Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Front Physiol ; 14: 1145233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064892

RESUMEN

Chronic kidney disease (CKD) has been recognized as a significant global health problem due to being an important contributor to morbidity and mortality. Inflammation is the critical event that leads to CKD development orchestrated by a complex interaction between renal parenchyma and immune cells. Particularly, the crosstalk between tubular epithelial cells (TECs) and macrophages is an example of the critical cell communication in the kidney that drives kidney fibrosis, a pathological feature in CKD. Metabolism dysregulation of TECs and macrophages can be a bridge that connects inflammation and fibrogenesis. Currently, some evidence has reported how cellular lipid disturbances can affect kidney disease and cause tubulointerstitial fibrosis highlighting the importance of investigating potential molecules that can restore metabolic parameters. Vitamin D (VitD) is a hormone naturally produced by mammalian cells in a coordinated manner by the skin, liver, and kidneys. VitD deficiency or insufficiency is prevalent in patients with CKD, and serum levels of VitD are inversely correlated with the degree of kidney inflammation and renal function. Proximal TECs and macrophages produce the active form of VitD, and both express the VitD receptor (VDR) that evidence the importance of this nutrient in regulating their functions. However, whether VitD signaling drives physiological and metabolism improvement of TECs and macrophages during kidney injury is an open issue to be debated. In this review, we brought to light VitD as an important metabolic modulator of lipid metabolism in TECs and macrophages. New scientific approaches targeting VitD e VDR signaling at the cellular metabolic level can provide a better comprehension of its role in renal physiology and CKD progression.

2.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498913

RESUMEN

Preconditioning episodes of ischemia/reperfusion (IR) induce protection against acute kidney injury (AKI), however their long-term effect still unknown. We evaluated AKI to chronic kidney disease (CKD) transition, after three-mild or three-severe episodes of IR. AKI was induced by single bilateral IR (1IR), or three episodes of IR separated by 10-day intervals (3IR) of mild (20 min) or severe (45 min) ischemia. Sham-operated rats served as controls. During 9-months, the 1IR group (20 or 45 min) developed CKD evidenced by progressive proteinuria and renal fibrosis. In contrast, the long-term adverse effects of AKI were markedly ameliorated in the 3IR group. The acute response in 3IR, contrasted with the 1IR group, that was characterized by an increment in heme oxygenase-1 (HO-1) and an anti-inflammatory response mediated by a NFkB-p65 phosphorylation and IL-6 decrease, together with an increase in TGF-ß, and IL-10 expression, as well as in M2-macrophages. In addition, three episodes of IR downregulated endoplasmic reticulum (ER) stress markers expression, CHOP and BiP. Thus, repeated episodes of IR with 10-day intervals induced long-term renal protection accompanied with HO-1 overexpression and M2-macrophages increase.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Daño por Reperfusión , Ratas , Animales , Hemo-Oxigenasa 1 , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Insuficiencia Renal Crónica/metabolismo , Riñón/metabolismo , Isquemia/complicaciones , Antiinflamatorios/farmacología , Hemo/farmacología
3.
Front Nutr ; 9: 952028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466412

RESUMEN

Acute kidney injury (AKI) alters renal hemodynamics, leading to tubular injury, activating pathways of inflammation, proliferation, and cell death. The initial damage caused to renal tissue after an ischemia/reperfusion (I/R) injury exerts an important role in the pathogenesis of the course of AKI, as well as in the predisposition to chronic kidney disease. Vitamin D deficiency has been considered a risk factor for kidney disease and it is associated with tubulointerstitial damage, contributing to the progression of kidney disease. Obesity is directly related to diabetes mellitus and hypertension, the main metabolic disorders responsible for the progression of kidney disease. Furthermore, the expansion of adipose tissue is described as an important factor for increased secretion of pro-inflammatory cytokines and their respective influence on the progression of kidney disease. We aimed to investigate the influence of vitamin D deficiency and obesity on the progression of renal disease in a murine model of renal I/R. Male Wistar rats underwent renal I/R surgery on day 45 and followed until day 90 of the protocol. We allocated the animals to four groups according to each diet received: standard (SD), vitamin D-depleted (VDD), high fat (HFD), or high fat vitamin D-depleted (HFDV). At the end of 90 days, we observed almost undetectable levels of vitamin D in the VDD and HFDV groups. In addition, HFD and HFDV groups presented alterations in the anthropometric and metabolic profile. The combination of vitamin D deficiency and obesity contributed to alterations of functional and hemodynamic parameters observed in the HFDV group. Moreover, this combination favored the exacerbation of the inflammatory process and the renal expression of extracellular matrix proteins and phenotypic alteration markers, resulting in an enlargement of the tubulointerstitial compartment. All these changes were associated with an increased renal expression of transforming growth factor ß and reduced expression of the vitamin D receptor. Our results show that the synergistic effect of obesity and vitamin D deficiency exacerbated the hemodynamic and morphological changes present in the evolution of renal disease induced by I/R.

4.
J Cell Physiol ; 237(10): 3883-3899, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35908199

RESUMEN

The renal collecting ducts (CD) are formed by a fully differentiated epithelium, and their tissue organization and function require the presence of mature cell adhesion structures. In certain circumstances, the cells can undergo de-differentiation by a process called epithelial-mesenchymal transition (EMT), in which the cells lose their epithelial phenotype and acquire the characteristics of the mesenchymal cells, which includes loss of cell-cell adhesion. We have previously shown that in renal papillary CD cells, cell adhesion structures are located in sphingomyelin (SM)-enriched plasma membrane microdomains and the inhibition of SM synthase 1 activity induced CD cells to undergo an EMT process. In the present study, we evaluated the influence of SM metabolism during the EMT of the cells that form the CD of the renal papilla during aging. To this end, primary cultures of renal papillary CD cells from young, middle-, and aged-rats were performed. By combining biochemical and immunofluorescence studies, we found experimental evidence that CD cells undergo an increase in spontaneous and reversible EMT during aging and that at least one of the reasons for this phenomenon is the decrease in SM content due to the combination of decreased SM synthase activity and an increase in SM degradation mediated by neutral sphingomyelinase. Age is a risk factor for many diseases, among which renal fibrosis is included. Our findings highlight the importance of sphingolipids and particularly SM as a modulator of the fate of CD cells and probably contribute to the development of treatments to avoid or reverse renal fibrosis during aging.


Asunto(s)
Transición Epitelial-Mesenquimal , Enfermedades Renales , Animales , Células Epiteliales/metabolismo , Fibrosis , Médula Renal/metabolismo , Ratas , Esfingomielina Fosfodiesterasa/genética , Esfingomielinas/metabolismo
5.
Int J Mol Sci ; 23(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628203

RESUMEN

Renal fibrosis is the final stage of chronic kidney injury characterized by glomerulosclerosis and tubulointerstitial fibrosis with parenchymal destruction. Quercetin belongs to the most studied flavonoids with antioxidant, anti-inflammatory, antifibrogenic, and antitumor activity. It modifies the TGF-ß/Smad signaling pathway, decreasing profibrogenic expression molecules and inducing the expression of antioxidant, anti-inflammatory, and antifibrogenic molecules. However, quercetin exhibits poor water solubility and low absorption and bioavailability. This limitation was solved by developing a nanoparticles formulation that improves the solubility and bioavailability of several bioactive compounds. Therefore, we aimed to investigate the in vivo antifibrogenic effect of a quercetin nanoparticles formulation. Male C57BL/6 mice were induced into chronic renal failure with 50 mg/kg of adenine for four weeks. The animals were randomly grouped and treated with 25, 50, or 100 mg/kg of quercetin, either macroparticles or nanoparticles formulation. We performed biochemical, histological, and molecular analyses to evaluate and compare the effect of macroparticles versus nanoparticles formulation on kidney damage. Here, we demonstrated that smaller doses of nanoparticles exhibited the same beneficial effect as larger doses of macroparticles on preventing kidney damage. This finding translates into less quercetin consumption reaching the desired therapeutic effect.


Asunto(s)
Nanopartículas , Insuficiencia Renal Crónica , Adenina , Animales , Antioxidantes/química , Fibrosis , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Quercetina/química , Quercetina/farmacología , Quercetina/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico
6.
Metabol Open ; 14: 100176, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35392380

RESUMEN

Overweight/obesity is a growing pandemic that affects many organs and tissues. We have investigated whether a high-lipid diet provokes an imbalance between type 1 and type 2 angiotensin II (Ang II) receptors signaling, leading to liver alterations associated with cardiovascular and kidney disturbances. Chronic administration of a high-lipid diet can provoke hepatocardiorenal syndrome resulting from activation of the Ang II→type 1 receptor axis, which is entirely counteracted by Ang-(3-4), the allosteric enhancer of the Ang II→type 2 receptor pathway.

7.
Braz. j. biol ; 82: e261874, 2022. tab, ilus
Artículo en Inglés | VETINDEX | ID: biblio-1394107

RESUMEN

This study was conducted to evaluate the protective role of extracted natural antioxidants from black rice and their effect on kidney failure and renal cirrhosis caused by ethanol-induced toxicity. Antioxidant activity in terms of total phenol content, flavonoid compounds and anthocyanin, as well as antioxidant capacity, was determined in an extract of black rice. The findings noted that the black rice extract contained high amounts of antioxidant activity and capacity. Total phenolic compounds from black rice extract were fractionated using HPLC and the results showed that ferulic, sinapic, ascorbic, salicylic and coumaric acids were the highest in the extract. Biological experiments were performed on male albino adult rats (40 animals, 10 rats for each group), divided into four groups. After five weeks, kidney functions and protein fractions were assessed. In addition, superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) enzyme activities were determined in all groups. The results found that kidney function, total protein, albumin and globulin were affected by renal dysfunction and renal fibrosis in the positive control (PC), whereas groups 3 and 4 noted an improvement in renal function nearly or equal to the healthy rats which were fed on a basal diet. Furthermore, the PC group showed significantly decreased levels of enzymatic antioxidants, namely SOD and GSH with a concomitant elevated MDA level compared with those in the negative rats fed on a basal diet. Groups 3 and 4 also reported improvements in enzyme activity. These results were further supported by histopathological findings which revealed a curative effect in groups 3 and 4, which avoided renal dysfunction and renal fibrosis from ethanol-induced toxicity. From the results, it can be said that the black rice extract with the highest amounts of antioxidants led to improvements in all parameters, especially kidney function, total protein, albumin, and globulin, in addition to enzyme activity. Therefore, black rice can be recommended as a benefit to general health.


Este estudo foi conduzido para avaliar o papel protetor dos antioxidantes naturais extraídos do arroz-preto e seu efeito na insuficiência renal e cirrose renal causada pela toxicidade induzida pelo etanol. A atividade antioxidante em termos de teor de fenóis totais, compostos flavonoides e antocianinas, bem como a capacidade antioxidante, foi determinada em um extrato de arroz-preto. As descobertas observaram que o extrato de arroz-preto continha grandes quantidades de atividade e capacidade antioxidante. Os compostos fenólicos totais do extrato de arroz-preto foram fracionados por HPLC e os resultados mostraram que os ácidos ferúlico, sinápico, ascórbico, salicílico e cumárico foram os mais elevados no extrato. Experimentos biológicos foram realizados em ratos adultos albinos machos (40 animais, 10 ratos para cada grupo), divididos em quatro grupos. Após cinco semanas, as funções renais e frações proteicas foram avaliadas. Além disso, as atividades das enzimas superóxido dismutase (SOD), glutationa (GSH) e malondialdeído (MDA) foram determinadas em todos os grupos. Os resultados mostraram que a função renal, proteína total, albumina e globulina foram afetadas por disfunção renal e fibrose renal no controle positivo (CP), enquanto os grupos 3 e 4 observaram uma melhora na função renal quase ou igual aos ratos saudáveis ​​que foram alimentados em uma dieta básica. Além disso, o grupo PC apresentou níveis significativamente diminuídos de antioxidantes enzimáticos, ou seja, SOD e GSH com um nível concomitante de MDA elevado em comparação com aqueles nos ratos negativos alimentados com uma dieta basal. Os grupos 3 e 4 também relataram melhorias na atividade enzimática. Esses resultados foram ainda apoiados por achados histopatológicos que revelaram um efeito curativo nos grupos 3 e 4, que evitou a disfunção renal e fibrose renal por toxicidade induzida pelo etanol. A partir dos resultados, pode-se dizer que o extrato de arroz-preto com maior quantidade de antioxidantes levou a melhorias em todos os parâmetros, principalmente função renal, proteína total, albumina e globulina, além da atividade enzimática. Portanto, o arroz-preto pode ser recomendado como um benefício para a saúde geral.


Asunto(s)
Ratas , Oryza , Fibrosis , Etanol , Insuficiencia Renal , Antioxidantes
9.
Arch Physiol Biochem ; : 1-10, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34915796

RESUMEN

The effects of high-fat-associated kidney damage in humans are not completely elucidated. Animal experiments are essential to understanding the mechanisms underlying human diseases. This systematic review aimed to compile evidence of the role of a high-fat diet during the development of renal lipotoxicity and fibrosis of Wistar rats to understand whether this is a satisfactory model for the study of high fat-induced kidney damage. We conducted systematic searches in PUBMED, EMBASE, Lilacs, and Web of Science databases from inception until May 2021. The risk of bias was assessed using SYRCLE toll. Two reviewers independently screened abstracts and reviewed full-text articles. A total of 11 studies were included. The damage varied depending on the age and sex of the animals, time of protocol, and amount of fat in the diet. In conclusion, the Wistar rat is an adequate animal model to assess the effects of a high-fat diet on the kidneys.HighlightsA high-fat diet may promote kidney damage in Wistar rats.Wistar rat is efficient as an animal model to study high-fat-induced kidney damage.The effect of the diet depends on the fat amount, consumption time, and animal age.

10.
Curr Drug Targets ; 22(17): 1916-1925, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34879794

RESUMEN

Lysyl oxidases (LOXs) are amino oxidase enzymes that catalyze the oxidative deamination of lysine and hydroxylysine residues to form allysine, the first step towards the development of the final cross-linking reaction in collagens, a crucial macromolecule that reinforces extracellular matrices. Basement membranes are specialized extracellular matrices that are essential components of the glomerular filtration barrier, which also support tubular epithelial cells. Lysyl oxidases are post-translational enzymes indispensable for tissue architecture, participating actively in the development and function of kidneys. The differential expression and dysregulation of these enzymes promote diabetic nephropathy, one of the major complications observed in end-stage renal diseases. In addition, these enzymes act as transcription factors that trigger the epithelial-mesenchymal transition responsible for the generation of different cancers. In the kidney, the expression studies in physiological conditions identified LOXL1 and LOXL2 as constituent proteins of glomerular basement membranes. Besides, LOX and LOXL2 are upregulated in fibrosis and renal cell carcinoma. The current review summarizes the physiological expression of LOXs enzymes in the nephrons, including glomerulus and tubules. Their roles in renal diseases are particularly highlighted in diabetic nephropathy and renal cell carcinoma, two pathophysiological conditions where these enzymes have been demonstrated to participate. The focus of the present study is to describe and discuss the current understanding in this field. The current potential of LOXs enzymes as a biomarker and pharmacological target to kidney diseases that involves extracellular matrix cross-linking enzymes is also discussed. LOXs isoforms and their capacity as therapeutic targets could be used for diagnostic and prognostic purposes and in treating these renal complications.


Asunto(s)
Carcinoma de Células Renales , Diabetes Mellitus , Nefropatías Diabéticas , Neoplasias Renales , Aminoácido Oxidorreductasas/metabolismo , Femenino , Humanos , Masculino , Proteína-Lisina 6-Oxidasa/metabolismo
11.
Toxins (Basel) ; 13(7)2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34357974

RESUMEN

Several factors contribute to renal-function decline in CKD patients, and the role of phosphate content in the diet is still a matter of debate. This study aims to analyze the mechanism by which phosphate, independent of protein, is associated with the progression of CKD. Adult Munich-Wistar rats were submitted to 5/6 nephrectomy (Nx), fed with a low-protein diet, and divided into two groups. Only phosphate content (low phosphate, LoP, 0.2%; high phosphate, HiP, 0.95%) differentiated diets. After sixty days, biochemical parameters and kidney histology were analyzed. The HiP group presented worse renal function, with higher levels of PTH, FGF-23, and fractional excretion of phosphate. In the histological analysis of the kidney tissue, they also showed a higher percentage of interstitial fibrosis, expression of α-actin, PCNA, and renal infiltration by macrophages. The LoP group presented higher expression of beclin-1 in renal tubule cells, a marker of autophagic flux, when compared to the HiP group. Our findings highlight the action of phosphate in the induction of kidney interstitial inflammation and fibrosis, contributing to the progression of renal disease. A possible effect of phosphate on the dysregulation of the renal cell autophagy mechanism needs further investigation with clinical studies.


Asunto(s)
Fosfatos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Fibrosis , Humanos , Riñón/efectos de los fármacos , Ratas , Ratas Wistar
12.
Free Radic Biol Med ; 172: 358-371, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34175439

RESUMEN

Renal fibrosis is a well-known mechanism that favors chronic kidney disease (CKD) development in obstructive nephropathy, a significant pathology worldwide. Fibrosis induction involves several pathways, and although mitochondrial alterations have recently emerged as a critical factor that triggers renal damage in the obstructed kidney, the temporal mitochondrial alterations during the fibrotic induction remain unexplored. Therefore, in this work, we evaluated the time course of mitochondrial mass and bioenergetics alterations induced by a unilateral ureteral obstruction (UUO), a widely used model to study the mechanism involved in kidney fibrosis induction and progression. Our results show a marked reduction in mitochondrial oxidative phosphorylation (OXPHOS) in the obstructed kidney on days 7 to 28 of obstruction without significant mitochondrial coupling changes. Besides, we observed that mitochondrial mass was reduced, probably due to decreased biogenesis and mitophagy induction. OXPHOS impairment was associated with decreased mitochondrial biogenesis markers, the peroxisome proliferator-activated receptor γ co-activator-1alpha (PGC-1α), and nuclear respiratory factor 1 (NRF1); and also, with the induction of mitophagy in a PTEN-induced kinase 1 (PINK1) and Parkin independent way. It is concluded that the impairment of OXPHOS capacity may be explained by the reduction in mitochondrial biogenesis and the induction of mitophagy during fibrotic progression.


Asunto(s)
Obstrucción Ureteral , Animales , Fibrosis , Mitocondrias , Mitofagia , Biogénesis de Organelos , Ratas
13.
Expert Rev Mol Diagn ; 21(8): 809-821, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34133256

RESUMEN

Introduction: Cardiometabolic diseases are a global public health problem, with significant increases in their prevalence. Different epigenetic factors involved in the progression of metabolic alterations have been described, such as long non-coding RNAs (lncRNAs). H19 is a multifunctional lncRNA expressed from the maternal allele, with low expression after birth, except in the skeletal muscle and heart. Recent studies have linked its dysregulation to alterations in cell metabolism.Areas covered: H19 plays a role in the pathogenesis of coronary artery disease, nonalcoholic fatty liver disease, hepatic and renal fibrosis, insulin resistance, type 2 diabetes, and inflammation. H19 acts mainly as a competitive endogenous RNA of molecules involved in pathways that regulate cell metabolism. In this review, we analyzed the dysregulation of H19 in cardiometabolic diseases and its relationship with molecular alterations in different signaling pathways.Expert opinion: The association of H19 with the development of cardiometabolic diseases, indicates that H19 could be a therapeutic target and prognostic biomarker for these diseases. Controversies have been reported regarding the expression of H19 in some metabolic diseases, therefore, it is necessary to continue research to clarify its pathogenic effect in different organs.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , ARN Largo no Codificante , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/genética , Genes Supresores de Tumor , Humanos , Hígado/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
14.
Toxins (Basel) ; 13(3)2021 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-33800029

RESUMEN

Indoxyl sulfate (IS) is involved in the progression of chronic kidney disease (CKD) and in its cardiovascular complications. One of the approaches proposed to decrease IS is the administration of synbiotics. This work aimed to search for a probiotic strain capable to decrease serum IS levels and mix it with two prebiotics (inulin and fructooligosaccharide (FOS)) to produce a putative synbiotic and test it in a rat CKD model. Two groups of Sprague-Dawley rats were nephrectomized. One group (Lac) received the mixture for 16 weeks in drinking water and the other no (Nef). A control group (C) included sham-nephrectomized rats. Serum creatinine and IS concentrations were measured using high-performance liquid chromatography with diode array detector (HPLC-DAD). Optical microscopy and two-photon excitation microscopy was used to study kidney and heart samples. The Lac group, which received the synbiotic, reduced IS by 0.8% while the Nef group increased it by 38.8%. Histological analysis of kidneys showed that the Lac group increased fibrotic areas by 12% and the Nef group did it by 25%. The synbiotic did not reduce cardiac fibrosis. Therefore, the putative synbiotic showed that function reducing IS and the progression of CKD in a rat model, but no heart protection was observed.


Asunto(s)
Cardiopatías/terapia , Indicán/sangre , Inulina/administración & dosificación , Riñón/metabolismo , Lactobacillus delbrueckii/fisiología , Oligosacáridos/administración & dosificación , Insuficiencia Renal Crónica/terapia , Simbióticos , Toxinas Biológicas/sangre , Animales , Creatinina/sangre , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Fibrosis , Cardiopatías/sangre , Cardiopatías/microbiología , Cardiopatías/patología , Riñón/patología , Miocardio/metabolismo , Miocardio/patología , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/microbiología , Insuficiencia Renal Crónica/patología
15.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(12): e11353, 2021. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1345570

RESUMEN

Cisplatin is a widely used chemotherapeutic drug, but its side effects are a major limiting factor. Nephrotoxicity occurs in one third of patients undergoing cisplatin treatment. The acute tubular injury caused by cisplatin often leads to a defective repair process, which translates into chronic renal disorders. In this way, cisplatin affects tubular cells, and maladaptive tubules regeneration will ultimately result in tubulointerstitial fibrosis. Kinins are well known for being important peptides in the regulation of inflammatory stimuli, and kinin B1 receptor deficiency and antagonism have been shown to be beneficial against acute cisplatin nephrotoxicity. This study aimed to analyze the effects of kinin B1 receptor deletion and antagonism against repeated cisplatin-induced chronic renal dysfunction and fibrosis. Both the deletion and the antagonism of B1 receptor exacerbated cisplatin-induced chronic renal dysfunction. Moreover, the inhibition of B1 receptor increased tubular injury and tubulointerstitial fibrosis after repeated treatment with cisplatin. The balance between M1/M2 macrophage polarization plays an important role in renal fibrosis. Kinin B1 receptor antagonism had no impact on M1 markers when compared to cisplatin. However, YM1, an M2 marker and an important molecule for the wound healing process, was decreased in mice treated with kinin B1 receptor antagonist, compared to cisplatin alone. Endothelin-1 levels were also increased in mice with B1 receptor inhibition. This study showed that kinin B1 receptor inhibition exacerbated cisplatin-induced chronic renal dysfunction and fibrosis, associated with reduced YM1 M2 marker expression, thus possibly affecting the wound healing process.

16.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(3): e9206, 2021. graf
Artículo en Inglés | LILACS | ID: biblio-1153519

RESUMEN

Renal fibrosis is one of the most significant pathological changes after ureteral obstruction. Transforming growth factor-β (TGF-β) signaling pathway plays essential roles in kidney fibrosis regulation. The aims of the present study were to investigate effects of microRNA-302b (miR-302b) on renal fibrosis, and interaction between miR-302b and TGF-β signaling pathway in murine unilateral ureteral obstruction (UUO) model. Microarray dataset GSE42716 was downloaded by retrieving Gene Expression Omnibus database. In accordance with bioinformatics analysis results, miR-302b was significantly down-regulated in UUO mouse kidney tissue and TGF-β1-treated HK-2 cells. Masson's trichrome staining showed that miR-302b mimics decreased renal fibrosis induced by UUO. The increased mRNA expression of collagen I and α-smooth muscle actin (α-SMA) and decreased expression of E-cadherin were reversed by miR-302b mimics. In addition, miR-302b up-regulation also inhibited TGF-β1-induced epithelial mesenchymal transition (EMT) of HK-2 cells by restoring E-cadherin expression and decreasing α-SMA expression. miR-302b mimics suppressed both luciferase activity and protein expression of TGF-βR2. However, miR-302b inhibitor increased TGF-βR2 luciferase activity and protein expression. Meanwhile, miR-302b mimics inhibited TGF-βR2 mRNA expression and decreased Smad2 and Smad3 phosphorylation in vivo and in vitro. Furthermore, over-expression of TGF-βR2 restored the miR-302b-induced decrease of collagen I and α-SMA expression. In conclusion, this study demonstrated that miR-302b attenuated renal fibrosis by targeting TGF-βR2 to suppress TGF-β/Smad signaling activation. Our findings showed that elevating renal miR-302b levels may be a novel therapeutic strategy for preventing renal fibrosis.


Asunto(s)
Humanos , Animales , Ratas , Obstrucción Ureteral/patología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , MicroARNs/genética , Proteínas Smad , Enfermedades Renales/genética , Fibrosis , Línea Celular , Transición Epitelial-Mesenquimal , Riñón/patología , Enfermedades Renales/patología
17.
Biofactors ; 46(5): 716-733, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32905648

RESUMEN

Obstructive nephropathy favors the progression to chronic kidney disease (CKD), a severe health problem worldwide. The unilateral ureteral obstruction (UUO) model is used to study the development of fibrosis. Impairment of renal mitochondria plays a crucial role in several types of CKD and has been strongly related to fibrosis onset. Nevertheless, in the UUO model, the impairment of mitochondria, their relationship with endoplasmic reticulum (ER) stress induction and the participation of both to induce the fibrotic process remain unclear. In this review, we summarize the current information about mitochondrial bioenergetics, redox dynamics, mitochondrial mass, and biogenesis alterations, as well as the relationship of these mitochondrial alterations with ER stress and their participation in fibrotic processes in UUO models. Early after obstruction, there is metabolic reprogramming related to mitochondrial fatty acid ß-oxidation impairment, triggering lipid deposition, oxidative stress, (calcium) Ca2+ dysregulation, and a reduction in mitochondrial mass and biogenesis. Mitochondria and the ER establish a pathological feedback loop that promotes the impairment of both organelles by ER stress pathways and Ca2+ levels dysregulation. Preserving mitochondrial and ER function can prevent or at least delay the fibrotic process and loss of renal function. However, deeper understanding is still necessary for future clinically-useful therapies.


Asunto(s)
Fibrosis/genética , Mitocondrias/genética , Insuficiencia Renal Crónica/genética , Obstrucción Ureteral/genética , Señalización del Calcio/genética , Reprogramación Celular/genética , Estrés del Retículo Endoplásmico/genética , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Mitocondrias/patología , Biogénesis de Organelos , Oxidación-Reducción , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
18.
Free Radic Biol Med ; 154: 75-83, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32376457

RESUMEN

Food restriction improves metabolic health and increases resistance to stress in experimental animals. However, most studies have focused on long-term dietary restriction protocols consisting of several weeks or months of limited food ingestion. Here it was investigated the impact of 2-h time-restricted feeding (TRF) for one week on stress resistance in a rat model of kidney injury induced by ischemia and reperfusion (IR). At baseline, TRF reduced blood glucose, increased ß-hydroxybutyrate and improved body composition in male Wistar rats. Importantly, implementing the one-week TRF schedule before ischemia significantly improved renal function, suppressed tubular injury, prevented the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and inhibited the development of interstitial fibrosis. These benefits were related to increased antioxidant protection, reduction in dynamin-related protein 1 (DRP1)-mediated mitochondrial fragmentation and modulation of the mitochondrial unfolded protein response (UPRmt). Specifically, preoperative TRF boosted the activation of the UPRmt in the acute phase after renal IR while promoted its resolution at the stage of fibrosis. Our study indicates that dietary preconditioning by short-term TRF improves the outcome of renal IR injury, and suggests that an optimal intervention that promotes kidney protection may not necessarily require adherence to restrictive diets for prolonged periods of time.


Asunto(s)
Enfermedades Renales , Daño por Reperfusión , Animales , Riñón/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Enfermedades Renales/prevención & control , Masculino , Estrés Oxidativo , Ratas , Ratas Wistar , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Respuesta de Proteína Desplegada
19.
Arch Biochem Biophys ; 684: 108306, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32081684

RESUMEN

Maternal endotoxemia has been shown to increase renal collagen deposition in the offspring. Renal fibrosis is a hallmark of progressive chronic kidney disease. It was investigated whether maternal reactive oxygen species (ROS) leads to renal fibrosis or exacerbates unilateral ureteral obstruction (UUO)-induced renal fibrosis in the offspring of dams treated with lipopolysaccharide (LPS). Furthermore, it was studied the role of matrix metalloproteinases (MMPs) in these changes. Adults Wistar rats were obtained from dams submitted to LPS administration through the third part of gestation. To evaluate the role of maternal ROS, part of the dams received α-tocopherol simultaneously with LPS. Part of the offspring in each group was submitted to UUO at adulthood when sub-groups were treated with NADPH oxidase inhibitor, apocynin. Maternal LPS administration increased proteinuria, systolic arterial pressure and renal collagen deposition in adult offspring. LPS offspring rats also presented higher MMP-2 activity in parallel to a decreased renal cortical TIMP-2 content. These changes were correlated to increased amounts of TGF-ß1 and NOX2. Maternal α-tocopherol treatment prevented collagen deposition and reduced arterial pressure in adult offspring. α-Tocopherol also inhibited maternal endotoxemia-induced changes in TGF-ß1/NOX2/MMP-2 signaling. UUO led to increased collagen deposition in the contralateral kidneys of LPS offspring, which was correlated to increased NADPH oxidase activity and prevented by NADPH oxidase inhibition. In summary, maternal endotoxemia led to alterations in the TGF-ß1/NOX2/MMP-2 signaling pathway in renal tissue concomitant with collagen deposition, therefore contributing to hypertension in adult offspring.


Asunto(s)
Colágeno/metabolismo , Endotoxemia/complicaciones , Enfermedades Renales/etiología , Riñón/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Transducción de Señal/fisiología , Animales , Endotoxemia/inducido químicamente , Matriz Extracelular/metabolismo , Femenino , Fibrosis/etiología , Fibrosis/metabolismo , Lipopolisacáridos , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , NADPH Oxidasa 2/metabolismo , Embarazo , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/metabolismo , alfa-Tocoferol/farmacología
20.
Front Med (Lausanne) ; 7: 609158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469545

RESUMEN

Chronic kidney disease (CKD) has been considered a major public health issue. In addition to cardiovascular diseases and infections, hypovitaminosis D has been considered a non-traditional aggravating factor for CKD progression. Interstitial fibrosis is a hallmark of CKD strongly correlated with deterioration of renal function. Transforming growth factor ß (TGF-ß) is the major regulatory profibrotic cytokine in CKD. Many injurious stimuli converge on the TGF-ß pathway, which has context-dependent pleiotropic effects and interacts with several related renal fibrosis formation (RFF) pathways. Epidermal growth factor receptor (EGFR) is critically involved in CKD progression, exerting a pathogenic role in RFF associated with TGF-ß-related fibrogenesis. Among others, EGFR pathway can be activated by a disintegrin and a metalloproteinase known as tumor necrosis factor α-converting enzyme (TACE). Currently no effective therapy is available to completely arrest RFF and slow the progression of CKD. Therefore, we investigated the effects of a double treatment with losartan potassium (L), an AT1R antagonist, and the tyrosine kinase inhibitor erlotinib (E) on the alternative pathway of RFF related to TACE-dependent EGFR activation in 5/6-nephrectomized rats under vitamin D deficiency (D). During the 90-day protocol, male Wistar rats under D, were submitted to 5/6 nephrectomy (N) on day 30 and randomized into four groups: N+D, no treatment; N+D+L, received losartan (50 mg/kg/day); N+D+E, received erlotinib (6 mg/kg/day); N+D+L+E received losartan+erlotinib treatment. N+D+L+E data demonstrated that the double treatment with losartan+erlotinib not only blocked the TACE-dependent EGF receptor activation but also prevented the expression of TGF-ß, protecting against RFF. This renoprotection by losartan+erlotinib was corroborated by a lower expression of ECM proteins and markers of phenotypic alteration as well as a lesser inflammatory cell infiltrate. Although erlotinib alone has been emerging as a renoprotective drug, its association with losartan should be considered as a potential therapeutic strategy on the modulation of RFF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA