Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Biol Psychiatry Glob Open Sci ; 4(5): 100345, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39099730

RESUMEN

Background: The prefrontal cortex (PFC) has been strongly implicated in the pathophysiology of schizophrenia. Here, we combined high-resolution single-nuclei RNA sequencing data from the human PFC with large-scale genomic data for schizophrenia to identify constituent cell populations likely to mediate genetic liability to the disorder. Methods: Gene expression specificity values were calculated from a single-nuclei RNA sequencing dataset comprising 84 cell populations from the human PFC, spanning gestation to adulthood. Enrichment of schizophrenia common variant liability and burden of rare protein-truncating coding variants were tested in genes with high expression specificity for each cell type. We also explored schizophrenia common variant associations in relation to gene expression across the developmental trajectory of implicated neurons. Results: Common risk variation for schizophrenia was prominently enriched in genes with high expression specificity for a population of mature layer 4 glutamatergic neurons emerging in infancy. Common variant liability to schizophrenia increased along the developmental trajectory of this neuronal population. Fine-mapped genes at schizophrenia genome-wide association study risk loci had significantly higher expression specificity than other genes in these neurons and in a population of layer 5/6 glutamatergic neurons. People with schizophrenia had a higher rate of rare protein-truncating coding variants in genes expressed by cells of the PFC than control individuals, but no cell population was significantly enriched above this background rate. Conclusions: We identified a population of layer 4 glutamatergic PFC neurons likely to be particularly affected by common variant genetic risk for schizophrenia, which may contribute to disturbances in thalamocortical connectivity in the condition.


The prefrontal cortex (PFC) has been strongly implicated in the underlying biology of schizophrenia. We tested whether specific cell populations within the PFC preferentially express genes that increase risk for the disorder. We found that a particular type of PFC neuron prominently expresses genes associated with schizophrenia, suggesting its involvement in the condition.

2.
Int J Biol Sci ; 20(10): 3742-3759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113696

RESUMEN

Fluoropyrimidines (FLs) [5-Fluorouracil, Capecitabine] are used in the treatment of several solid tumors. Dihydropyrimidine dehydrogenase (DPD) is the rate-limiting enzyme for FL detoxification, and its deficiency could lead to severe, life-threatening or fatal toxicity after FL administration. Testing with a pharmacogenetic panel of four deleterious variants in the dihydropyrimidine dehydrogenase gene (DPYD) (DPYD*2A, DPYD*13, c.2846A > T, c.1129-5923C > G) prior to FL treatment, is recommended by scientific consortia (e.g., CPIC, DPWG) and drug regulatory agencies (e.g., EMA). However, this panel identifies < 20% of patients at risk of severe FL-related toxicity. Cumulative recent evidence highlights the potential clinical value of rare (minor allele frequency < 1%) and novel DPYD genetic variants for identifying an additional fraction of DPD-deficient patients at increased risk of severe FL-related toxicity. In this review, we aimed to comprehensively describe the available evidence regarding the potential clinical predictive role of novel and rare DPYD variants as toxicity markers in FL-treated patients, and to discuss the challenges and opportunities in tailoring FL treatment based upon clinical application of such markers. Although we must overcome existing barriers to the clinical implementation, the available data support that comprehensive assessment of the DPYD sequence, including rare and novel genetic variants, may significantly enhance the pre-emptive identification of at-risk patients, compared to the current targeted approach.


Asunto(s)
Dihidrouracilo Deshidrogenasa (NADP) , Medicina de Precisión , Humanos , Dihidrouracilo Deshidrogenasa (NADP)/genética , Fluorouracilo/uso terapéutico , Fluorouracilo/efectos adversos , Capecitabina/uso terapéutico , Capecitabina/efectos adversos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antimetabolitos Antineoplásicos/uso terapéutico , Antimetabolitos Antineoplásicos/efectos adversos
3.
Clin Chem Lab Med ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39069817

RESUMEN

OBJECTIVES: Dysbetalipoproteinemia (DBL) is a combined dyslipidemia associated with an increased risk of atherosclerotic cardiovascular diseases mostly occurring in ε2ε2 subjects and infrequently in subjects with rare APOE variants. Several algorithms have been proposed to screen DBL. In this work, we compared the diagnostic performances of nine algorithms including a new one. METHODS: Patients were divided into 3 groups according to their APOE genotype: ε2ε2 ("ε2ε2", n=49), carriers of rare variants ("APOEmut", n=20) and non-carriers of ε2ε2 nor APOE rare variant ("controls", n=115). The algorithms compared were those from Fredrickson, Sniderman, Boot, Paquette, De Graaf, Sampson, eSampson, Bea and ours, the "Hospices Civils de Lyon (HCL) algorithm". Our gold standard was the presence of a ε2ε2 genotype or of a rare variant associated with triglycerides (TG) >1.7 mmol/L. A replication in the UK Biobank and a robustness analysis were performed by considering only subjects with both TG and low-density lipoprotein-cholesterol (LDLc) >90th percentile. RESULTS: Total cholesterol (TC)/ApoB and NHDLC/ApoB are the best ratios to suspect DBL. In ε2ε2, according to their likelihood ratios (LR), the most clinically efficient algorithms were the HCL, Sniderman and De Graaf's. In APOEmut, Sniderman's algorithm exhibited the lowest negative LR (0.07) whereas the HCL's exhibited the highest positive LR (29). In both cohorts, the HCL algorithm had the best LR. CONCLUSIONS: We proposed a powerful algorithm based on ApoB concentration and the routine lipid profile, which performs remarkably well in detecting ε2ε2 or APOE variant-related DBL. Additional studies are needed to further evaluate algorithms performances in DBL carriers of infrequent APOE variants.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39031522

RESUMEN

BACKGROUND: Genome-wide association studies (GWAS) have identified hundreds of common variants associated with alcohol consumption. In contrast, genetic studies of alcohol consumption that use rare variants are still in their early stages. No prior studies of alcohol consumption have examined whether common and rare variants implicate the same genes and molecular networks, leaving open the possibility that the two approaches might identify distinct biology. METHODS: To address this knowledge gap, we used publicly available alcohol consumption GWAS summary statistics (GSCAN, N = 666,978) and whole exome sequencing data (Genebass, N = 393,099) to identify a set of common and rare variants for alcohol consumption. We used gene-based analysis to implicate genes from common and rare variant analyses, which we then propagated onto a shared molecular network using a network colocalization procedure. RESULTS: Gene-based analysis of each dataset implicated 294 (common variants) and 35 (rare variants) genes, including ethanol metabolizing genes ADH1B and ADH1C, which were identified by both analyses, and ANKRD12, GIGYF1, KIF21B, and STK31, which were identified in only the rare variant analysis, but have been associated with other neuropsychiatric traits. Network colocalization revealed significant network overlap between the genes identified via common and rare variants. The shared network identified gene families that function in alcohol metabolism, including ADH, ALDH, CYP, and UGT. Seventy-one of the genes in the shared network were previously implicated in neuropsychiatric or substance use disorders but not alcohol-related behaviors (e.g. EXOC2, EPM2A, and CACNG4). Differential gene expression analysis showed enrichment in the liver and several brain regions. CONCLUSIONS: Genes implicated by network colocalization identify shared biology relevant to alcohol consumption, which also underlie neuropsychiatric traits and substance use disorders that are comorbid with alcohol use, providing a more holistic understanding of two disparate sources of genetic information.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38955653

RESUMEN

The demarcation between monogenic and polygenic type 2 diabetes (T2D) is less distinct than previously believed. Notably, recent research has highlighted a new entity, that we suggest calling oligogenic forms of T2D, serving as a genetic link between these two forms. In this opinion article, we have reviewed scientific advances that suggest categorizing genes involved in oligogenic T2D. Research focused on polygenic T2D has faced challenges in deepening our comprehension of the pathophysiology of T2D due to the inability to directly establish causal links between a signal and the molecular mechanisms underlying the disease. However, the study of oligogenic forms of T2D has illuminated distinct causal connections between genes and disease risk, thereby indicating potential new drug targets.

6.
BMC Genomics ; 25(1): 651, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951798

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting over 300,000 people worldwide. It is characterized by the progressive decline of the nervous system that leads to the weakening of muscles which impacts physical function. Approximately, 15% of individuals diagnosed with ALS have a known genetic variant that contributes to their disease. As therapies that slow or prevent symptoms continue to develop, such as antisense oligonucleotides, it is important to discover novel genes that could be targets for treatment. Additionally, as cohorts continue to grow, performing analyses in ALS subtypes, such as primary lateral sclerosis (PLS), becomes possible due to an increase in power. These analyses could highlight novel pathways in disease manifestation. METHODS: Building on our previous discoveries using rare variant association analyses, we conducted rare variant burden testing on a substantially larger multi-ethnic cohort of 6,970 ALS patients, 166 PLS patients, and 22,524 controls. We used intolerant domain percentiles based on sub-region Residual Variation Intolerance Score (subRVIS) that have been described previously in conjunction with gene based collapsing approaches to conduct burden testing to identify genes that associate with ALS and PLS. RESULTS: A gene based collapsing model showed significant associations with SOD1, TARDBP, and TBK1 (OR = 19.18, p = 3.67 × 10-39; OR = 4.73, p = 2 × 10-10; OR = 2.3, p = 7.49 × 10-9, respectively). These genes have been previously associated with ALS. Additionally, a significant novel control enriched gene, ALKBH3 (p = 4.88 × 10-7), was protective for ALS in this model. An intolerant domain-based collapsing model showed a significant improvement in identifying regions in TARDBP that associated with ALS (OR = 10.08, p = 3.62 × 10-16). Our PLS protein truncating variant collapsing analysis demonstrated significant case enrichment in ANTXR2 (p = 8.38 × 10-6). CONCLUSIONS: In a large multi-ethnic cohort of 6,970 ALS patients, collapsing analyses validated known ALS genes and identified a novel potentially protective gene, ALKBH3. A first-ever analysis in 166 patients with PLS found a candidate association with loss-of-function mutations in ANTXR2.


Asunto(s)
Esclerosis Amiotrófica Lateral , Femenino , Humanos , Masculino , Esclerosis Amiotrófica Lateral/genética , Etnicidad/genética , Predisposición Genética a la Enfermedad , Variación Genética , Pueblo Europeo , Pueblos del Este de Asia , Pueblo Africano , Hispánicos o Latinos , Pueblos de Medio Oriente , Personas del Sur de Asia
7.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38966948

RESUMEN

Variants in cis-regulatory elements link the noncoding genome to human pathology; however, detailed analytic tools for understanding the association between cell-level brain pathology and noncoding variants are lacking. CWAS-Plus, adapted from a Python package for category-wide association testing (CWAS), enhances noncoding variant analysis by integrating both whole-genome sequencing (WGS) and user-provided functional data. With simplified parameter settings and an efficient multiple testing correction method, CWAS-Plus conducts the CWAS workflow 50 times faster than CWAS, making it more accessible and user-friendly for researchers. Here, we used a single-nuclei assay for transposase-accessible chromatin with sequencing to facilitate CWAS-guided noncoding variant analysis at cell-type-specific enhancers and promoters. Examining autism spectrum disorder WGS data (n = 7280), CWAS-Plus identified noncoding de novo variant associations in transcription factor binding sites within conserved loci. Independently, in Alzheimer's disease WGS data (n = 1087), CWAS-Plus detected rare noncoding variant associations in microglia-specific regulatory elements. These findings highlight CWAS-Plus's utility in genomic disorders and scalability for processing large-scale WGS data and in multiple-testing corrections. CWAS-Plus and its user manual are available at https://github.com/joonan-lab/cwas/ and https://cwas-plus.readthedocs.io/en/latest/, respectively.


Asunto(s)
Secuenciación Completa del Genoma , Humanos , Secuenciación Completa del Genoma/métodos , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo/métodos , Trastorno del Espectro Autista/genética , Variación Genética , Programas Informáticos , Cromatina/genética , Cromatina/metabolismo , Genoma Humano
8.
Am J Hum Genet ; 111(8): 1750-1769, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39025064

RESUMEN

Joint association analysis of multiple traits with multiple genetic variants can provide insight into genetic architecture and pleiotropy, improve trait prediction, and increase power for detecting association. Furthermore, some traits are naturally high-dimensional, e.g., images, networks, or longitudinally measured traits. Assessing significance for multitrait genetic association can be challenging, especially when the sample has population sub-structure and/or related individuals. Failure to adequately adjust for sample structure can lead to power loss and inflated type 1 error, and commonly used methods for assessing significance can work poorly with a large number of traits or be computationally slow. We developed JASPER, a fast, powerful, robust method for assessing significance of multitrait association with a set of genetic variants, in samples that have population sub-structure, admixture, and/or relatedness. In simulations, JASPER has higher power, better type 1 error control, and faster computation than existing methods, with the power and speed advantage of JASPER increasing with the number of traits. JASPER is potentially applicable to a wide range of association testing applications, including for multiple disease traits, expression traits, image-derived traits, and microbiome abundances. It allows for covariates, ascertainment, and rare variants and is robust to phenotype model misspecification. We apply JASPER to analyze gene expression in the Framingham Heart Study, where, compared to alternative approaches, JASPER finds more significant associations, including several that indicate pleiotropic effects, most of which replicate previous results, while others have not previously been reported. Our results demonstrate the promise of JASPER for powerful multitrait analysis in structured samples.


Asunto(s)
Pleiotropía Genética , Humanos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Expresión Génica/genética , Simulación por Computador , Modelos Genéticos , Sitios de Carácter Cuantitativo , Polimorfismo de Nucleótido Simple
9.
Genet Epidemiol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940260

RESUMEN

Family-based sequencing studies are increasingly used to find rare genetic variants of high risk for disease traits with familial clustering. In some studies, families with multiple disease subtypes are collected and the exomes of affected relatives are sequenced for shared rare variants (RVs). Since different families can harbor different causal variants and each family harbors many RVs, tests to detect causal variants can have low power in this study design. Our goal is rather to prioritize shared variants for further investigation by, for example, pathway analyses or functional studies. The transmission-disequilibrium test prioritizes variants based on departures from Mendelian transmission in parent-child trios. Extending this idea to families, we propose methods to prioritize RVs shared in affected relatives with two disease subtypes, with one subtype more heritable than the other. Global approaches condition on a variant being observed in the study and assume a known probability of carrying a causal variant. In contrast, local approaches condition on a variant being observed in specific families to eliminate the carrier probability. Our simulation results indicate that global approaches are robust to misspecification of the carrier probability and prioritize more effectively than local approaches even when the carrier probability is misspecified.

10.
Hum Cell ; 37(4): 1070-1079, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38750405

RESUMEN

Human ATP-binding cassette transporter C11 (ABCC11) is a membrane protein exhibiting ATP-dependent transport activity for a variety of lipophilic anions including endogenous substances and xenobiotics such as anti-cancer agents. Accumulating evidence indicates that ABCC11 wild type is responsible for the high-secretion phenotypes in human apocrine glands including wet type of earwax and the risk of axillary osmidrosis. Also, a less-functional variant of ABCC11 was reportedly associated with a risk for drug-induced toxicity in humans. Thus, functional change in ABCC11 may affect individual's constitution and drug toxicity, which led us to reason that functional validation of genetic variations in ABCC11 should be of importance. Therefore, in addition to p.G180R (a well-characterized non-functional variant of ABCC11), we studied cellular expression and function of 10 variants of ABCC11. In this study, ABCC11 function was evaluated as an ATP-dependent transport of radio labeled-dehydroepiandrosterone sulfate using ABCC11-expressing plasma membrane vesicles. Except for p.G180R, other 10 variants were maturated as an N-linked glycoprotein and expressed on the plasma membrane. We found that six variants impaired the net cellular function of ABCC11. Among them, p.R630W was most influential. Including this identification of a significantly-dysfunctional variant, our findings will extend our understanding of genetic variations and biochemical features of ABCC11 protein.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Variación Genética , Enfermedades de las Glándulas Sudoríparas , Humanos , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Enfermedades de las Glándulas Sudoríparas/genética , Enfermedades de las Glándulas Sudoríparas/etiología , Factores de Riesgo , Glándulas Apocrinas/metabolismo , Membrana Celular/metabolismo , Expresión Génica/genética , Transporte Biológico/genética , Adenosina Trifosfato/metabolismo
11.
medRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699372

RESUMEN

Variants in cis-regulatory elements link the noncoding genome to human brain pathology; however, detailed analytic tools for understanding the association between cell-level brain pathology and noncoding variants are lacking. CWAS-Plus, adapted from a Python package for category-wide association testing (CWAS) employs both whole-genome sequencing and user-provided functional data to enhance noncoding variant analysis, with a faster and more efficient execution of the CWAS workflow. Here, we used single-nuclei assay for transposase-accessible chromatin with sequencing to facilitate CWAS-guided noncoding variant analysis at cell-type specific enhancers and promoters. Examining autism spectrum disorder whole-genome sequencing data (n = 7,280), CWAS-Plus identified noncoding de novo variant associations in transcription factor binding sites within conserved loci. Independently, in Alzheimer's disease whole-genome sequencing data (n = 1,087), CWAS-Plus detected rare noncoding variant associations in microglia-specific regulatory elements. These findings highlight CWAS-Plus's utility in genomic disorders and scalability for processing large-scale whole-genome sequencing data and in multiple-testing corrections. CWAS-Plus and its user manual are available at https://github.com/joonan-lab/cwas/ and https://cwas-plus.readthedocs.io/en/latest/, respectively.

12.
Dermatology ; 240(4): 606-614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38735287

RESUMEN

INTRODUCTION: According to the common disease/rare variant hypothesis, it is important to study the role of rare variants in complex diseases. The association of rare variants with psoriasis has been demonstrated, but the association between rare variants and specific clinical subtypes of psoriasis has not been investigated. METHODS: Gene-based and gene-level meta-analyses were performed on data extracted from our previous study data sets (2,483 patients with guttate psoriasis and 8,292 patients with non-guttate psoriasis) for genotyping. Then, haplotype analysis was performed for rare loss-of-function variants located in MED12L, and protein function prediction was performed for MED12L. Gene-based analysis at each stage had a moderate significance threshold (p < 0.05). A χ2 test was then conducted on the three potential genes, and the merged gene-based analysis was used to confirm the results. We also conducted association analysis and meta-analysis for functional variants located on the identified gene. RESULTS: Through these gene-level analyses, we determined that MED12L is a guttate psoriasis susceptibility gene (p = 9.99 × 10-5), and the single-nucleotide polymorphism with the strongest association was rs199780529 (p_combine = 1 × 10-3, p_meta = 2 × 10-3). CONCLUSIONS: In our study, a guttate psoriasis-specific subtype-associated susceptibility gene was confirmed in a Chinese Han population. These findings contribute to a better genetic understanding of different subtypes of psoriasis.


Asunto(s)
Pueblo Asiatico , Predisposición Genética a la Enfermedad , Complejo Mediador , Polimorfismo de Nucleótido Simple , Psoriasis , Humanos , Psoriasis/genética , Complejo Mediador/genética , Pueblo Asiatico/genética , China , Haplotipos , Pueblos del Este de Asia
13.
Hum Mol Genet ; 33(16): 1429-1441, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38747556

RESUMEN

Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits-E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin-that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.


Asunto(s)
Biomarcadores , Estudio de Asociación del Genoma Completo , Inflamación , Medicina de Precisión , Secuenciación Completa del Genoma , Humanos , Medicina de Precisión/métodos , Inflamación/genética , Estudio de Asociación del Genoma Completo/métodos , Secuenciación Completa del Genoma/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Predisposición Genética a la Enfermedad , Femenino , Interleucina-6/genética
14.
medRxiv ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38699304

RESUMEN

Autism is four times more prevalent in males than females. To study whether this reflects a difference in genetic predisposition attributed to autosomal rare variants, we evaluated the sex differences in effect size of damaging protein-truncating and missense variants on autism predisposition in 47,061 autistic individuals, then compared effect sizes between individuals with and without cognitive impairment or motor delay. Although these variants mediated differential likelihood of autism with versus without motor or cognitive impairment, their effect sizes on the liability scale did not differ significantly by sex exome-wide or in genes sex-differentially expressed in the cortex. Although de novo mutations were enriched in genes with male-biased expression in the fetal cortex, the liability they conferred did not differ significantly from other genes with similar loss-of-function intolerance and sex-averaged cortical expression. In summary, autosomal rare coding variants confer similar liability for autism in females and males.

15.
Cell Genom ; 4(5): 100550, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38697125

RESUMEN

To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Reparación del ADN por Recombinación , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Línea Celular Tumoral , Predisposición Genética a la Enfermedad , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Reparación del ADN por Recombinación/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C , Adulto
16.
Transl Stroke Res ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592555

RESUMEN

Robust postoperative bypass development is a characteristic of moyamoya disease (MMD); however, genetic factors mediating this phenomenon remain incompletely understood. Therefore, we aimed to elucidate the relationship between postoperative donor artery development and genetic variants. We retrospectively enrolled 63 patients (79 hemispheres) who underwent combined revascularization surgery. Postoperative development of the superficial temporal artery (STA), middle meningeal artery, and deep temporal artery (DTA) was assessed using the caliber-change ratio determined from magnetic resonance angiography measurements. We analyzed RNF213 and 36 other moyamoya angiopathy-related genes by whole-exome sequencing and extracted rare or damaging variants. Thirty-five participants carried RNF213 p.Arg4810Lys (all heterozygotes), whereas 5 had RNF213 rare variants (RVs). p.Arg4810Lys was significantly associated with postoperative DTA development, while age at surgery, hypertension, and hyperlipidemia were inversely associated. Multiple regression analysis revealed that age and p.Arg4810Lys held statistical significance (P = 0.044, coefficient - 0.015, 95% confidence interval (CI) - 0.029 to 0.000 and P = 0.001, coefficient 0.670, 95% CI 0.269 to 1.072, respectively). Those with RNF213 RV without p.Arg4810Lys exhibited a significant trend toward poor DTA development (P = 0.001). Hypertension demonstrated a significant positive association with STA development, which remained significant even after multiple regression analysis (P = 0.001, coefficient 0.303, 95% CI 0.123 to 0.482). Following Bonferroni correction for multiple comparisons, targeted analyses of RNF213 and 36 moyamoya angiopathy-related genes showed a significant association of only RNF213 p.Arg4810Lys with favorable DTA development (P = 0.001). A comprehensive analysis of RNF213, considering both p.Arg4810Lys and RVs, may provide a clearer prediction of postoperative DTA development.

17.
Cureus ; 16(3): e57188, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38681326

RESUMEN

Guillain-Barré syndrome (GBS) is an acute inflammatory polyradiculoneuropathy involving the peripheral nervous system. Autonomic dysfunctions are well-known complications of GBS and are major contributors to mortality. Autonomic dysfunctions are classically described during the acute phase of illness. In the literature, Horner syndrome as a manifestation of GBS has been reported in very few cases. Here, we describe a case of GBS with an acute presentation of flaccid paraparesis associated with unilateral Horner syndrome. Detecting the cause of acute flaccid paraparesis with unilateral Horner syndrome poses a diagnostic challenge, making it crucial for clinicians to maintain a heightened awareness for distinguishing between GBS and its variants, as well as other potential mimics.

18.
Hemoglobin ; 48(2): 129-132, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38626925

RESUMEN

Alpha and Beta Thalassemia are autosomal recessive anemias that cause significant morbidity and mortality worldwide, especially in the Middle East and North Africa (MENA) region where carrier rates reach up to 50%. We report the case of two siblings of Palestinian origin born who presented to our tertiary healthcare center for the management of severe transfusion dependent hemolytic anemia. Before presentation to our center, the siblings were screened for a-thalassemia using the Alpha-globin StripAssay. They were found to carry the α2 polyA-1 [AATAAA > AATAAG] mutation in the heterozygous form, which was insufficient to make a diagnosis. No pathogenic variants were detected on Sanger sequencing of the HBB gene. Full sequencing of the a-gene revealed compound heterozygous variants (HBA1:c.119_121delCCA and the previously detected HBA2:c.*+94A > G Poly A [A->G]) with trans inheritance. This report highlights the impact of non-deletional mutations on α-globin chain stability. The compound heterozygosity of a rare α-globin chain pathogenic variant with a polyadenylation mutation in the probands leads to clinically severe a-thalassemia. Due to the high carrier status, the identification of rare mutations through routine screening techniques in our populations may be insufficient. Ongoing collaboration among hematologists, medical geneticists, and counselors is crucial for phenotypic-genotypic correlation and assessment of adequate genetic testing schemes.


Asunto(s)
Hemoglobinas Anormales , Hermanos , Globinas alfa , Femenino , Humanos , Masculino , Globinas alfa/genética , Talasemia alfa/genética , Talasemia alfa/diagnóstico , Árabes/genética , Transfusión Sanguínea , Hemoglobinas Anormales/genética , Heterocigoto , Mutación , Preescolar , Niño
19.
Genes (Basel) ; 15(4)2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674455

RESUMEN

The nomenclature of star alleles has been widely used in pharmacogenomics to enhance treatment outcomes, predict drug response variability, and reduce adverse reactions. However, the discovery of numerous rare functional variants through genome sequencing introduces complexities into the star-allele system. This study aimed to assess the nature and impact of the rapid discovery of numerous rare functional variants in the traditional haplotype-based star-allele system. We developed a new method to construct haplogroups, representing a common ancestry structure, by iteratively excluding rare and functional variants of the 25 representative pharmacogenes using the 2504 genomes from the 1000 Genomes Project. In total, 192 haplogroups and 288 star alleles were identified, with an average of 7.68 ± 4.2 cross-ethnic haplogroups per gene. Most of the haplogroups (70.8%, 136/192) were highly aligned with their corresponding classical star alleles (VI = 1.86 ± 0.78), exhibiting higher genetic diversity than the star alleles. Approximately 41.3% (N = 119) of the star alleles in the 2504 genomes did not belong to any of the haplogroups, and most of them (91.3%, 105/116) were determined by a single variant according to the allele-definition table provided by CPIC. These functional single variants had low allele frequency (MAF < 1%), high evolutionary conservation, and variant deleteriousness, which suggests significant negative selection. It is suggested that the traditional haplotype-based naming system for pharmacogenetic star alleles now needs to be adjusted by balancing both traditional haplotyping and newly emerging variant-sequencing approaches to reduce naming complexity.


Asunto(s)
Alelos , Haplotipos , Terminología como Asunto , Humanos , Farmacogenética/métodos , Frecuencia de los Genes , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA