Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 21(1): 358, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110951

RESUMEN

BACKGROUND: During kidney organogenesis, metanephric mesenchyme (MM) and ureteric bud (UB) interact reciprocally to form nephrons. Signaling stimuli involved in these interactions include Wnts, growth factors and nano/micro particles. How UB and MM are interacting is not completely understood. Our study investigated the signaling and communication via extracellular vesicles (EVs) during nephrogenesis. Embryonic day (E) 11.5 mouse kidney UB and MM produce very low number of primary cells that have limited ability for proliferation in culture. Such limitations obstruct studying the role of EVs in induction of nephrogenesis. These issues necessitate to generate a nephrogenesis model allowing to study the comprehensive role of EVs during nephrogenesis. RESULTS: Our study generated a UB derived cell line-based in vitro flexible model of nephrogenesis allowing expandable cell culturing, in addition to performing characterization, tracking and blocking of EVs. UB cell line aggregation with E11.5 MM cells induced the formation of segmented nephrons. Most efficient nephrogenesis was obtained by the co-culturing of 30,000 cells of UB cell line with 50,000 MM cells. Results revealed that both the UB and the MM secrete EVs during nephrogenesis. UB cell line derived EVs were characterized by their size, morphology and expression of markers (CD63, TSG101, CD9 and CD81). Furthermore, proteomics data of UB cell line-derived EVs revealed large number of proteins involved in nephrogenesis-related signaling pathways. Palmitoylated GFP-tagged EVs from UB cell line were found in the nephron formation zone in the developing kidney organoid. UB cell line derived EVs did not induce nephrogenesis in MM cells but significantly contributed to the survival and nephrogenesis-competency of MM cells. The secretion of EVs was continuously inhibited during the ongoing nephrogenesis by the knockdown of RalA and RalB gene expression using short hairpin RNAs. This inhibition partially impaired the ability of UB cell line to induce nephrogenesis. Moreover, impaired nephrogenesis was partially rescued by the addition of EVs. CONCLUSION: Our study established a novel in vitro flexible model of nephrogenesis that solved the limitations of primary embryonic kidney cells and mouse embryonic stem cell kidney organoids for the EV research. EVs were found to be an integral part of nephrogenesis process. Video Abstract.


Asunto(s)
Vesículas Extracelulares , Riñón , Animales , Ratones , Organoides , Organogénesis
2.
Hum Pathol ; 142: 1-6, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37797754

RESUMEN

Papillary renal neoplasm with reverse polarity (PRNRP) is a renal tumor with frequent KRAS mutations. In this study, we aimed to report the clinical, histological, and immunohistochemical characteristics of PRNRP and the protein expression of various KRAS signaling pathway downstream effectors in PRNRP. PRNRP samples from patients who underwent surgical resection at Seoul National University Hospital over an 11-year period (January 2011 to December 2021) were analyzed. We identified 43 PRNRPs, defined as papillary renal tumors with a thin papillary architecture, eosinophilic finely granular cytoplasm, and apical nuclear position. Immunohistochemistry revealed typical characteristics of PRNRP, including exclusively positive GATA3 (43/43); highly positive L1CAM (43/43), PAX8 (43/43), and EMA (43/43); and low positive AMACR (4/43), RCC (1/43), and vimentin (1/43). KRAS signaling pathway effectors, such as p-ERK, RalA, and RalB, were highly expressed in PRNRP compared to papillary renal cell carcinoma (pRCC) with low or high nuclear grade (P < .001, all). Compared to pRCC with high nuclear grade, patients with PRNRP exhibited significantly longer progression-free survival (P < .001). PRNRP showed the best clinical outcome, with no disease progression in any of the cases. Our study analyzed the largest number of PRNRP cases and is the first to analyze the association between PRNRP and the KRAS downstream signaling pathway. PRNRP was found at a high frequency among all papillary renal tumors (43/207) and demonstrated a very good prognosis. PRNRP showed high GATA3, L1CAM, PAX8, and EMA protein expression as well as high p-ERK, RalA, and RalB protein expression.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Molécula L1 de Adhesión de Célula Nerviosa , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Renales/patología , Carcinoma de Células Renales/patología , Transducción de Señal , Biomarcadores de Tumor/genética
3.
Cell Rep ; 40(13): 111413, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36170840

RESUMEN

Efficient myelination supports nerve conduction and axonal health throughout life. In the central nervous system, oligodendrocytes (OLs) carry out this demanding anabolic duty in part through biosynthetic pathways controlled by mTOR. We identify Ral GTPases as critical regulators of mouse spinal cord myelination and myelin maintenance. Ablation of Ral GTPases (RalA, RalB) in OL-lineage cells impairs timely onset and radial growth of developmental myelination, accompanied by increased endosomal/lysosomal abundance. Further examinations, including transcriptomic analyses of Ral-deficient OLs, were consistent with mTORC1-related deficits. However, deletion of the mTOR signaling-repressor Pten in Ral-deficient OL-lineage cells is unable to rescue mTORC1 activation or developmental myelination deficiencies. Induced deletion of Ral GTPases in OLs of adult mice results in late-onset myelination defects and tissue degeneration. Together, our data indicate critical roles for Ral GTPases to promote developmental spinal cord myelination, to ensure accurate mTORC1 signaling, and to protect the healthy state of myelin-axon units over time.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Proteínas de Unión al GTP ral , Animales , Homeostasis , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Médula Espinal/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión al GTP ral/metabolismo
4.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897776

RESUMEN

Glioblastoma (GBM) is the most common tumor in the central nervous system in adults. This neoplasia shows a high capacity of growth and spreading to the surrounding brain tissue, hindering its complete surgical resection. Therefore, the finding of new antitumor therapies for GBM treatment is a priority. We have previously described that cyclin D1-CDK4 promotes GBM dissemination through the activation of the small GTPases RalA and RalB. In this paper, we show that RalB GTPase is upregulated in primary GBM cells. We found that the downregulation of Ral GTPases, mainly RalB, prevents the proliferation of primary GBM cells and triggers a senescence-like response. Moreover, downregulation of RalA and RalB reduces the viability of GBM cells growing as tumorspheres, suggesting a possible role of these GTPases in the survival of GBM stem cells. By using mouse subcutaneous xenografts, we have corroborated the role of RalB in GBM growth in vivo. Finally, we have observed that the knockdown of RalB also inhibits cell growth in temozolomide-resistant GBM cells. Overall, our work shows that GBM cells are especially sensitive to Ral-GTPase availability. Therefore, we propose that the inactivation of Ral-GTPases may be a reliable therapeutic approach to prevent GBM progression and recurrence.


Asunto(s)
Glioblastoma , Animales , Proliferación Celular , Regulación hacia Abajo , GTP Fosfohidrolasas , Glioblastoma/genética , Humanos , Ratones
5.
Cells ; 11(10)2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35626682

RESUMEN

RALA and RALB are highly homologous small G proteins belonging to the RAS superfamily. Like other small GTPases, the RALs are molecular switches that can be toggled between inactive GDP-bound and active GTP-bound states to regulate diverse and critical cellular functions such as vesicle trafficking, filopodia formation, mitochondrial fission, and cytokinesis. The RAL paralogs are activated and inactivated by a shared set of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) and utilize similar sets of downstream effectors. In addition to their important roles in normal cell biology, the RALs are known to be critical mediators of cancer cell survival, invasion, migration, and metastasis. However, despite their substantial similarities, the RALs often display striking functional disparities in cancer. RALA and RALB can have redundant, unique, or even antagonistic functions depending on cancer type. The molecular basis for these discrepancies remains an important unanswered question in the field of cancer biology. In this review we examine the functions of the RAL paralogs in normal cellular physiology and cancer biology with special consideration provided to situations where the roles of RALA and RALB are non-redundant.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Neoplasias , Supervivencia Celular , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo
6.
Bioessays ; 44(6): e2200011, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35318680

RESUMEN

Both RalA and RalB interact with the ubiquitous calcium sensor, calmodulin (CaM). New structural and biophysical characterisation of these interactions strongly suggests that, in the native membrane-associated state, only RalA can be extracted from the membrane by CaM and this non-canonical interaction could underpin the divergent signalling roles of these closely related GTPases. The isoform specificity for RalA exhibited by CaM is hypothesised to contribute to the disparate signalling roles of RalA and RalB in mitochondrial dynamics. This would lead to CaM shuttling RalA to the mitochondrial membrane but leaving RalB localisation unperturbed, and in doing so triggering mitochondrial fission pathways rather than mitophagy.


Asunto(s)
Calmodulina , Transducción de Señal , Calmodulina/metabolismo , GTP Fosfohidrolasas/metabolismo , Isoformas de Proteínas/metabolismo
7.
Breast Cancer Res ; 23(1): 65, 2021 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-34118960

RESUMEN

BACKGROUND: Breast cancer (BC) is the most common cancer in women and the leading cause of cancer-associated mortality in women. In particular, triple-negative BC (TNBC) has the highest rate of mortality due in large part to the lack of targeted treatment options for this subtype. Thus, there is an urgent need to identify new molecular targets for TNBC treatment. RALA and RALB are small GTPases implicated in growth and metastasis of a variety of cancers, although little is known of their roles in BC. METHODS: The necessity of RALA and RALB for TNBC tumor growth and metastasis were evaluated in vivo using orthotopic and tail-vein models. In vitro, 2D and 3D cell culture methods were used to evaluate the contributions of RALA and RALB during TNBC cell migration, invasion, and viability. The association between TNBC patient outcome and RALA and RALB expression was examined using publicly available gene expression data and patient tissue microarrays. Finally, small molecule inhibition of RALA and RALB was evaluated as a potential treatment strategy for TNBC in cell line and patient-derived xenograft (PDX) models. RESULTS: Knockout or depletion of RALA inhibited orthotopic primary tumor growth, spontaneous metastasis, and experimental metastasis of TNBC cells in vivo. Conversely, knockout of RALB increased TNBC growth and metastasis. In vitro, RALA and RALB had antagonistic effects on TNBC migration, invasion, and viability with RALA generally supporting and RALB opposing these processes. In BC patient populations, elevated RALA but not RALB expression is significantly associated with poor outcome across all BC subtypes and specifically within TNBC patient cohorts. Immunohistochemical staining for RALA in patient cohorts confirmed the prognostic significance of RALA within the general BC population and the TNBC population specifically. BQU57, a small molecule inhibitor of RALA and RALB, decreased TNBC cell line viability, sensitized cells to paclitaxel in vitro and decreased tumor growth and metastasis in TNBC cell line and PDX models in vivo. CONCLUSIONS: Together, these data demonstrate important but paradoxical roles for RALA and RALB in the pathogenesis of TNBC and advocate further investigation of RALA as a target for the precise treatment of metastatic TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Proteínas de Unión al GTP ral/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Ratones , Metástasis de la Neoplasia , Paclitaxel/uso terapéutico , Pronóstico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión al GTP ral/antagonistas & inhibidores , Proteínas de Unión al GTP ral/genética
8.
Arch Biochem Biophys ; 704: 108719, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33290747

RESUMEN

Micro-ribonucleic acids (miRNAs) are a class of conserved small non-coding RNAs (sncRNAs) that post-transcriptionally regulate their downstream target genes. Existing evidence indicates that abnormal expression of mRNAs results in the occurrence and development of pancreatic cancer (PC). In this study, we explored the potential role of miRNA-139 (miR-139) as a biomarker in the monitoring and treatment of PC. We demonstrated that expression of miR-139 was significantly downregulated in PC cells and tissues. In addition, both in vitro and in vivo experiments showed that miR-139 significantly inhibited the growth, migration, and invasion of PC cells. We carried out microarray analysis and transcriptome sequencing to find the potential target of miR-139 in PC cells, and the results showed that miR-139 targeted Ras-like proto-oncogene B (RalB). Luciferase reporter experiments verified that high level of RalB could reverse the proliferation and invasion of PC cells overexpressing miR-139. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we found that miR-139 likely affected PC cell cycle by targeting RalB via the Ral/protein kinase B (Akt) serine/threonine kinase 1 (RAC)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, thus affecting cell proliferation. This presumption was further confirmed in our in vitro and in vivo experiments. Our examination of PC tissues suggested that the expression of miR-139 was negatively correlated with that of RalB. Taken together, our results implied that miR-139 could suppress tumor growth and metastasis in PC by targeting RalB, revealing the potential role of miR-139 as a biomarker for the monitoring and treatment of PC.


Asunto(s)
Carcinogénesis/metabolismo , MicroARNs/metabolismo , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Neoplásico/metabolismo , Transducción de Señal , Proteínas de Unión al GTP ral/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Células HEK293 , Humanos , MicroARNs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasas/genética , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-akt/genética , ARN Neoplásico/genética , Proteínas de Unión al GTP ral/genética
9.
Chin Med ; 15: 64, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32577124

RESUMEN

BACKGROUND: Interferon-inducible 16 (IFI16)/caspase-1 inflammasome activates and secretes IL-1ß. However, it is still unclear whether the IFI16 inflammasome is involved in human laryngeal squamous cell carcinoma. Autophagy directly removed inflammasome components and limited early IL-1ß production. RalB is required for the crosstalk between inflammasome and autophagy in macrophages. Dihydroartemisinin (DHA), the main derived ingredient of artemisinin, has a variety of biological activities. The mechanism of DHA in regulating the crosstalk between IFI16 inflammasome and autophagy by inhibiting RalB expression was analyzed in order to provide clues for new therapeutic methods in laryngeal cancer. METHODS: The expression of IFI16 was analyzed by Oncomine and GEPIA databases and detected by Western blot and immunohistochemistry. The relationship between IFI16 inflammasome and autophagy was investigated by transmission electron microscopy, immunofluorescence assay, etc. in Hep-2, Cal-27 and HeLa cells treated with DHA. The xenograft tumor of hep-2 cell in nude mice were used to assess the effect of DHA on laryngeal cancer. RESULTS: It was reported for the first time in this study that IFI16 was overexpressed and positively correlated with caspase-1 in laryngeal carcinoma tissues. DHA significantly inhibited the activation of inflammasome and reduced IL-1ß production in the microenvironment of Hep-2 cell xenograft tumor in nude mice. Mechanistically, we found that DHA degraded RalB, inhibited USP33 expression, and triggered autophagy. Meanwhile, enhanced autophagy can reduce the expression of RalB and USP33. Furthermore, DHA promotes autophagy, which suppresses the activation of IFI16/caspase-1 inflammasome and IL-1ß production. CONCLUSIONS: Therefore, our findings demonstrate that DHA may act as a RalB inhibitor to regulate the crosstalk between autophagy and IFI16/caspase-1 inflammasome, which inhibits IL-1ß production in tumor microenvironment.

10.
J Biol Chem ; 295(10): 3055-3063, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32001619

RESUMEN

In human cancer cells that harbor mutant KRAS and WT p53 (p53), KRAS contributes to the maintenance of low p53 levels. Moreover, KRAS depletion stabilizes and reactivates p53 and thereby inhibits malignant transformation. However, the mechanism by which KRAS regulates p53 is largely unknown. Recently, we showed that KRAS depletion leads to p53 Ser-15 phosphorylation (P-p53) and increases the levels of p53 and its target p21/WT p53-activated fragment 1 (WAF1)/CIP1. Here, using several human lung cancer cell lines, siRNA-mediated gene silencing, immunoblotting, quantitative RT-PCR, promoter-reporter assays, and reactive oxygen species (ROS) assays, we demonstrate that KRAS maintains low p53 levels by activating the NRF2 (NFE2-related factor 2)-regulated antioxidant defense system. We found that KRAS depletion led to down-regulation of NRF2 and its targets NQO1 (NAD(P)H quinone dehydrogenase 1) and SLC7A11 (solute carrier family 7 member 11), decreased the GSH/GSSG ratio, and increased ROS levels. We noted that the increase in ROS is required for increased P-p53, p53, and p21Waf1/cip1 levels following KRAS depletion. Downstream of KRAS, depletion of RalB (RAS-like proto-oncogene B) and IκB kinase-related TANK-binding kinase 1 (TBK1) activated p53 in a ROS- and NRF2-dependent manner. Consistent with this, the IκB kinase inhibitor BAY11-7085 and dominant-negative mutant IκBαM inhibited NF-κB activity and increased P-p53, p53, and p21Waf1/cip1 levels in a ROS-dependent manner. In conclusion, our findings uncover an important role for the NRF2-regulated antioxidant system in KRAS-mediated p53 suppression.


Asunto(s)
Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Humanos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteínas de Unión al GTP ral/antagonistas & inhibidores , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo
11.
Small GTPases ; 11(1): 39-44, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-28682649

RESUMEN

Acute myeloid leukemia (AML) is a devastating malignancy for which novel treatment approaches are desperately needed. Ras signaling is an attractive therapeutic target for AML because a large proportion of AMLs have mutations in NRAS, KRAS, or genes that activate Ras signaling, and key Ras effectors are activated in virtually all AML patient samples. This has inspired efforts to develop Ras-targeted treatment strategies for AML. Due to the inherent difficulty and disappointing efficacy of targeting Ras proteins directly, many have focused on inhibiting Ras effector pathways. Inhibiting the major oncogenic Ras effectors, the mitogen-activated protein kinase (MAPK) and/or phosphatidylinositiol-3-kinase (PI3K) pathways, has generally demonstrated modest efficacy for AML. While this may be in part related to functional redundancy between these pathways, it is now clear that other Ras effectors have key oncogenic roles. Specifically, the Ras-like (Ral) GTPases have emerged as critical mediators of Ras-driven transformation and AML cell survival. Our group recently uncovered a critical role for RALB signaling in leukemic cell survival and a potential mediator of relapse following Ras-targeted therapy in AML. Furthermore, we found that RALB signaling is hyperactivated in AML patient samples, and inhibiting RALB has potent anti-leukemic activity in preclinical AML models. While key questions remain regarding the importance of RALB signaling across the genetically diverse spectrum of AML, the specific mechanism(s) that promotes leukemic cell survival downstream of RALB, and how to pharmacologically target RALB signaling effectively - RALB has emerged as a critical Ras effector and potential therapeutic target for AML.


Asunto(s)
Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Terapia Molecular Dirigida/métodos , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP ral/metabolismo , Proteínas ras/metabolismo , Animales , Humanos , Leucemia Mieloide Aguda/metabolismo
12.
Oncotarget ; 7(40): 65147-65156, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27556501

RESUMEN

Mutations that activate RAS proto-oncogenes and their effectors are common in acute myeloid leukemia (AML); however, efforts to therapeutically target Ras or its effectors have been unsuccessful, and have been hampered by an incomplete understanding of which effectors are required for AML proliferation and survival. We investigated the role of Ras effector pathways in AML using murine and human AML models. Whereas genetic disruption of NRAS(V12) expression in an NRAS(V12) and Mll-AF9-driven murine AML induced apoptosis of leukemic cells, inhibition of phosphatidylinositol-3-kinase (PI3K) and/or mitogen-activated protein kinase (MAPK) signaling did not reproduce this effect. Conversely, genetic disruption of RALB signaling induced AML cell death and phenocopied the effects of suppressing oncogenic Ras directly - uncovering a novel role for RALB signaling in AML survival. Knockdown of RALB led to decreased phosphorylation of TBK1 and reduced BCL2 expression, providing mechanistic insight into RALB survival signaling in AML. Notably, we found that patient-derived AML blasts have higher levels of RALB-TBK1 signaling compared to normal blood leukocytes, supporting a pathophysiologic role for RALB signaling for AML patients. Overall, our work provides new insight into the specific roles of Ras effector pathways in AML and has identified RALB signaling as a key survival pathway.


Asunto(s)
Regulación Leucémica de la Expresión Génica/fisiología , Leucemia Mieloide Aguda/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Proteínas ras/metabolismo , Animales , Xenoinjertos , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Ratones SCID , Transducción de Señal/fisiología , Células Tumorales Cultivadas
13.
Biochim Biophys Acta ; 1849(12): 1375-84, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26477488

RESUMEN

The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes ras , Mucina 4/biosíntesis , Proteínas de Neoplasias/biosíntesis , Neoplasias Pancreáticas/genética , Transducción de Señal/genética , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Quinasas Janus/fisiología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Transgénicos , Mucina 4/genética , Mutación Missense , FN-kappa B/fisiología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Mutación Puntual , Regiones Promotoras Genéticas , Procesamiento Postranscripcional del ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción AP-1/fisiología , Transcripción Genética , Regulación hacia Arriba , Proteínas de Unión al GTP ral/fisiología
14.
J Biol Chem ; 289(45): 31296-309, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25210032

RESUMEN

Ral GTPases are critical effectors of Ras, yet the molecular mechanism by which they induce malignant transformation is not well understood. In this study, we found the expression of K-Ras, RalB, and sometimes RalA, but not AKT1/2 and c-Raf, to be required for maintaining low levels of p53 in human cancer cells that harbor mutant K-Ras and wild-type p53. Down-regulation of K-Ras, RalB, and sometimes RalA increases p53 protein levels and results in a p53-dependent up-regulation of the expression of p21(WAF). K-Ras, RalA, and RalB depletion increases p53 stability as demonstrated by ataxia telangiectasia-mutated kinase activation, increased Ser-15 phosphorylation, and a significant (up to 6-fold) increase in p53 half-life. Furthermore, depletion of K-Ras and RalB inhibits anchorage-independent growth and invasion and interferes with cell cycle progression in a p53-dependent manner. Depletion of RalA inhibits invasion in a p53-dependent manner. Thus, expression of K-Ras and RalB and possibly RalA proteins is critical for maintaining low levels of p53, and down-regulation of these GTPases reactivates p53 by significantly enhancing its stability, and this contributes to suppression of malignant transformation.


Asunto(s)
Transformación Celular Neoplásica , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Caspasas/metabolismo , Ciclo Celular , Línea Celular Tumoral , Regulación hacia Abajo , Activación Enzimática , Humanos , Fosforilación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Interferente Pequeño/metabolismo , Serina/química , Transducción de Señal
15.
FEBS J ; 281(13): 2977-89, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24814574

RESUMEN

Ral proteins are small GTPases that play critical roles in normal physiology and in oncogenesis. There is little information on the GTPase-activating proteins (GAPs) that downregulate their activity. Here, we provide evidence that the noncatalytic ß subunit of RalGAPα1/2 ß complexes is involved in mitotic control. RalGAPß localizes to the Golgi and nucleus during interphase, and relocalizes to the mitotic spindle and cytokinetic intercellular bridge during mitosis. Depletion of RalGAPß causes chromosome misalignment and decreases the amount of mitotic cyclin B1, disturbing the metaphase-to-anaphase transition. Overexpression of RalGAPß interferes with cell division, leading to binucleation and multinucleation, and cell death. We propose that RalGAPß plays an essential role in the sequential progression of mitosis by controlling the spatial and temporal activation of Ral GTPases in the spindle assembly checkpoint (SAC) and cytokinesis. Deregulation of RalGAPß might cause genomic instability, leading to human carcinogenesis.


Asunto(s)
Anafase , Proteínas Activadoras de GTPasa/fisiología , Metafase , Muerte Celular , Línea Celular Tumoral , Cromatografía de Afinidad , Segregación Cromosómica , Proteínas Activadoras de GTPasa/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mitosis , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Unión al GTP ral/metabolismo
16.
Lung Cancer ; 85(2): 299-305, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24863005

RESUMEN

OBJECTIVES: Since different conformation of each KRAS mutant leads to inherent downstream signaling, its distribution, influence on the clinical outcome, and effect on the signaling mediators were investigated in the Korean NSCLC patients whose tumor have KRAS mutation. MATERIALS AND METHODS: Mutation at KRAS codons 12 and 13 was evaluated in 1420 Korean NSCLC by direct sequencing and expression of RalA, RalB, and pAKT-Ser473 was evaluated by immunohistochemistry in 30 cases whose KRAS mutant tumor tissues were available. RESULTS: Eighty-two (5.8%) out of 1420 patients harbored a KRAS mutation either in codon 12 or 13. Gly12Asp was the most frequent (34.1%), followed by Gly12Cys (22.0%) and Gly12Val (13.4%). Transversion at codons 12 and 13, which includes Gly12Cys, Gly12Val, Gly12Ala, Gly13Cys, and Gly12Phe was detected in 45 cases (54.9%) and transition, including Gly12Asp, Gly12Ser, and Gly13Asp was detected in 37 cases (45.1%). Male and smoking history were associated with transversion (p=0.001 and 0.006, respectively; χ(2)-test), and multivariate analysis showed that gender was an independent influencing factor (p=0.026; Cochran-Mantel-Haenszel test). Multivariate analysis on survival revealed that KRAS mutation subtype did not influence overall survival of the patients with KRAS mutations after adjustment for age, gender, performance status, and stage. There were no differences in the nuclear and cytoplasmic expression of pAKT-Ser473 between transversion and transition mutants. Expression of Ral-GTPases, RalA and RalB, did not differ between transversion and transition mutants, however, strong expression of RalB in the tissue of patients with KRAS mutants was associated with advanced stages (P-value=0.020, χ(2)-test). CONCLUSIONS: In this study population, not only the frequency of KRAS mutation but also the distribution of its subtypes differed from those of Western studies, with unique influencing factors. Clinical outcome and expression of pAKT-Ser473, RalA, and RalB did not differ among subtypes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Genes ras , Neoplasias Pulmonares/genética , Mutación , Anciano , Anciano de 80 o más Años , Sustitución de Aminoácidos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Codón , Análisis Mutacional de ADN , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Proteínas Proto-Oncogénicas c-akt/metabolismo , República de Corea , Estudios Retrospectivos , Factores de Riesgo , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo
17.
Exp Cell Res ; 319(15): 2337-42, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23830877

RESUMEN

Oncogenic Ras proteins rely on a series of key effector pathways to drive the physiological changes that lead to tumorigenic growth. Of these effector pathways, the RalGEF pathway, which activates the two Ras-related GTPases RalA and RalB, remains the most poorly understood. This review will focus on key developments in our understanding of Ral biology, and will speculate on how aberrant activation of the multiple diverse Ral effector proteins might collectively contribute to oncogenic transformation and other aspects of tumor progression.


Asunto(s)
Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Proteínas de Unión al GTP ral/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Transformación Celular Neoplásica/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Ratones , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , Mapeo de Interacción de Proteínas , Transducción de Señal , Proteínas de Unión al GTP ral/metabolismo
18.
Enzymes ; 34 Pt. B: 137-56, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25034103

RESUMEN

Recognition that Ral guanine nucleotide exchange factors (RalGEFs) are direct Ras effectors and that Ral G-protein activation is a direct consequence of Ras activation has spurred focused efforts to establish the contribution of RalGEF/Ral signaling to oncogenic transformation. Here, we provide a broad-strokes overview of the mechanistic organization of the RalGEF/Ral signaling network, evaluate the evidence for participation of this network in tumorigenic regulatory milieus, consider targeting strategies, and discuss the challenges to and opportunities for clinical development of these targeting strategies.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP ral/antagonistas & inhibidores , Factor de Intercambio de Guanina Nucleótido ral/antagonistas & inhibidores , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA