identified, accounting for 4.23% of the entire mitochondrial genome. Phylogenetic analysis indicated that among Lamiaceae plants, P. frutescens is most closely related to Salvia miltiorrhiza and Platostoma chinense. Meanwhile, inter-species Ka/Ks results suggested that Ka/Ks < 1 for 28 PCGs, indicating that these genes were evolving under purifying selection. Overall, this study enriches the mitochondrial genome data for P. frutescens and forges a theoretical foundation for future molecular breeding research.


Asunto(s)
Uso de Codones , Genoma Mitocondrial , Perilla frutescens , Edición de ARN , Edición de ARN/genética , Perilla frutescens/genética , Filogenia , Repeticiones de Microsatélite/genética , ARN de Transferencia/genética , Composición de Base , Anotación de Secuencia Molecular
2.
Infect Genet Evol ; 122: 105612, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824981

RESUMEN

African swine fever (ASF) is a serious animal disease, and has spread to Africa, Europe and Asia, causing massive economic losses. African swine fever virus (ASFV) is transmitted from a reservoir host (warthog) to domestic pigs via a sylvatic cycle (transmission between warthogs and soft ticks) and a domestic cycle (transmission between domestic pigs) and survives by expressing a variety of genes related to virus-host interactions. We evaluated differences in codon usage patterns among ASFV genotypes and clades and explored the common and specific evolutionary and genetic characteristics of ASFV sequences. We analysed the evolutionary relationships, nucleotide compositions, codon usage patterns, selection pressures (mutational pressure and natural selection) and viral adaptation to host codon usage based on the coding sequences (CDS) of key functional genes of ASFV. AT bias was detected in the six genes analysed, irrespective of clade. The AT bias of genes (A224L, A179L, EP153R) encoding proteins involved in interaction with host cells after infection was high; among them, the AT bias of EP153R was the greatest at 78.3%. A large number of overrepresented codons were identified in EP153R, whereas there were no overrepresented codons with a relative synonymous codon usage (RSCU) value of ≥3 in B646L. In most genes, the pattern of selection pressure was similar for each clade, but in EP153R, diverse patterns of selection pressure were captured within the same clade and genotype. As a result of evaluating host adaptation based on the codon adaptation index (CAI), for B646L, E183L, CP204L and A179L, the codon usage patterns in all sequences were more similar to tick than domestic pig or wild boar. However, EP153R showed the lowest average CAI value of 0.52 when selecting tick as a reference set. The genes analysed in this study showed different magnitudes of selection pressure at the clade and genotype levels, which is likely to be related to the function of the encoded proteins and may determine key evolutionary traits of viruses, such as the level of genetic variation and host range. The diversity of codon adaptations at the genetic level in ASFV may account for differences in translational selection in ASFV hosts and provides insight into viral host adaptation and co-evolution.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Uso de Codones , Evolución Molecular , Selección Genética , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/clasificación , Animales , Porcinos , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/genética , Filogenia , Genotipo
3.
Front Plant Sci ; 15: 1356912, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745930

RESUMEN

Introduction: Thalictrum fargesii is a medicinal plant belonging to the genus Thalictrum of the Ranunculaceae family and has been used in herbal medicine in the Himalayan regions of China and India. This species is taxonomically challenging because of its morphological similarities to other species within the genus. Thus, herbal drugs from this species are frequently adulterated, substituted, or mixed with other species, thereby endangering consumer safety. Methods: The present study aimed to sequence and assemble the entire chloroplast (cp) genome of T. fargesii using the Illumina HiSeq 2500 platform to better understand the genomic architecture, gene composition, and phylogenetic relationships within the Thalictrum. Results and discussion: The cp genome was 155,929 bp long and contained large single-copy (85,395 bp) and small single-copy (17,576 bp) regions that were segregated by a pair of inverted repeat regions (26,479 bp) to form a quadripartite structure. The cp genome contains 133 genes, including 88 protein-coding genes (PCGs), 37 tRNA genes, and 8 rRNA genes. Additionally, this genome contains 64 codons that encode 20 amino acids, the most preferred of which are alanine and leucine. We identified 68 SSRs, 27 long repeats, and 242 high-confidence C-to-U RNA-editing sites in the cp genome. Moreover, we discovered seven divergent hotspot regions in the cp genome of T. fargesii, among which ndhD-psaC and rpl16-rps3 may be useful for developing molecular markers for identifying ethnodrug species and their contaminants. A comparative study with eight other species in the genus revealed that pafI and rps19 had highly variable sites in the cp genome of T. fargesii. Additionally, two special features, (i) the shortest length of the ycf1 gene at the IRA-SSC boundary and (ii) the distance between the rps19 fragment and trnH at the IRA-LSC junction, distinguish the cp genome of T. fargesii from those of other species within the genus. Furthermore, phylogenetic analysis revealed that T. fargesii was closely related to T. tenue and T. petaloidium. Conclusion: Considering all these lines of evidence, our findings offer crucial molecular and evolutionary information that could play a significant role in further species identification, evolution, and phylogenetic studies on T. fargesii.

4.
BMC Genomics ; 24(1): 571, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752438

RESUMEN

BACKGROUND: Malvaceae is an economically important plant family of 4,225 species in nine subfamilies. Phylogenetic relationships among the nine subfamilies have always been controversial, especially for Brownlowioideae, whose phylogenetic position remains largely unknown due to the lack of samples in previous analysis datasets. To greatly clarify the phylogenetic relationship of Malvaceae, we newly sequenced and assembled the plastome of Diplodiscus trichospermus taxonomically located in Brownlowioideae, and downloaded the allied genomes from public database to build a dataset covering all subfamily members of Malvaceae. RESULTS: The annotation results showed that the plastome of Diplodiscus trichospermus has a typical quadripartite structure, comprising 112 unique genes, namely 78 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The total length was 158,570 bp with 37.2% GC content. Based on the maximum likelihood method and Bayesian inference, a robust phylogenetic backbone of Malvaceae was reconstructed. The topology showed that Malvaceae was divided distinctly into two major branches which were previously recognized as Byttneriina and Malvadendrina. In the Malvadendrina clade, Malvoideae and Bombacoideae formed, as always, a close sister clade named as Malvatheca. Subfamily Helicteroideae occupied the most basal position and was followed by Sterculioideae which was sister to the alliance of Malvatheca, Brownlowioideae, Dombeyoideae, and Tilioideae. Brownlowioideae together with the clade comprising Dombeyoideae and Tilioideae formed a sister clade to Malvatheca. In addition, one specific conservation SSR and three specific palindrome sequences were observed in Brownlowioideae. CONCLUSIONS: In this study, the phylogenetic framework of subfamilies in Malvaceae has been resolved clearly based on plastomes, which may contribute to a better understanding of the classification and plastome evolution for Malvaceae.


Asunto(s)
Genoma del Cloroplasto , Malvaceae , Filogenia , Malvaceae/genética , Teorema de Bayes , Secuencia de Bases
5.
Front Immunol ; 14: 1131647, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492567

RESUMEN

Hemorrhagic fever with renal syndrome (HFRS) is an acute viral zoonosis carried and transmitted by infected rodents through urine, droppings, or saliva. The etiology of HFRS is complex due to the involvement of viral factors and host immune and genetic factors which hinder the development of potential therapeutic solutions for HFRS. Hantaan virus (HTNV), Dobrava-Belgrade virus (DOBV), Seoul virus (SEOV), and Puumala virus (PUUV) are predominantly found in hantaviral species that cause HFRS in patients. Despite ongoing prevention and control efforts, HFRS remains a serious economic burden worldwide. Furthermore, recent studies reported that the hantavirus nucleocapsid protein is a multi-functional protein and plays a major role in the replication cycle of the hantavirus. However, the precise mechanism of the nucleoproteins in viral pathogenesis is not completely understood. In the framework of the current study, various in silico approaches were employed to identify the factors influencing the codon usage pattern of hantaviral nucleoproteins. Based on the relative synonymous codon usage (RSCU) values, a comparative analysis was performed between HFRS-causing hantavirus and their hosts, suggesting that HTNV, DOBV, SEOV, and PUUV, were inclined to evolve their codon usage patterns that were comparable to those of their hosts. The results indicated that most of the overrepresented codons had AU-endings, which revealed that mutational pressure is the major force shaping codon usage patterns. However, the influence of natural selection and geographical factors cannot be ignored on viral codon usage bias. Further analysis also demonstrated that HFRS causing hantaviruses adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts. To our knowledge, no study to date reported the factors influencing the codon usage pattern within hantaviral nucleoproteins. Thus, the proposed computational scheme can help in understanding the underlying mechanism of codon usage patterns in HFRS-causing hantaviruses which lend a helping hand in designing effective anti-HFRS treatments in future. This study, although comprehensive, relies on in silico methods and thus necessitates experimental validation for more solid outcomes. Beyond the identified factors influencing viral behavior, there could be other yet undiscovered influences. These potential factors should be targets for further research to improve HFRS therapeutic strategies.


Asunto(s)
Virus Hantaan , Infecciones por Hantavirus , Orthohantavirus , Humanos , Orthohantavirus/genética , Uso de Codones , Proteínas de la Nucleocápside
6.
Gene ; 877: 147535, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37328078

RESUMEN

Cyprinidae is the largest family in the order of freshwater fish Cypriniformes. Increased subfamily members of Cyprinidae have been suggested to be re-classified for decades. In this study, we sequenced the mitochondrial genomes (mitogenomes) of Leuciscus baicalensis and Rutilus rutilus collected from northwest China and compared with other closely related species to determine their associated family or subfamily. We used Illumina NovaSeq to sequence the entire mitochondrial genomes of Leuciscus baicalensis and Rutilus rutilus and characterized the mitogenomes by the gene structure, gene order, and the secondary structures of the 22 tRNA genes. We compared mitogenome features of Leuciscinae with other subfamilies in Cyprinidae. We used the analytic Bayesian Information and Maximum Likelihood methods to determine phylogenetic trees of 13 PCGs. The mitogenomes of Leuciscus baicalensis and Rutilus rutilus were 16,607 bp and 16,606 bp, respectively. Organization and location of these genes were consistent with already studied Leuciscinae fishes. Synonymous codon usage was conservative in Leuciscinae as compared with other subfamilies in Cyprinidae. Phylogenetic analysis indicated that Leuciscinae was a monophyletic group, and genus Leuciscus was a paraphyletic group. Our approach, for the first time, of studying comparative mitochondrial genomics and phylogenetics together provided a supportive platform to the analysis of population genetics and phylogeny for Leuciscinae. Our results indicated a promising potential of comparative mitochondrial genomics in the manifestation of phylogenetic relationships between fishes, leading us to a suggestion that mitogenomes should be routinely considered in clarifying phylogenetics of family and subfamily members of fish.


Asunto(s)
Cyprinidae , Cipriniformes , Genoma Mitocondrial , Animales , Genoma Mitocondrial/genética , Filogenia , Teorema de Bayes , Cyprinidae/genética , Cipriniformes/genética , Genómica , ARN de Transferencia/genética
7.
Curr Pharm Des ; 29(14): 1105-1120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37073656

RESUMEN

INTRODUCTION: Apoptosis and autophagy are the two fundamental processes involved in maintaining homeostasis, and a common stimulus may initiate the processes. Autophagy has been implicated in various diseases, including viral infections. Genetic manipulations leading to altered gene expression might be a strategy to check virus infection. AIM: Determination of molecular patterns, relative synonymous codon usage, codon preference, codon bias, codon pair bias, and rare codons so that genetic manipulation of autophagy genes may be done to curb viral infection. METHODS: Using various software, algorithms, and statistical analysis, insights into codon patterns were obtained. A total of 41 autophagy genes were envisaged as they are involved in virus infection. RESULTS: The A/T and G/C ending codons are preferred by different genes. AAA-GAA and CAG-CTG codon pairs are the most abundant codon pairs. CGA, TCG, CCG, and GCG are rarely used codons. CONCLUSION: The information generated in the present study helps manipulate the gene expression level of virus infection-associated autophagy genes through gene modification tools like CRISPR. Codon deoptimization for reducing while codon pair optimization for enhancing is efficacious for HO-1 gene expression.


Asunto(s)
Virosis , Humanos , Codón/genética , Virosis/genética , Evolución Molecular
8.
Front Genet ; 14: 1329060, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283144

RESUMEN

Background: The wild dwarf almond (Prunus tenella) is one of the national key grade II-protected wild plants in China. It is a relic deciduous forest species from the middle Eocene of the ancient Mediterranean Sea and is also known as a "living fossil of plants." It is distributed in Southeast Europe, West Asia, Central Asia, Siberia, and Xinjiang (Tacheng) and other areas of China. The plant grows on arid slopes, steppes, depressions, and valleys at an altitude of 1,200 m. The seeds of wild dwarf almonds are frost resistant and contain oil and bitter lentil glycosides, which possess medicinal value. Additionally, the seeds of wild dwarf almonds can be used as the original material for breeding new varieties of almonds and obtain ornamental flowers and trees. Results: The complete mitochondrial genome of P. tenella was sequenced and assembled using two sequencing platforms, namely, Illumina Novaseq6000 and Oxford Nanopore PromethION. The assembled genome was 452,158-bp long with a typical loop structure. The total number of A, T, C, and G bases in the genome was 122,066 (26.99%), 124,114 (27.45%), 103,285 (22.84%), and 102,693 (22.71%), respectively, with a GC content of 45.55%. A total of 63 unique genes, including 36 protein-coding genes, 24 tRNA genes, and 3 rRNA genes, were identified in the genome. Furthermore, codon usage, sequence duplication, RNA editing, and mitochondrial and chloroplast DNA fragment transfer events in the genome were analyzed. A phylogenetic tree was also constructed using 30 protein-coding genes that are common to the mitochondrial genomes of 24 species, which indicated that the genome of wild lentils is highly conserved with those of apples and pears belonging to Rosaceae. Conclusion: Assembly and annotation of the P. tenella mitochondrial genome provided comprehensive information about the mitochondrial genome of wild dwarf almonds, This study provides information on the mitochondrial genome of Prunus species and serves as a reference for further evolutionary studies on wild dwarf almonds.

9.
BMC Genom Data ; 23(1): 81, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434531

RESUMEN

BACKGROUND: Pancreatitis is an inflammatory disorder resulting from the autoactivation of trypsinogen in the pancreas. The genetic basis of the disease is an old phenomenon, and evidence is accumulating for the involvement of synonymous/non-synonymous codon variants in disease initiation and progression. RESULTS: The present study envisaged a panel of 26 genes involved in pancreatitis for their codon choices, compositional analysis, relative dinucleotide frequency, nucleotide disproportion, protein physical properties, gene expression, codon bias, and interrelated of all these factors. In this set of genes, gene length was positively correlated with nucleotide skews and codon usage bias. Codon usage of any gene is dependent upon its AT and GC component; however, AGG, CGT, and CGA encoding for Arg, TCG for Ser, GTC for Val, and CCA for Pro were independent of nucleotide compositions. In addition, Codon GTC showed a correlation with protein properties, isoelectric point, instability index, and frequency of basic amino acids. We also investigated the effect of various evolutionary forces in shaping the codon usage choices of genes. CONCLUSIONS: This study will enable us to gain insight into the molecular signatures associated with the disease that might help identify more potential genes contributing to enhanced risk for pancreatitis. All the genes associated with pancreatitis are generally associated with physiological function, and mutations causing loss of function, over or under expression leads to an ailment. Therefore, the present study attempts to envisage the molecular signature in a group of genes that lead to pancreatitis in case of malfunction.


Asunto(s)
Uso de Codones , Pancreatitis , Humanos , Composición de Base , Codón/genética , Nucleótidos/genética , Pancreatitis/genética
10.
Genes (Basel) ; 13(11)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36421803

RESUMEN

The spotted catfish, Arius maculatus (Siluriformes), is an important economical aquaculture species inhabiting the Indian Ocean, as well as the western Pacific Ocean. The bioinformatics data in previous studies about the phylogenetic reconstruction of Siluriformes were insufficient and incomplete. In the present study, we presented a newly sequenced A. maculatus mitochondrial genome (mtDNA). The A. maculatus mtDNA was 16,710 bp in length and contained two ribosomal RNA (rRNA) genes, thirteen protein-coding genes (PCGs), twenty-two transfer RNA (tRNA) genes, and one D-loop region. The composition and order of these above genes were similar to those found in most other vertebrates. The relative synonymous codon usage (RSCU) of the 13 PCGs in A. maculatus mtDNA was consistent with that of PCGs in other published Siluriformes mtDNA. Furthermore, the average non-synonymous/synonymous mutation ratio (Ka/Ks) analysis, based on the 13 PCGs of the four Ariidae species, showed a strong purifying selection. Additionally, phylogenetic analysis, according to 13 concatenated PCG nucleotide and amino acid datasets, showed that A. maculatus and Netuma thalassina (Netuma), Occidentarius platypogon (Occidentarius), and Bagre panamensis (Bagre) were clustered as sister clade. The complete mtDNA of A. maculatus provides a helpful dataset for research on the population structure and genetic diversity of Ariidae species.


Asunto(s)
Bagres , Genoma Mitocondrial , Animales , Genoma Mitocondrial/genética , Filogenia , Bagres/genética , ADN Mitocondrial/genética , ARN de Transferencia/genética
11.
J Microbiol ; 60(11): 1106-1112, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36251120

RESUMEN

Due to the evolutionary arms race between hosts and viruses, viruses must adapt to host translation systems to rapidly synthesize viral proteins. Highly expressed genes in hosts have a codon bias related to tRNA abundance, the primary RNA translation rate determinant. We calculated the relative synonymous codon usage (RSCU) of three hepatitis viruses (HAV, HBV, and HCV), SARS-CoV-2, 30 human tissues, and hepatocellular carcinoma (HCC). After comparing RSCU between viruses and human tissues, we calculated the codon adaptation index (CAI) of viral and human genes. HBV and HCV showed the highest correlations with HCC and the normal liver, while SARS-CoV-2 had the strongest association with lungs. In addition, based on HCC RSCU, the CAI of HBV and HCV genes was the highest. HBV and HCV preferentially adapt to the tRNA pool in HCC, facilitating viral RNA translation. After an initial trigger, rapid HBV/HCV translation and replication may change normal liver cells into HCC cells. Our findings reveal a novel perspective on virus-mediated oncogenesis.


Asunto(s)
COVID-19 , Carcinoma Hepatocelular , Hepatitis B , Hepatitis C , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/genética , Virus de la Hepatitis B/genética , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/genética , Hepatitis B/complicaciones , Hepatitis B/genética , Transcriptoma , SARS-CoV-2 , Codón , Carcinogénesis , ARN de Transferencia , Hepatitis C/genética
12.
Virus Res ; 322: 198949, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36181979

RESUMEN

Transfer RNAs (tRNAs) genes are both coded for and arranged along some viral genomes representing the entire virosphere and seem to play different biological functions during infection, other than transferring the correct amino acid to a growing peptide chain. Baculovirus genome description and annotation has focused mostly on protein-coding genes, microRNA, and homologous regions. Here we carried out a large-scale in silico search for putative tRNA genes in baculovirus genomes. Ninety-six of 257 baculovirus genomes analyzed was found to contain at least one putative tRNA gene. We found great diversity in primary and secondary structure, in location within the genome, in intron presence and size, and in anti-codon identity. In some cases, genes of tRNA-containing genomes were found to have a bias for the codons specified by the tRNAs present in such genomes. Moreover, analysis revealed that most of the putative tRNA genes possessed conserved motifs for tRNA type 2 promoters, including the A-box and B-box motifs with few mismatches from the eukaryotic canonical motifs. From publicly available small RNA deep sequencing datasets of baculovirus-infected insect cells, we found evidence that a putative Autographa californica multiple nucleopolyhedrovirus Gln-tRNA gene was transcribed and modified with the addition of the non-templated 3'-CCA tail found at the end of all tRNAs. Further research is needed to determine the expression and functionality of these viral tRNAs.


Asunto(s)
Baculoviridae , ARN de Transferencia , Baculoviridae/genética , ARN de Transferencia/genética , ARN de Transferencia/química , Eucariontes/genética , Secuencia de Bases , Codón
13.
Front Microbiol ; 13: 738205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694308

RESUMEN

Bacteria in the Desulfovibrionaceae family, which contribute to S element turnover as sulfate-reducing bacteria (SRB) and disproportionation of partially oxidized sulfoxy anions, have been extensively investigated since the importance of the sulfur cycle emerged. Novel species belonging to this taxon are frequently reported, because they exist in various environments and are easy to culture using established methods. Due to the rapid expansion of the taxon, correction and reclassification have been conducted. The development of high-throughput sequencing facilitated rapid expansion of genome sequence database. Genome-based criteria, based on these databases, proved to be potential classification standard by overcoming the limitations of 16S rRNA-based phylogeny. Although standards methods for taxogenomics are being established, the addition of a novel genus requires extensive calculations with taxa, including many species, such as Desulfovibrionaceae. Thus, the genome-based criteria for classification of Desulfovibrionaceae were established and validated in this study. The average amino-acid identity (AAI) cut-off value, 63.43 ± 0.01, was calculated to be an appropriate criterion for genus delineation of the family Desulfovibrionaceae. By applying the AAI cut-off value, 88 genomes of the Desulfovibrionaceae were divided into 27 genera, which follows the core gene phylogeny results. In this process, two novel genera (Alkalidesulfovibrio and Salidesulfovibrio) and one former invalid genus ("Psychrodesulfovibrio") were officially proposed. Further, by applying the 95-96% average nucleotide identity (ANI) standard and the 70% digital DNA-DNA hybridization standard values for species delineation of strains that were classified as the same species, five strains have the potential to be newly classified. After verifying that the classification was appropriately performed through relative synonymous codon usage analysis, common characteristics were listed by group. In addition, by detecting metal resistance related genes via in silico analysis, it was confirmed that most strains display metal tolerance.

14.
Front Neurosci ; 16: 887929, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757545

RESUMEN

Neurodegenerative disorders cause irreversible damage to the neurons and adversely affect the quality of life. Protein misfolding and their aggregation in specific parts of the brain, mitochondrial dysfunction, calcium load, proteolytic stress, and oxidative stress are among the causes of neurodegenerative disorders. In addition, altered metabolism has been associated with neurodegeneration as evidenced by reductions in glutamine and alanine in transient global amnesia patients, higher homocysteine-cysteine disulfide, and lower methionine decline in serum urea have been observed in Alzheimer's disease patients. Neurodegeneration thus appears to be a culmination of altered metabolism. The study's objective is to analyze various attributes like composition, physical properties of the protein, and factors like selectional and mutational forces, influencing codon usage preferences in a panel of genes involved directly or indirectly in metabolism and contributing to neurodegeneration. Various parameters, including gene composition, dinucleotide analysis, Relative synonymous codon usage (RSCU), Codon adaptation index (CAI), neutrality and parity plots, and different protein indices, were computed and analyzed to determine the codon usage pattern and factors affecting it. The correlation of intrinsic protein properties such as the grand average of hydropathicity index (GRAVY), isoelectric point, hydrophobicity, and acidic, basic, and neutral amino acid content has been found to influence codon usage. In genes up to 800 amino acids long, the GC3 content was highly variable, while GC12 content was relatively constant. An optimum CpG content is present in genes to maintain a high expression level as required for genes involved in metabolism. Also observed was a low codon usage bias with a higher protein expression level. Compositional parameters and nucleotides at the second position of codons played essential roles in explaining the extent of bias. Overall analysis indicated that the dominance of selection pressure and compositional constraints and mutational forces shape codon usage.

15.
Food Chem X ; 13: 100212, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35498963

RESUMEN

Flavour of tea is mainly contributed by a group of polyphenols - flavonoids. However, the content of flavonoid fluctuates seasonally and is found to be higher in the first flush of tea, when compared to the second flush. This disparity in the flavonoid content, and hence taste, incurs heavy economic losses to the tea plantation industry each harvest season. For our present study, four key product-specific enzymes (PAL, FNS, FLS and ANS) of the tea-specific flavonoid pathway were selected to perform molecular docking studies with specific virtually screened allosteric modulators. Results of docking analyses showed Naringenin, 2-Morpholin-4-ium-4-ylethanesulfonate, 6-C-Glucosylquercetin, 2-Oxoglutaric acid, 3,5,7,3',4'-pentahydroxyflavone to be capable of improving the spontaneity of the enzyme-substrate reactions in terms of docking score, RMSD values, and non-covalent interactions (H-bond,hydrophobic interaction, Π-stacking, salt bridge, etc.). Further, the evolutionary relationship of tea flavonoid pathway enzymes was constructed and compared with related taxa. The codon usage-based of tea flavonoid biosynthetic genes indicated the non-biasness of their nucleotide composition. Overall this study will provide a direction towards putative ligand-dependent enhancement of flavonoid content, irrespective of seasonal variation.

16.
Front Genet ; 13: 1056389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712846

RESUMEN

Mesona chinensis Benth (MCB) (or Platostoma palustre or Platostoma chinense) is an important edible and medicinal plant in China. However, the mitochondrial genome (mitogenome, or mtDNA) of MCB has not been characterized or reported yet. In this study, we first sequenced and characterized the complete mitogenome of MCB. The MCB mitogenome was 494,599 bp in length and encoded 59 genes containing 37 protein-coding genes (PCGs), 19 tRNAs, and 3 rRNAs. Gene transfer analysis revealed that a total of 12 transfer segments with more than 93% identity (total length of 25,427 bp) were detected in the MCB mitogenome. Simple sequence repeats (SSR) analysis showed that 212 simple sequence repeats (SSR) were identified. Repeat sequence analysis revealed 305 repeat sequences (158 forward and 147 palindromic repeats) ranging from 30 bp to 48,383 bp and the 30-39 bp repeats were the majority type. Relative synonymous codon usage (RSCU) analysis uncovered that in total, 9,947 codons were encoding the protein-coding genes (PCGs). Serine (909, 9.1%) and leucine (879, 8.8%) were the two most abundant amino acids, while terminator (32, .3%) was the least abundant amino acid. Ka/Ks analysis indicated that almost all genes were subject to purification selection, except ccmB. Analysis of Lamiaceae mitogenomes constitution revealed that atpB and atpE were unique to the Rotheca serrata and Salvia miltiorrhiza mitogenomes. mttB gene loss was unique to the Boea hygrometrica mitogenome. The core fragments of the Lamiaceae mitogenomes harbored a higher GC content than the specific and variable fragments. In addition, phylogenetic analysis revealed that MCB was closely related to Salvia miltiorrhiza based on the mitogenomes. The current study provided valuable genomic resources for understanding and utilizing this important medicinal plant in the future.

17.
Saudi J Biol Sci ; 28(8): 4569-4574, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34354442

RESUMEN

Amino acids are essential measurements for the potential growth stage because of connecting to protein structures and functions. The objective of this paper was to analyze chromosomes feature at plastid region of rice represented by nucleotide, synonymous codon, and amino acid usage to predict gene expression through codon usage pattern. The results showed that the values of the codon adaption index ranged from 0.733 in chromosome 9 to 0.631 in chromosome 8 with full length of these two chromosomes were 3738 and 1635 respectively. The higher value of guanine and cytosine content was 60% in chromosomes 9 while the lower values was 37% in chromosomes 11. Eight chromosomes (ch1, ch2, ch3, ch5, ch7, ch8, ch10, and ch12) were greater value of modified relative codon bias than threshold (threshold: 0.66) especially in cysteine for ch1, ch2, ch5, ch10, and ch12. While other remaining chromosomes were less than the threshold. Relative synonymous codon usage found that the over-represented of amino acids were asparagine, aspartate, cysteine, glutamate, and phenylalanine across all 12 chromosomes. These results would establish a platform for more and further projects concerning rice breeding and genetics and codon optimization in the amino acids for developing varieties. These results also will help breeders to select desirable genes through the genome for improve target traits.

18.
Saudi J Biol Sci ; 28(7): 4000-4004, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34220257

RESUMEN

Spring wheat (Triticum aestivum) is a staple food providing sources of essential proteins for human. In fact, gene expressions of wheat play an important role in growth and productivity that are affected by drought stress. The objective of this work focused on analysis gene feature on spring wheat represented by nucleotide and gene expressions under drought stress. It was found that the higher codon adaptation index was in both wheat root and L-galactono-1, 4-lactone dehydrogenase. It was also found that guanine and cytosine content were high (55.56%) in wheat root. Whereas, guanine and cytosine content were low (41.28%) in L-galactono-1, 4-lactone dehydrogenase. Moreover, the higher relative synonymous codon usage value was observed in codon CAA (1.20), GAA (1.33), GAT (1.00), and ATG (1.00) in wheat root and thus about 62.95% of the total variation in relative synonymous codon was explained by principal component analysis. Additionally, high averages frequency number of codon were (above 15.76) in Met, Lys, Ala, Gly, Phe, Asp, Glu, His, and Tyr; whereas, low averages were in remaining amino acids and majority (90%) of modified relative codon bias values was between 0.40 and 0.90. Shortly, calculations and analysis of codon usage pattern under drought stress would help for genetic engineering, molecular evolution, and gene prediction in wheat studies for developing varieties that associate with drought tolerance.

19.
Cancers (Basel) ; 13(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205890

RESUMEN

Uneven codon usage within genes as well as among genomes is a usual phenomenon across organisms. It plays a significant role in the translational efficiency and evolution of a particular gene. EPB41L3 is a tumor suppressor protein-coding gene, and in the present study, the pattern of codon usage was envisaged. The full-length sequences of the EPB41L3 gene for the human, brown rat, domesticated cattle, and Sumatran orangutan available at the NCBI were retrieved and utilized to analyze CUB patterns across the selected mammalian species. Compositional properties, dinucleotide abundance, and parity analysis showed the dominance of A and G whilst RSCU analysis indicated the dominance of G/C-ending codons. The neutrality plot plotted between GC12 and GC3 to determine the variation between the mutation pressure and natural selection indicated the dominance of selection pressure (R = 0.926; p < 0.00001) over the three codon positions across the gene. The result is in concordance with the codon adaptation index analysis and the ENc-GC3 plot analysis, as well as the translational selection index (P2). Overall selection pressure is the dominant pressure acting during the evolution of the EPB41L3 gene.

20.
Genome Med ; 13(1): 122, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321100

RESUMEN

BACKGROUND: Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in altered codon usage preferences. The topic of codon usage changes as they relate to codon demand, and tRNA supply in cancer is of growing interest. METHODS: We analyzed transcriptome-weighted codon and codon pair usage based on The Cancer Genome Atlas (TCGA) RNA-seq data from 6427 solid tumor samples and 632 normal tissue samples. This dataset represents 32 cancer types affecting 11 distinct tissues. Our analysis focused on tissues that give rise to multiple solid tumor types and cancer types that are present in multiple tissues. RESULTS: We identified distinct patterns of synonymous codon usage changes for different cancer types affecting the same tissue. For example, a substantial increase in GGT-glycine was observed in invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), and mixed invasive ductal and lobular carcinoma (IDLC) of the breast. Change in synonymous codon preference favoring GGT correlated with change in synonymous codon preference against GGC in IDC and IDLC, but not in ILC. Furthermore, we examined the codon usage changes between paired healthy/tumor tissue from the same patient. Using clinical data from TCGA, we conducted a survival analysis of patients based on the degree of change between healthy and tumor-specific codon usage, revealing an association between larger changes and increased mortality. We have also created a database that contains cancer-specific codon and codon pair usage data for cancer types derived from TCGA, which represents a comprehensive tool for codon-usage-oriented cancer research. CONCLUSIONS: Based on data from TCGA, we have highlighted tumor type-specific signatures of codon and codon pair usage. Paired data revealed variable changes to codon usage patterns, which must be considered when designing personalized cancer treatments. The associated database, CancerCoCoPUTs, represents a comprehensive resource for codon and codon pair usage in cancer and is available at https://dnahive.fda.gov/review/cancercocoputs/ . These findings are important to understand the relationship between tRNA supply and codon demand in cancer states and could help guide the development of new cancer therapeutics.


Asunto(s)
Uso de Codones , Codón , Biología Computacional/métodos , Bases de Datos Genéticas , Neoplasias/diagnóstico , Neoplasias/genética , Biomarcadores de Tumor , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica/métodos , Humanos , Estimación de Kaplan-Meier , Neoplasias/mortalidad , Pronóstico , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...