Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Elife ; 132024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700136

RESUMEN

Cholecystokinin (CCK) is an essential modulator for neuroplasticity in sensory and emotional domains. Here, we investigated the role of CCK in motor learning using a single pellet reaching task in mice. Mice with a knockout of Cck gene (Cck-/-) or blockade of CCK-B receptor (CCKBR) showed defective motor learning ability; the success rate of retrieving reward remained at the baseline level compared to the wildtype mice with significantly increased success rate. We observed no long-term potentiation upon high-frequency stimulation in the motor cortex of Cck-/- mice, indicating a possible association between motor learning deficiency and neuroplasticity in the motor cortex. In vivo calcium imaging demonstrated that the deficiency of CCK signaling disrupted the refinement of population neuronal activity in the motor cortex during motor skill training. Anatomical tracing revealed direct projections from CCK-expressing neurons in the rhinal cortex to the motor cortex. Inactivation of the CCK neurons in the rhinal cortex that project to the motor cortex bilaterally using chemogenetic methods significantly suppressed motor learning, and intraperitoneal application of CCK4, a tetrapeptide CCK agonist, rescued the motor learning deficits of Cck-/- mice. In summary, our results suggest that CCK, which could be provided from the rhinal cortex, may surpport motor skill learning by modulating neuroplasticity in the motor cortex.


Asunto(s)
Colecistoquinina , Aprendizaje , Ratones Noqueados , Corteza Motora , Destreza Motora , Plasticidad Neuronal , Animales , Masculino , Ratones , Colecistoquinina/metabolismo , Aprendizaje/fisiología , Corteza Motora/fisiología , Corteza Motora/metabolismo , Corteza Motora/efectos de los fármacos , Destreza Motora/fisiología , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos
2.
J Neurosci ; 44(12)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38290848

RESUMEN

The subthalamic nucleus (STN) receives cortical inputs via the hyperdirect and indirect pathways, projects to the output nuclei of the basal ganglia, and plays a critical role in the control of voluntary movements and movement disorders. STN neurons change their activity during execution of movements, while recent studies emphasize STN activity specific to cancelation of movements. To address the relationship between execution and cancelation functions, we examined STN activity in two Japanese monkeys (Macaca fuscata, both sexes) who performed a goal-directed reaching task with a delay that included Go, Cancel, and NoGo trials. We first examined responses to the stimulation of the forelimb regions in the primary motor cortex and/or supplementary motor area. STN neurons with motor cortical inputs were found in the dorsal somatomotor region of the STN. All these STN neurons showed activity changes in Go trials, suggesting their involvement in execution of movements. Part of them exhibited activity changes in Cancel trials and sustained activity during delay periods, suggesting their involvement in cancelation of planed movements and preparation of movements, respectively. The STN neurons rarely showed activity changes in NoGo trials. Go- and Cancel-related activity was selective to the direction of movements, and the selectivity was higher in Cancel trials than in Go trials. Changes in Go- and Cancel-related activity occurred early enough to initiate and cancel movements, respectively. These results suggest that the dorsal somatomotor region of the STN, which receives motor cortical inputs, is involved in preparation and execution of movements and cancelation of planned movements.


Asunto(s)
Corteza Motora , Núcleo Subtalámico , Masculino , Femenino , Animales , Haplorrinos , Núcleo Subtalámico/fisiología , Ganglios Basales , Corteza Motora/fisiología , Neuronas/fisiología
3.
J Phys Ther Sci ; 35(6): 461-464, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37266368

RESUMEN

[Purpose] This study was conducted to show the directional specificity of a reaching motion and to verify the three-joint coordination of the sternoclavicular joint, shoulder joint, and elbow joint. [Participants and Methods] The participants in this study were 10 healthy adult males. A reaching task for the upper limbs in a horizontal plane was assessed and measured. The trajectory, joint angle, and joint range of motion were calculated using a three-dimensional motion analyzer. [Results] The joint angle changes of the three joints were related in a circular radiation pattern. The sternoclavicular joint and shoulder joint were related in a fan-shaped radiation pattern. On the other hand, the sternoclavicular joint and elbow joint were related in a linear functional relation except for T3 and T8. [Conclusion] The results suggest that the coordinated motion of the shoulder joint and elbow joint controls the direction and extent of the motion track, while the coordinated motion of the sternoclavicular joint and elbow joint finely regulates the track. There also is a degree of difficulty in motion depending on the direction, which is apparently defined by a combination of joint motions.

4.
J Neurosci ; 43(28): 5264-5275, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37339875

RESUMEN

Although premovement beta-band event-related desynchronization (ß-ERD; 13-30 Hz) from sensorimotor regions is modulated by movement speed, current evidence does not support a strict monotonic association between the two. Given that ß-ERD is thought to increase information encoding capacity, we tested the hypothesis that it might be related to the expected neurocomputational cost of movement, here referred to as action cost. Critically, action cost is greater both for slow and fast movements compared with a medium or "preferred" speed. Thirty-one right-handed participants performed a speed-controlled reaching task while recording their EEG. Results revealed potent modulations of beta power as a function of speed, with ß-ERD being significantly greater both for movements performed at high and low speeds compared with medium speed. Interestingly, medium-speed movements were more often chosen by participants than low-speed and high-speed movements, suggesting that they were evaluated as less costly. In line with this, modeling of action cost revealed a pattern of modulation across speed conditions that strikingly resembled the one found for ß-ERD. Indeed, linear mixed models showed that estimated action cost predicted variations of ß-ERD significantly better than speed. This relationship with action cost was specific to beta power, as it was not found when averaging activity in the mu band (8-12 Hz) and gamma band (31-49 Hz) bands. These results demonstrate that increasing ß-ERD may not merely speed up movements, but instead facilitate the preparation of high-speed and low-speed movements through the allocation of additional neural resources, thereby enabling flexible motor control.SIGNIFICANCE STATEMENT Heightened beta activity has been associated with movement slowing in Parkinson's disease, and modulations of beta activity are commonly used to decode movement parameters in brain-computer interfaces. Here we show that premovement beta activity is better explained by the neurocomputational cost of the action rather than its speed. Instead of being interpreted as a mere reflection of changes in movement speed, premovement changes in beta activity might therefore be used to infer the amount of neural resources that are allocated for motor planning.


Asunto(s)
Motivación , Corteza Motora , Humanos , Movimiento , Mano , Ritmo beta , Electroencefalografía , Sincronización Cortical
5.
Behav Brain Res ; 439: 114188, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36395979

RESUMEN

Spinal cord injury (SCI) research with animals aims to understand the neurophysiological responses resultant of injury and to identify effective interventions that can translate into clinical treatments in the future. Consistent and reliable assessments to properly measure outcomes are essential to achieve this aim and avoid issues with reproducibility. The objective of this study was to establish a baseline for implementing the forelimb reaching task (FRT) assessment and analysis that increased reproducibility of our studies. For this study, we implemented a weekly FRT training program for six weeks. During this time the language of the scoring rubric for movement elements that comprise a reaching task was simplified and expanded. We calculated intra- and inter-rater variability among participants of the study both before and after training to determine the effect changes made had on rigor and reproducibility of this behavioral assessment in a cervical SCI rodent model. All animals (n = 19) utilized for FRT behavioral assessments received moderate contusion injuries using the Ohio State University device and were tested for a period of 5 weeks post-SCI. Videos used for scoring were edited and shared with all participants of this study to test FRT score variability and the effect simplification of the scoring rubric had on overall inter-rater reliability. From our results we determined training for a minimum of three weeks in FRT analysis is necessary for rigor and reproducibility of our behavioral studies, as well as the need for two raters to be assigned per animal to ensure accuracy of results.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Animales , Reproducibilidad de los Resultados , Médula Cervical/lesiones , Roedores , Modelos Animales de Enfermedad , Miembro Anterior , Recuperación de la Función/fisiología , Médula Espinal
6.
Neural Regen Res ; 18(2): 364-367, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35900431

RESUMEN

Therapeutic intervention for spinal cord injury is limited, with many approaches relying on strengthening the remaining substrate and driving recovery through rehabilitative training. As compared with learning novel compensatory strategies, rehabilitation focuses on restoring movements lost to injury. Whether rehabilitation of previously learned movements after spinal cord injury requires the molecular mechanisms of motor learning, or if it engages previously trained motor circuits without requiring novel learning remains an open question. In this study, mice were randomly assigned to receive intraperitoneal injection with the pan-nicotinic, non-competitive antagonist mecamylamine and the nicotinic α7 subunit selective antagonist methyllycaconitine citrate salt or vehicle (normal saline) prior to motor learning assays, then randomly reassigned after motor learning for rehabilitation study post-injury. Cervical spinal cord dorsal column lesion was used as a model of incomplete injury. Results of this study showed that nicotinic acetylcholine signaling was required for motor learning of the single pellet-reaching task but it was dispensable for the rehabilitation of the same task after injury. Our findings indicate that critical differences exist between the molecular mechanisms supporting compensatory motor learning strategies and the restoration of behavior lost to spinal cord injury.

7.
J Mot Behav ; 54(5): 648-655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392775

RESUMEN

In this study, we developed an evaluation method using image analysis for reaching tasks. Using this method, we studied forearm function during the reaching task in rats that received a unilateral injection of 6-OHDA into the striatum. The success ratio of the reaching task reduced to 40.5% seven days after the injection. In addition, significant changes were observed in the pronation angle of the forearm, posture control, and targeting (i.e., the distance between all fingertips and the center of the target pellet). Thus, unilateral injection of 6-OHDA reduces dopaminergic function in the brain and causes deterioration of forearm function and posture control in the reaching task.


Asunto(s)
Cuerpo Estriado , Dopamina , Animales , Dopamina/farmacología , Humanos , Oxidopamina/farmacología , Ratas
8.
J Bodyw Mov Ther ; 29: 161-166, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35248266

RESUMEN

INTRODUCTION: The use of motor imagery (MI) has been shown to offer significant improvements in movement performance in sports, and is now receiving a lot of attention as a relatively new therapeutic approach which can be applied in rehabilitation. However, the effects of MI on the quality of movement is still unclear. This study explored the immediate effect of MI on reaching tasks in healthy subjects. METHODS: 17 healthy individuals (33 ± 8.2 years) participated in the study. Surface electromyography (sEMG) and inertial measurement units (IMU) were used to identify muscle activity and angular velocity in both upper limbs. Participants performed a reach task using their dominant and non-dominant arms at their most comfortable speed, they were then asked to imagine themselves performing the same reaching task, and finally they were asked to repeat the reaching task. RESULTS: Significant decreases were seen in the muscle activity between pre and post MI for Biceps Brachii, Anterior Deltoid and Triceps Brachii. In addition, a significant increase was seen in extension angular velocity post MI. DISCUSSION: The results indicate that the use of MI just after physical practice appears to have an immediate effect on the muscle activity and kinematics during a reaching task, which may suggest an improved quality of movement. CONCLUSION: This proof of concept study shows the potential for MI to improve the quality of performing reaching task and offers a possible therapeutic option for Stroke survivors and other neuromuscular disorders.


Asunto(s)
Brazo , Movimiento , Electromiografía , Voluntarios Sanos , Humanos , Movimiento/fisiología , Extremidad Superior
9.
Front Neurorobot ; 16: 850692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308312

RESUMEN

To obtain an anthropomorphic performance in physical human-robot interaction during a reaching task, a variable impedance control (vIC) algorithm with human-like characteristics is proposed in this article. The damping value of the proposed method is varied with the target position as well as through the tracking error. The proposed control algorithm is compared with the impedance control algorithm with constant parameters (IC) and another vIC algorithm, which is only changed with the tracking error (vIC-e). The different control algorithms are validated through the simulation study, and are experimentally implemented on a cable-driven rehabilitation robot. The results show that the proposed vIC can improve the tracking accuracy and trajectory smoothness, and reduce the interaction force at the same time.

10.
J Anim Ecol ; 91(2): 320-333, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34693529

RESUMEN

Organisms are constantly under selection to respond effectively to diverse, sometimes rapid, changes in their environment, but not all individuals are equally plastic in their behaviour. Although cognitive processes and personality are expected to influence individual behavioural plasticity, the effects reported are highly inconsistent, which we hypothesise is because ecological context is usually not considered. We explored how one type of behavioural plasticity, foraging flexibility, was associated with inhibitory control (assayed using a detour-reaching task) and exploration behaviour in a novel environment (a trait closely linked to the fast-slow personality axis). We investigated how these effects varied across two experimentally manipulated ecological contexts-food value and predation risk. In the first phase of the experiment, we trained great tits Parus major to retrieve high value (preferred) food that was hidden in sand so that this became the familiar food source. In the second phase, we offered them the same familiar hidden food at the same time as a new alternative option that was visible on the surface, which was either high or low value, and under either high or low perceived predation risk. Foraging flexibility was defined as the proportion of choices made during 4-min trials that were for the new alternative food source. Our assays captured consistent differences among individuals in foraging flexibility. Inhibitory control was associated with foraging flexibility-birds with high inhibitory control were more flexible when the alternative food was of high value, suggesting they inhibited the urge to select the familiar food and instead selected the new food option. Exploration behaviour also predicted flexibility-fast explorers were more flexible, supporting the information-gathering hypothesis. This tendency was especially strong under high predation risk, suggesting risk aversion also influenced the observed flexibility because fast explorers are risk prone and the new unfamiliar food was perceived to be the risky option. Thus, both behaviours predicted flexibility, and these links were at least partly dependent on ecological conditions. Our results demonstrate that an executive cognitive function (inhibitory control) and a behavioural assay of a well-known personality axis are both associated with individual variation in the plasticity of a key functional behaviour. That their effects on foraging flexibility were primarily observed as interactions with food value or predation risk treatments also suggest that the population-level consequences of some behavioural mechanisms may only be revealed across key ecological conditions.


Asunto(s)
Passeriformes , Animales , Conducta Exploratoria , Personalidad , Fenotipo , Conducta Predatoria
11.
Front Robot AI ; 8: 780505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869617

RESUMEN

In the context of keyhole surgery, and more particularly of uterine biopsy, the fine automatic movements of a surgical instrument held by a robot with 3 active DOF's require an exact knowledge of the point of rotation of the instrument. However, this center of rotation is not fixed and moves during an examination. This paper deals with a new method of detecting and updating the interaction matrix linking the movements of the robot with the surgical instrument. This is based on the method of updating the Jacobian matrix which is named the "Broyden method". It is able to take into account body tissue deformations in real time in order to improve the pointing task for automatic movements of a surgical instrument in an unknown environment.

12.
Front Neurorobot ; 15: 610673, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732129

RESUMEN

Stroke patients often have difficulty completing motor tasks even after substantive rehabilitation. Poor recovery of motor function can often be linked to stroke-induced damage to motor pathways. However, stroke damage in pathways that impact effective integration of sensory feedback with motor control may represent an unappreciated obstacle to smooth motor coordination. In this study we investigated the effects of augmenting movement proprioception during a reaching task in six stroke patients as a proof of concept. We used a wearable neurorobotic proprioceptive feedback system to induce illusory kinaesthetic sensation by vibrating participants' upper arm muscles over active limb movements. Participants were instructed to extend their elbow to reach-and-point to targets of differing sizes at various distances, while illusion-inducing vibration (90 Hz), sham vibration (25 Hz), or no vibration was applied to the distal tendons of either their biceps brachii or their triceps brachii. To assess the impact of augmented kinaesthetic feedback on motor function we compared the results of vibrating the biceps or triceps during arm extension in the affected arm of stroke patients and able-bodied participants. We quantified performance across conditions and participants by tracking limb/hand kinematics with motion capture, and through Fitts' law analysis of reaching target acquisition. Kinematic analyses revealed that injecting 90 Hz illusory kinaesthetic sensation into the actively contracting (agonist) triceps muscle during reaching increased movement smoothness, movement directness, and elbow extension. Conversely, injecting 90 Hz illusory kinaesthetic sensation into the antagonistic biceps during reaching negatively impacted those same parameters. The Fitts' law analyses reflected similar effects with a trend toward increased throughput with triceps vibration during reaching. Across all analyses, able-bodied participants were largely unresponsive to illusory vibrational augmentation. These findings provide evidence that vibration-induced movement illusions delivered to the primary agonist muscle involved in active movement may be integrated into rehabilitative approaches to help promote functional motor recovery in stroke patients.

13.
J Integr Neurosci ; 20(4): 955-965, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34997718

RESUMEN

The rat reaching task is one of the best paradigms from behavioral study of upper limb movements. Rats are trained to reach and grab a pellet by extending their hand through a vertical slit. A few conventional imaging systems specific for the rat reaching task are commercially available with a high installation cost. Based on image analysis of video recordings obtained during the reaching task, we, herewith, developed a new, low-cost laboratory system that can be used for the quantitative analysis of ten basic forearm movements, in contrast to subjective assessments used in previous studies. We quantified images of the pronated and supinated palm and the accuracy and speed of reaching the target. Applying this newly developed method, we compared the forearm movements during the reaching task before and after a massive anatomical lesion of the sensorimotor cortex performed by tissue aspiration. We also wanted to investigate the recovery of upper limb function possibly induced by repeating the task for a relatively short term of a few weeks. In the experiment, 7 injured groups and 3 control groups were used. We found characteristic abnormalities of the forearm movements and a significant recovery in the success rate of grasping the target pellet. The present results demonstrate that our method is straightforward for the quantitative evaluation of forearm movements during the reaching task primarily controlled by the sensorimotor cortex.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Miembro Anterior/fisiopatología , Actividad Motora/fisiología , Corteza Motora/lesiones , Neurociencias , Desempeño Psicomotor/fisiología , Recuperación de la Función/fisiología , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Femenino , Masculino , Neurociencias/instrumentación , Neurociencias/métodos , Ratas , Ratas Long-Evans , Grabación en Video
14.
J Cereb Blood Flow Metab ; 41(7): 1608-1622, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33103935

RESUMEN

A network of cholinergic neurons in the basal forebrain innerve the forebrain and are proposed to contribute to a variety of functions including cortical plasticity, attention, and sensorimotor behavior. This study examined the contribution of the nucleus basalis cholinergic projection to the sensorimotor cortex on recovery on a skilled reach-to-eat task following photothrombotic stroke in the forelimb region of the somatosensory cortex. Mice were trained to perform a single pellet skilled reaching task and their pre and poststroke performance, from Day 4 to Day 28 poststroke, was assessed frame-by-frame by video analysis with endpoint, movement and sensorimotor integration measures. Somatosensory forelimb lesions produced impairments in endpoint and movement component measures of reaching and increased the incidence of fictive eating, a sensory impairment in mistaking a missed reach for a successful reach. Upregulated acetylcholine (ACh) release, as measured by local field potential recording, elicited via optogenetic stimulation of the nucleus basalis improved recovery of reaching and improved movement scores but did not affect sensorimotor integration impairment poststroke. The results show that the mouse cortical forelimb somatosensory region contributes to forelimb motor behavior and suggest that ACh upregulation could serve as an adjunct to behavioral therapy for acute treatment of stroke.


Asunto(s)
Neuronas Colinérgicas/fisiología , Corteza Motora/fisiopatología , Destreza Motora/fisiología , Optogenética , Recuperación de la Función , Corteza Somatosensorial/fisiopatología , Accidente Cerebrovascular Trombótico/fisiopatología , Animales , Ganglios Basales/fisiología , Conducta Animal/fisiología , Fenómenos Biomecánicos , Femenino , Alimentos , Miembro Anterior/fisiopatología , Luz/efectos adversos , Masculino , Ratones
15.
Brain Sci ; 10(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321926

RESUMEN

Age-related decline in sensorimotor integration involves both peripheral and central components related to proprioception and kinesthesia. To explore the role of cortical motor networks, we investigated the association between resting-state functional connectivity and a gap-detection angle measured during an arm-reaching task. Four region pairs, namely the left primary sensory area with the left primary motor area (S1left-M1left), the left supplementary motor area with M1left (SMAleft-M1left), the left pre-supplementary motor area with SMAleft (preSMAleft-SMAleft), and the right pre-supplementary motor area with the right premotor area (preSMAright-PMdright), showed significant age-by-gap detection ability interactions in connectivity in the form of opposite-sign correlations with gap detection ability between younger and older participants. Morphometry and tractography analyses did not reveal corresponding structural effects. These results suggest that the impact of aging on sensorimotor integration at the cortical level may be tracked by resting-state brain activity and is primarily functional, rather than structural. From the observation of opposite-sign correlations, we hypothesize that in aging, a "low-level" motor system may hyper-engage unsuccessfully, its dysfunction possibly being compensated by a "high-level" motor system, wherein stronger connectivity predicts higher gap-detection performance. This hypothesis should be tested in future neuroimaging and clinical studies.

16.
Brain Behav ; 10(3): e01472, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32004425

RESUMEN

INTRODUCTION: Upper limb movements are affected frequently by brain ischemia (BI). Mechanisms involved in recovery and compensatory movements have developed several studies. However, less attention is given to skeletal muscles, where neuromuscular junction (NMJ) has an important role on muscle tropism and functional performance. METHODS: Animals were divided into two groups: control (C) and BI. Then, animals were skilled to perform single-pellet retrieval task, following these procedures: habituation, shaping, and single-pellet retrieval task. BI was induced using stereotaxic surgery in order to apply endothelin-1 in motor cortex, representative of movements of dominant paw. Reaching task performance was evaluated by single-pellet retrieval task 1 day before BI induction, 4 and 15 days after BI induction. After that, biceps, triceps, fingers flexor, and extensor muscles were extracted. NMJ was assessed in morphometric characteristics (total area, total perimeter, and feret). Muscle fiber cross-sectional area and connective tissue percentage were also evaluated for characterization. Student's t test was used for comparisons between C and BI groups. Tau Kendall's correlation was applied among variables from BI group. RESULTS: An increase in all NMJ morphometric parameters, as well as increase of atrophy and fibrosis in BI group compared with C. There was a high level of direct correlation between mean values of NMJ morphometry with percentage of success in reaching task in BI group. CONCLUSION: Brain ischemia-induced NMJ compensatory expansion, muscle atrophy, and fibrosis in forelimb muscles that are related to reaching performance.


Asunto(s)
Adaptación Fisiológica/fisiología , Isquemia Encefálica/fisiopatología , Corteza Cerebral/fisiopatología , Miembro Anterior/fisiopatología , Actividad Motora/fisiología , Unión Neuromuscular/fisiopatología , Recuperación de la Función/fisiología , Animales , Masculino , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Ratas
17.
Braz. j. med. biol. res ; 53(7): e8763, 2020. tab, graf
Artículo en Inglés | LILACS, Coleciona SUS | ID: biblio-1132529

RESUMEN

Upper limb performance is affected by diabetes mellitus (DM). Neuromuscular junction (NMJ) is a key structure to understand the relationship between performance and morphology in DM. The aim of the study was to analyze NMJ plasticity due to DM in an animal model and its relationship with the function of forelimbs in rats. Twelve Wistar rats were divided into control (C) and DM groups. Animals were trained to perform a grasping task, following procedures of habituation, shaping, and reaching task. DM was induced using streptozotocin. Forelimb neuromuscular performance for dexterity was evaluated one day before DM induction and five weeks following induction. After that, biceps, triceps, and finger flexors and extensors were removed. Connective tissue and muscle fiber cross-sectional area (CSA) were measured. NMJ was assessed by its morphometric characteristics (area, perimeter, and maximum diameter), using ImageJ software. Motor performance analyses were made using single pellet retrieval task performance test. Student's t-test was used for comparisons between groups. A significant decrease in all NMJ morphometric parameters was observed in the DM group compared with the C group. Results showed that DM generated NMJ retraction in muscles involved in a reaching task. These alterations are related to signs of muscular atrophy and to poor reaching task performance. In conclusion, induced DM caused NMJ retraction and muscular atrophy in muscles involved in reaching task performance. Induced DM caused significantly lower motor performance, especially in the final moments of evaluation, when DM compromised the tropism of the muscular tissue.


Asunto(s)
Animales , Masculino , Conejos , Ratas , Análisis y Desempeño de Tareas , Adaptación Fisiológica/fisiología , Diabetes Mellitus Experimental/patología , Unión Neuromuscular/patología , Ratas Wistar , Diabetes Mellitus Experimental/fisiopatología , Unión Neuromuscular/fisiopatología
18.
Neurorehabil Neural Repair ; 33(7): 503-512, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31189409

RESUMEN

Rodent tests of function have advanced our understanding of movement, largely through the human training and testing and manual assessment. Tools such as reaching and grasping of a food pellet have been widely adopted because they are effective and simple to use. However, these tools are time-consuming, subjective, and often qualitative. Automation of training, testing, and assessment has the potential to increase efficiency while ensuring tasks are objective and quantitative. We detail new methods for automating rodent forelimb tests, including the use of pellet dispensers, sensors, computer vision, and home cage systems. We argue that limitations in existing forelimb tasks are driving the innovations in automated systems. We further argue that automated tasks partially address these limitations, and we outline necessary precautions and remaining challenges when adopting these types of tasks. Finally, we suggest attributes of future automated rodent assessment tools that can enable widespread adoption and help us better understand forelimb function in health and disease.


Asunto(s)
Automatización , Conducta Animal/fisiología , Miembro Anterior/fisiología , Actividad Motora/fisiología , Destreza Motora/fisiología , Pruebas Neuropsicológicas , Neurociencias/instrumentación , Tractos Piramidales/fisiología , Animales , Neurociencias/métodos , Neurociencias/tendencias , Tractos Piramidales/lesiones , Tractos Piramidales/fisiopatología , Roedores
19.
Front Neurosci ; 13: 125, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30846925

RESUMEN

Synchronous, rhythmic changes in the membrane polarization of neurons form oscillations in local field potentials. It is hypothesized that high-frequency brain oscillations reflect local cortical information processing, and low-frequency brain oscillations project information flow across larger cortical networks. This provides complex forms of information transmission due to interactions between oscillations at different frequency bands, which can be rendered with cross-frequency coupling (CFC) metrics. Phase-amplitude coupling (PAC) is one of the most common representations of the CFC. PAC reflects the coupling of the phase of oscillations in a specific frequency band to the amplitude of oscillations in another frequency band. In a normal brain, PAC accompanies multi-item working memory in the hippocampus, and changes in PAC have been associated with diseases such as schizophrenia, obsessive-compulsive disorder (OCD), Alzheimer disease (AD), epilepsy, and Parkinson's disease (PD). The purpose of this article is to explore CFC across the central nervous system and demonstrate its correlation to neurological disorders. Results from previously published studies are reviewed to explore the significant role of CFC in large neuronal network communication and its abnormal behavior in neurological disease. Specifically, the association of effective treatment in PD such as dopaminergic medication and deep brain stimulation with PAC changes is described. Lastly, CFC analysis of the electrocorticographic (ECoG) signals recorded from the motor cortex of a Parkinson's disease patient and the parahippocampal gyrus of an epilepsy patient are demonstrated. This information taken together illuminates possible roles of CFC in the nervous system and its potential as a therapeutic target in disease states. This will require new neural interface technologies such as phase-dependent stimulation triggered by PAC changes, for the accurate recording, monitoring, and modulation of the CFC signal.

20.
J Neuroeng Rehabil ; 16(1): 42, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894192

RESUMEN

BACKGROUND: Intensive robot-assisted training of the upper limb after stroke can reduce motor impairment, even at the chronic stage. However, the effectiveness of practice for recovery depends on the selection of the practised movements. We hypothesized that rehabilitation can be optimized by selecting the movements to be practiced based on the trainee's performance profile. METHODS: We present a novel principle ('steepest gradients') for performance-based selection of movements. The principle is based on mapping motor performance across a workspace and then selecting movements located at regions of the steepest transition between better and worse performance. To assess the benefit of this principle we compared the effect of 15 sessions of robot-assisted reaching training on upper-limb motor impairment, between two groups of people who have moderate-to-severe chronic upper-limb hemiparesis due to stroke. The test group (N = 7) received steepest gradients-based training, iteratively selected according to the steepest gradients principle with weekly remapping, whereas the control group (N = 9) received a standard "centre-out" reaching training. Training intensity was identical. RESULTS: Both groups showed improvement in Fugl-Meyer upper-extremity scores (the primary outcome measure). Moreover, the test group showed significantly greater improvement (twofold) compared to control. The score remained elevated, on average, for at least 4 weeks although the additional benefit of the steepest-gradients -based training diminished relative to control. CONCLUSIONS: This study provides a proof of concept for the superior benefit of performance-based selection of practiced movements in reducing upper-limb motor impairment due to stroke. This added benefit was most evident in the short term, suggesting that performance-based steepest-gradients training may be effective in increasing the rate of initial phase of practice-based recovery; we discuss how long-term retention may also be improved. TRIAL REGISTRATION: ISRCTN, ISRCTN65226825 , registered 12 June 2018 - Retrospectively registered.


Asunto(s)
Movimiento/fisiología , Robótica/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Paresia/rehabilitación , Modalidades de Fisioterapia/instrumentación , Proyectos Piloto , Extremidad Superior , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA