Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Neurosci ; 74(3): 78, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158627

RESUMEN

Constipation is a common symptom in patients with Parkinson's disease (PD) and is often associated with depression. Enteric glial cells (EGCs) are crucial for regulating intestinal inflammation and colon motility, and their activation can lead to the death of intestinal neurons. Glial cell line-derived neurotrophic factor (GDNF) has been recognized for its neuroprotective properties in various neurological disorders, including PD. This study explores the potential of GDNF in alleviating intestinal reactive gliosis and inflammation, thereby improving constipation and depressive behavior in a rat model of PD. A PD model was established via unilateral stereotaxic injection of 6-hydroxydopamine (6-OHDA). Five weeks post-injury, AAV5-GDNF (2 ~ 5 × 10^11) was intraperitoneally injected into experimental and control rats. Fecal moisture percentage (FMP) and colonic propulsion rate (CPPR) were used to evaluate colon motility. Colon-related inflammation and colonic epithelial morphology were assessed, and depressive behavior was analyzed one week before sampling. PD rats exhibited reduced colonic motility and GDNF expression, along with increased EGC reactivity and elevated levels of pro-inflammatory cytokines IL-1, IL-6, and TNF-α. Additionally, there was an up-regulation of CX43 and a decrease in PGP 9.5 expression. The intraperitoneal injection of AAV-GDNF significantly protected colonic neurons by inhibiting EGC activation and down-regulating CX43. This treatment also led to a notable reduction in depressive-like symptoms in PD rats with constipation. GDNF effectively reduces markers of reactive gliosis and inflammation, and promotes the survival of colonic neurons, and improves colonic motility in PD rats by regulating CX43 activity. Furthermore, GDNF treatment alleviates depressive behavior, suggesting that GDNF or its agonists could be promising therapeutic agents for managing gastrointestinal and neuropsychiatric symptoms associated with PD.


Asunto(s)
Estreñimiento , Depresión , Factor Neurotrófico Derivado de la Línea Celular Glial , Gliosis , Animales , Masculino , Ratas , Colon/metabolismo , Colon/patología , Estreñimiento/etiología , Estreñimiento/tratamiento farmacológico , Citocinas/metabolismo , Depresión/etiología , Depresión/tratamiento farmacológico , Motilidad Gastrointestinal/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/uso terapéutico , Gliosis/metabolismo , Inflamación/metabolismo , Oxidopamina/toxicidad , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Ratas Sprague-Dawley
2.
Neuron ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38889714

RESUMEN

Progressive multiple sclerosis (PMS) is an immune-initiated neurodegenerative condition that lacks effective therapies. Although peripheral immune infiltration is a hallmark of relapsing-remitting MS (RRMS), PMS is associated with chronic, tissue-restricted inflammation and disease-associated reactive glial states. The effector functions of disease-associated microglia, astrocytes, and oligodendrocyte lineage cells are beginning to be defined, and recent studies have made significant progress in uncovering their pathologic implications. In this review, we discuss the immune-glia interactions that underlie demyelination, failed remyelination, and neurodegeneration with a focus on PMS. We highlight the common and divergent immune mechanisms by which glial cells acquire disease-associated phenotypes. Finally, we discuss recent advances that have revealed promising novel therapeutic targets for the treatment of PMS and other neurodegenerative diseases.

3.
J Neurochem ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702968

RESUMEN

Ependymal cells form a specialized brain-cerebrospinal fluid (CSF) interface and regulate local CSF microcirculation. It is becoming increasingly recognized that ependymal cells assume a reactive state in response to aging and disease, including conditions involving hypoxia, hydrocephalus, neurodegeneration, and neuroinflammation. Yet what transcriptional signatures govern these reactive states and whether this reactivity shares any similarities with classical descriptions of glial reactivity (i.e., in astrocytes) remain largely unexplored. Using single-cell transcriptomics, we interrogated this phenomenon by directly comparing the reactive ependymal cell transcriptome to the reactive astrocyte transcriptome using a well-established model of autoimmune-mediated neuroinflammation (MOG35-55 EAE). In doing so, we unveiled core glial reactivity-associated genes that defined the reactive ependymal cell and astrocyte response to MOG35-55 EAE. Interestingly, known reactive astrocyte genes from other CNS injury/disease contexts were also up-regulated by MOG35-55 EAE ependymal cells, suggesting that this state may be conserved in response to a variety of pathologies. We were also able to recapitulate features of the reactive ependymal cell state acutely using a classic neuroinflammatory cocktail (IFNγ/LPS) both in vitro and in vivo. Taken together, by comparing reactive ependymal cells and astrocytes, we identified a conserved signature underlying glial reactivity that was present in several neuroinflammatory contexts. Future work will explore the mechanisms driving ependymal reactivity and assess downstream functional consequences.

4.
Neurotherapeutics ; 18(3): 1729-1747, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34611843

RESUMEN

Monoamine oxidase-B (MAO-B) is a well-established therapeutic target for Parkinson's disease (PD); however, previous clinical studies on currently available irreversible MAO-B inhibitors have yielded disappointing neuroprotective effects. Here, we tested the therapeutic potential of KDS2010, a recently synthesized potent, selective, and reversible MAO-B inhibitor in multiple animal models of PD. We designed and synthesized a series of α-aminoamide derivatives and found that derivative KDS2010 exhibited the highest potency, specificity, reversibility, and bioavailability (> 100%). In addition, KDS2010 demonstrated significant neuroprotective and anti-neuroinflammatory efficacy against nigrostriatal pathway destruction in the mouse MPTP model of parkinsonism. Treatment with KDS2010 also alleviated parkinsonian motor dysfunction in 6-hydroxydopamine-induced and A53T mutant α-synuclein overexpression rat models of PD. Moreover, KDS2010 showed virtually no toxicity or side effects in non-human primates. KDS2010 could be a next-generation therapeutic candidate for PD.


Asunto(s)
Desarrollo de Medicamentos/métodos , Inhibidores de la Monoaminooxidasa/uso terapéutico , Monoaminooxidasa/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Animales , Relación Dosis-Respuesta a Droga , Femenino , Macaca fascicularis , Masculino , Ratones , Inhibidores de la Monoaminooxidasa/química , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/enzimología , Trastornos Parkinsonianos/patología , Ratas , Resultado del Tratamiento
5.
Front Cell Neurosci ; 15: 640084, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305531

RESUMEN

Multiple sclerosis (MS) is a progressive autoimmune disease characterized by T-cell mediated demyelination in central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a widely used in vivo disease model of MS. Glucocorticoids such as dexamethasone (dex) function as immunosuppressants and are commonly used to treat acute exacerbations of MS. Dex is also often used as a positive control in EAE studies, as it has been shown to promote motor behavior, inhibit immune cell infiltration into the CNS and regulate the activation of glial cell in EAE. This study further validated the effects of intravenously administrated dex by time-dependent fashion in EAE. Dex postponed clinical signs and motor defects in early stages of EAE. Histological analysis revealed that the degeneration of myelin and axons, as well as the infiltration of peripheral immune cells into the white matter of spinal cord was inhibited by dex in early stages of EAE. Additionally, dex-treatment delayed the neuroinflammatory activation of microglia and astrocytes. Furthermore, this study analyzed the expression of the neurotrophic factor mesencephalic astrocyte-derived neurotrophic factor (MANF) in EAE, and the effect of treatment with dex on MANF-expression. We show that in dex-treated EAE mice expression MANF increased within myelinated areas of spinal cord white matter. We also show that intravenous administration with hMANF in EAE mice improved clinical signs and motor behavior in the early stage of EAE. Our report gives insight to the progression of EAE by providing a time-dependent analysis. Moreover, this study investigates the link between MANF and the EAE model, and shows that MANF is a potential drug candidate for MS.

6.
Front Neurosci ; 14: 912, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013303

RESUMEN

Neurodegenerative mechanisms due to mutations in spastin currently center on neuronal defects, primarily in microtubule and endomembrane regulation. Spastin loss in Drosophila larvae compromises neuronal microtubule distribution, alters synaptic bouton morphology, and weakens synaptic transmission at glutamatergic neuromuscular junction (NMJ) synapses. Pak3, a p21-activated kinase that promotes actin polymerization and filopodial projections, is required for these spastin mutant defects; animals lacking both genes have normal NMJs. Here we show that Pak3 is expressed in central and peripheral glial populations, and reduction of Pak3 specifically in subperineurial glial cells is sufficient to suppress the phenotypes associated with spastin loss. Subperineurial glia in the periphery ensheathe motor neuron axons and have been shown to extend actin-based projections that regulate synaptic terminals during normal NMJ development. We find that these subperineurial glial projections are Pak3-dependent and nearly twice as frequent in spastin mutants, while in Pak3, spastin double mutants, neither glial projections nor synaptic defects are observed. Spastin deficiency thus increases Pak3-dependent subperineurial glia activity, which is in turn required for neuronal defects. Our results demonstrate a central role for Pak3-mediated, altered glial behavior in the neuronal defects due to spastin loss, and suggest that a similar reactive glia-mediated mechanism may underlie human AD-HSP pathogenesis.

7.
Artículo en Inglés | MEDLINE | ID: mdl-32087974

RESUMEN

The pathological process of spinal cord injury (SCI) is complex, particularly during secondary damage that triggers a multiphasic glial reaction consisting of both detrimental and beneficial effects. Deletion of a novel voltage-gated proton channel (Hv1) functionally expressed in microglia has been shown to confer neuroprotection during ischemic stroke. Here, we hypothesized that microglial Hv1 may also participate in the process of SCI through modulating glial responses. To test this hypothesis, we employed an SCI model in Hv1-knockout (Hv1-/-) and wild type (WT) mice and assessed resulting microglial polarization, accumulation of pro-inflammatory cytokines, astrocytic activation, oligodendrocytic apoptosis, lesion sizes, and demyelinated areas. Compared with post-SCI results in WT mice, post-SCI Hv1-/- mice exhibited an M2-dominant microglial polarization, decreased accumulation of microglia, and reduced production of pro-inflammatory factors such as tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1ß). Additionally, Hv1-/- mice had significantly attenuated reactive astrogliosis and reduced expression of chondroitin sulphate proteoglycans (CSPGs) after SCI. Furthermore, Hv1 deficiency reduced SCI-induced oligodendrocytic apoptosis, demyelinated areas, and cavity formation. Collectively, our results provide the first evidence suggesting that microglial Hv1 may be a multi-mechanism therapeutic target for the treatment of SCI.

8.
J Neurophysiol ; 118(1): 194-202, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28356474

RESUMEN

Microelectrode arrays implanted in the brain are increasingly used for the research and treatment of intractable neurological disease. However, local neuronal loss and glial encapsulation are known to interfere with effective integration and communication between implanted devices and brain tissue, where these observations are typically based on assessments of broad neuronal and astroglial markers. However, both neurons and astrocytes comprise heterogeneous cellular populations that can be further divided into subclasses based on unique functional and morphological characteristics. In this study, we investigated whether or not device insertion causes alterations in specific subtypes of these cells. We assessed the expression of both excitatory and inhibitory markers of neurotransmission (vesicular glutamate and GABA transporters, VGLUT1 and VGAT, respectively) surrounding single-shank Michigan-style microelectrode arrays implanted in the motor cortex of adult rats by use of quantitative immunohistochemistry. We found a pronounced shift from significantly elevated VGLUT1 within the initial days following implantation to relatively heightened VGAT by the end of the 4-wk observation period. Unexpectedly, we observed VGAT positivity in a subset of reactive astrocytes during the first week of implantation, indicating heterogeneity in early-responding encapsulating glial cells. We coupled our VGLUT1 data with the evaluation of a second marker of excitatory neurons (CamKiiα); the results closely paralleled each other and underscored a progression from initially heightened to subsequently weakened excitatory tone in the neural tissue proximal to the implanted electrode interface (within 40 µm). Our results provide new evidence for subtype-specific remodeling surrounding brain implants that inform observations of suboptimal integration and performance.NEW & NOTEWORTHY We report novel changes in the local expression of excitatory and inhibitory synaptic markers surrounding microelectrode arrays implanted in the motor cortex of rats, where a progressive shift toward increased inhibitory tone was observed over the 4-wk observation period. The result was driven by declining glutamate transporter expression (VGLUT1) in parallel with increasing GABA transporter expression (VGAT) over time, where a reactive VGAT+ astroglial subtype made an unexpected contribution to our findings.


Asunto(s)
Astrocitos/metabolismo , Corteza Motora/cirugía , Prótesis Neurales/efectos adversos , Neuronas/metabolismo , Implantación de Prótesis/efectos adversos , Animales , Astrocitos/citología , Femenino , Corteza Motora/citología , Neuronas/citología , Ratas , Ratas Sprague-Dawley , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
9.
Oncotarget ; 7(31): 49688-49698, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27391072

RESUMEN

Although nervous and vascular systems are functionally different, they usually share similar mechanisms for function maintenance. Neurovascular dysfunction has became the pathogenesis of several vascular and nervous disorders. Here we show that long non-coding RNA-MIAT is aberrantly expressed under neurovascular dysfunction condition. MIAT is shown as a regulator of vascular dysfunction, including retinal angiogenesis, corneal angiogenesis, and vascular permeability. MIAT is also shown as a regulator of retinal neurodegeneration under diabetic condition. Mechanistically, MIAT regulates neural and vascular cell function via MIAT/miR-150-5p/VEGF network. The eye is a valuable model to study central nervous system (CNS) disorders. We show that MIAT knockdown leads to cerebral microvascular degeneration, progressive neuronal loss and neurodegeneration, and behavioral deficits in a CNS neurovascular disorder, Alzheimer's disease. MIAT may represent a pharmacological target for treating neurovascular-related disorders.


Asunto(s)
Neovascularización Patológica , ARN Largo no Codificante/genética , Retina/patología , Remodelación Vascular , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Enfermedades del Sistema Nervioso Central/patología , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Microcirculación , Enfermedades Neurodegenerativas/patología , Neuroglía/patología , Navegación Espacial
10.
BMC Genomics ; 17: 304, 2016 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-27108081

RESUMEN

BACKGROUND: cAMP signaling produces dramatic changes in astrocyte morphology and physiology. However, its involvement in phenotype acquisition and the transcriptionally mediated mechanisms of action are largely unknown. RESULTS: Here we analyzed the global transcriptome of cultured astroglial cells incubated with activators of cAMP pathways. A bulk of astroglial transcripts, 6221 annotated genes, were differentially regulated by cAMP signaling. cAMP analogs strongly upregulated genes involved in typical functions of mature astrocytes, such as homeostatic control, metabolic and structural support to neurons, antioxidant defense and communication, whereas they downregulated a considerable number of proliferating and immaturity-related transcripts. Moreover, numerous genes typically activated in reactive cells, such as scar components and immunological mediators, were repressed by cAMP. GSEA analysis contrasting gene expression profiles with transcriptome signatures of acutely isolated astrocytes and in situ evaluation of protein levels in these cells showed that cAMP signaling conferred mature and in vivo-like transcriptional features to cultured astrocytes. CONCLUSIONS: These results indicate that cAMP signaling is a key pathway promoting astrocyte maturation and restricting their developmental and activation features. Therefore, a positive modulation of cAMP signaling may promote the normal state of differentiated astrocytes and favor the protection and function of neuronal networks.


Asunto(s)
Astrocitos/metabolismo , AMP Cíclico/metabolismo , Transducción de Señal , Transcriptoma , Animales , Animales Recién Nacidos , Antioxidantes/metabolismo , Diferenciación Celular , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Regulación hacia Arriba
11.
Proc Natl Acad Sci U S A ; 111(34): 12544-9, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25099352

RESUMEN

Nervous system injury or disease leads to activation of glia, which govern postinjury responses in the nervous system. Axonal injury in Drosophila results in transcriptional up-regulation of the glial engulfment receptor Draper; there is extension of glial membranes to the injury site (termed activation), and then axonal debris is internalized and degraded. Loss of the small GTPase Rac1 from glia completely suppresses glial responses to injury, but upstream activators remain poorly defined. Loss of the Rac guanine nucleotide exchange factor (GEF) Crk/myoblast city (Mbc)/dCed-12 has no effect on glial activation, but blocks internalization and degradation of debris. Here we show that the signaling molecules downstream of receptor kinase (DRK) and daughter of sevenless (DOS) (mammalian homologs, Grb2 and Gab2, respectively) and the GEF son of sevenless (SOS) (mammalian homolog, mSOS) are required for efficient activation of glia after axotomy and internalization/degradation of axonal debris. At the earliest steps of glial activation, DRK/DOS/SOS function in a partially redundant manner with Crk/Mbc/dCed-12, with blockade of both complexes strongly suppressing all glial responses, similar to loss of Rac1. This work identifies DRK/DOS/SOS as the upstream Rac GEF complex required for glial responses to axonal injury, and demonstrates a critical requirement for multiple GEFs in efficient glial activation after injury and internalization/degradation of axonal debris.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Proteínas del Ojo/fisiología , Neuroglía/fisiología , Proteína Son Of Sevenless Drosofila/fisiología , Proteínas de Unión al GTP rac/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Animales Modificados Genéticamente , Axones/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Genes de Insecto , Mutación , Degeneración Nerviosa , Fagosomas/fisiología , Proteínas Proto-Oncogénicas c-crk/genética , Proteínas Proto-Oncogénicas c-crk/fisiología , Proteína Son Of Sevenless Drosofila/genética , Proteínas de Unión al GTP rac/genética , Proteínas ras/genética , Proteínas ras/fisiología
12.
Neurobiol Aging ; 35(12): 2746-2760, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25002035

RESUMEN

Reactive astrocytes and microglia are associated with amyloid plaques in Alzheimer's disease (AD). Yet, not much is known about the molecular alterations underlying this reactive phenotype. To get an insight into the molecular changes underlying AD induced astrocyte and microglia reactivity, we performed a transcriptional analysis on acutely isolated astrocytes and microglia from the cortex of aged controls and APPswe/PS1dE9 AD mice. As expected, both cell types acquired a proinflammatory phenotype, which confirms the validity of our approach. Interestingly, we observed that the immune alteration in astrocytes was relatively more pronounced than in microglia. Concurrently, our data reveal that astrocytes display a reduced expression of neuronal support genes and genes involved in neuronal communication. The microglia showed a reduced expression of phagocytosis and/or endocytosis genes. Co-expression analysis of a human AD expression data set and the astrocyte and microglia data sets revealed that the inflammatory changes in astrocytes were remarkably comparable in mouse and human AD, whereas the microglia changes showed less similarity. Based on these findings we argue that chronically proinflammatory astrocyte and microglia phenotypes, showing a reduction of genes involved in neuronal support and neuronal signaling, are likely to contribute to the neuronal dysfunction and cognitive decline in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Astrocitos/patología , Inflamación/genética , Inflamación/patología , Microglía/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Animales , Astrocitos/inmunología , Astrocitos/fisiología , Separación Celular , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/patología , Cognición , Modelos Animales de Enfermedad , Endocitosis/genética , Expresión Génica , Humanos , Ratones Transgénicos , Microglía/inmunología , Microglía/fisiología , Fagocitosis/genética , Transmisión Sináptica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA